Enhanced Exhaust after-Treatment Warmup in a Heavy-Duty Diesel Engine System via Miller Cycle and Delayed Exhaust Valve Opening
Abstract
:1. Introduction
2. Methodology
2.1. Heavy-Duty Diesel Engine Model
2.2. Assumptions and Equations Utilized in the Model
2.3. Application of RIVC + DEVO Combined Technique
3. Results and Discussion
3.1. Effects on EAT Inlet Temperature and Exhaust Flow Rate
3.2. Effects on Engine Thermal Efficiency, Heat Loss, and Flow Rates at Ports
3.3. Comparison of the Techniques with Regard to the Potential to Improve Exhaust Energy and EAT Warmup
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Mass flow rate, kg/h | |
Pe | Brake power, kW |
Texhaust | Exhaust temperature, °C |
TEAT catalyst bed | EAT catalyst bed temperature, °C |
Vd | Cylinder displacement, m3 |
η | Efficiency, % |
θ | Burn angle, ° |
θb | Total burn angle, ° |
AFR | Air-to-fuel ratio |
ABDC | After bottom dead center |
ATDC | After top dead center |
BBDC | Before bottom dead center |
BTDC | Before top dead center |
BMEP | Brake mean effective pressure, bar |
BSFC | Brake specific fuel consumption, g/kWh |
BDC | Bottom dead center |
CA | Crank angle, ° |
CDA | Cylinder deactivation |
CR | Compression ratio |
DEVO | Delayed exhaust valve opening, ° |
DFI | Delayed fuel injection, o |
EAT | Exhaust after-treatment |
EVC | Exhaust valve closure, ° |
EVO | Exhaust valve opening, o |
FIR | Fuel injection rate, mm3/injection |
FMEP | Friction mean effective pressure, bar |
IMEP | Indicated mean effective pressure, bar |
IVC | Intake valve closure, ° |
IVO | Intake valve opening, ° |
LES | Lotus engine simulation |
NOx | Nitrogen oxide |
PMEP | Pumping mean effective pressure, bar |
RIVC | Retarded intake valve closure, ° |
RPM | Revolutions per minute |
TDC | Top dead center |
TWC | Three-way catalytic convertor |
VVT | Variable valve timing |
References
- Dieselnet. Emission Standards, European Union, Passenger Cars. Available online: https://www.dieselnet.com/standards/eu/ld.php#stds (accessed on 23 April 2023).
- Dieselnet. Emission Standards, United States, Marine Diesel Engines. Available online: https://www.dieselnet.com/standards/us/marine.php#stds (accessed on 23 April 2023).
- Rahman, S.A.; Rizwanul Fattah, I.M.; Ong, H.C.; Zamri, M.F.M.A. State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles. Energies 2021, 14, 1766. [Google Scholar] [CrossRef]
- Zhao, J.; Wei, Q.; Wang, S.; Ren, X. Progress of ship exhaust gas control technology. Energies 2021, 799, 149437. [Google Scholar] [CrossRef]
- Tang, X.; Wang, P.; Zhang, Z.; Zhang, F.; Shi, L.; Deng, K. Effects of high-pressure and donor-cylinder exhaust gas recirculation on fuel economy and emissions of marine diesel engines. Fuel 2022, 309, 122226. [Google Scholar] [CrossRef]
- Rakopoulas, C.D.; Rakopoulos, D.C.; Mavropoulos, G.C.; Kosmadakis, G.M. Investigating the EGR rate and temperature impact on diesel engine combustion and emissions under various injection timings and loads by comprehensive two-zone modeling. Energy 2018, 157, 990–1014. [Google Scholar] [CrossRef]
- Chauhan, B.V.; Sayyed, I.; Vedrantam, A.; Garg, A.; Bharti, S.; Shukla, M. State of the Art in Low-Temperature Combustion Technologies: HCCI, PCCI, and RCCI. In Advanced Combustion for Sustainable Transport; Springer: Singapore, 2022; pp. 95–139. [Google Scholar]
- Mansor, M.R.A.; Abbood, M.M.; Mohamad, T.I. The influence of varying hydrogen-methane-diesel mixture ratio on the combustion characteristics and emission of a direct injection diesel engine. Fuel 2017, 190, 281–291. [Google Scholar] [CrossRef]
- Hasan, A.O.; Osman, A.I.; Al-Muhtaseb, A.H.; Al-Rawashdeh, H.; Abu-Jrai, A.; Ahmad, R.; Gomaa, M.R.; Deka, T.J.; Rooney, D.W. An experimental study of engine characteristics and tailpipe emissions from modern DI diesel engine fuelled with methanol/diesel blends. Fuel Process. Technol. 2021, 220, 106901. [Google Scholar] [CrossRef]
- Freitas, E.S.D.C.; Guarieiro, L.L.N.; da Silva, M.V.I.; Amparo, K.K.D.S.; Machado, B.A.S.; Guerreiro, E.T.d.A.; de Jesus, J.F.C.; Torres, E.A. Emission and Performance Evaluation of a Diesel Engine Using Addition of Ethanol to Diesel/Biodiesel Fuel Blend. Energies 2022, 15, 2988. [Google Scholar] [CrossRef]
- Votsmeier, M.; Kreuzer, T.; Gieshoff, J.; Lepperhoff, G. Automobile exhaust control. Ullmann’s Encycl. Ind. Chem. 2009, 4, 407–424. [Google Scholar]
- Konstandopoulos, A.G.; Kostoglou, M.; Beatrice, C.; Di Blasio, G.; Imren, A.; Denbratt, I. Impact of combination of EGR, SCR, and DPF technologies for the low-emission rail diesel engines. Emiss. Control Sci. Technol. 2015, 1, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Gerald Liu, Z.; Munnannur, A. Future Diesel Engines. In Design and Development of Heavy Duty Diesel Engines: A Handbook; Springer: Singapore, 2020; pp. 887–914. [Google Scholar]
- Kašpar, J.; Fornasiero, P.; Hickey, N. Automotive catalytic converters: Current status and some perspectives. Catal. Today 2003, 77, 419–449. [Google Scholar] [CrossRef]
- Girard, J.; Cavataio, G.; Snow, R.; Lambert, C. Combined Fe-Cu SCR systems with optimized ammonia to NOx ratio for diesel NOx control. SAE Int. J. Fuels Lubr. 2009, 1, 603–610. [Google Scholar] [CrossRef]
- Song, X.; Surenahalli, H.; Naber, J.; Parker, G.; Johnson, J.H. Experimental and Modeling Study of a Diesel Oxidation Catalyst (DOC) Under Transient and CPF Active Regeneration Conditions; SAE Technical Paper, No. 2013-01-1046; SAE International: Warrendale, PA, USA, 2013. [Google Scholar]
- Hou, X.; Ma, Y.; Peng, F.; Yan, F.; Zhang, X. Research on temperature characteristics of dpf regeneration technology based on catalytic combustion of fuel injection. In Proceedings of the 2010 Asia-Pacific power and energy engineering conference (APPEEC), Chengdu, China, 28–31 March 2010; IEEE: Manhattan, NY, USA, 2010; pp. 1–4. [Google Scholar]
- Charlton, S.; Dollmeyer, T.; Grana, T. Meeting the US heavy-duty EPA 2010 standards and providing increased value for the customer. SAE Int. J. Commer. Veh. 2010, 3, 101–110. [Google Scholar] [CrossRef]
- Feng, R.; Hu, X.; Li, G.; Sun, Z.; Ye, M.; Deng, B. Exploration on the emissions and catalytic reactors interactions of a non-road diesel engine through experiment and system level simulation. Fuel 2023, 342, 127746. [Google Scholar] [CrossRef]
- Honardar, S.; Busch, H.; Schnorbus, T.; Severin, C.; Kolbeck, A.F.; Korfer, T. Exhaust Temperature Management for Diesel Engines Assessment of Engine Concepts and Calibration Strategies with Regard to Fuel Penalty; SAE Technical Paper, No. 2011-24-0176; SAE International: Warrendale, PA, USA, 2011. [Google Scholar]
- Munnannur, A.; Ottinger, N.; Gerald Liu, Z. Thermal Management of Exhaust Aftertreatment for Diesel Engines. In Handbook of Thermal Management of Engines; Springer: Singapore, 2022; pp. 29–90. [Google Scholar]
- Hu, J.; Wu, Y.; Yu, Q.; Liao, J.; Cai, Z. Heating and storage: A review on exhaust thermal management applications for a better trade-off between environment and economy in ICEs. Appl. Therm. Eng. 2023, 220, 119782. [Google Scholar] [CrossRef]
- Wang, J.; Wang, B.; Cao, Z. Experimental research on exhaust thermal mangement control strategy for diesel particular filter active regeneration. Int. J. Automot. Technol. 2020, 21, 1185–1194. [Google Scholar] [CrossRef]
- Stadlbauer, S.; Waschl, H.; Schilling, A.; del Re, L. DOC Temperature Control for Low Temperature Operating Ranges with Post and Main Injection Actuation; SAE Technical Paper, No. 2013-01-1580; SAE International: Warrendale, PA, USA, 2013. [Google Scholar]
- Wang, Z.; Shen, L.; Lei, J.; Yao, G.; Wang, G. Impact characteristics of post injection on exhaust temperature and hydrocarbon emissions of a diesel engine. Energy Rep. 2022, 8, 4332–4343. [Google Scholar] [CrossRef]
- Nie, X.; Bi, Y.; Liu, S.; Shen, L.; Wan, M. Impacts of different exhaust thermal management methods on diesel engine and SCR performance at different altitude levels. Fuel 2022, 324, 124747. [Google Scholar] [CrossRef]
- Anbarasu, M.; Ramani, V.S. Improvement of SCR Thermal Management System and Emissions Reduction through Combustion Optimization; SAE Technical Paper, No. 2022-28-0482; SAE International: Warrendale, PA, USA, 2022. [Google Scholar]
- Hamedi, M.R.; Doustdar, O.; Tsolakis, A.; Hartland, J. Thermal energy storage system for efficient diesel exhaust aftertreatment at low temperatures. Appl. Energy 2019, 235, 874–887. [Google Scholar] [CrossRef]
- Hamedi, M.R.; Doustdar, O.; Tsolakis, A.; Hartland, J. Energy-efficient heating strategies of diesel oxidation catalyst for low emissions vehicles. Energy 2021, 230, 120819. [Google Scholar] [CrossRef]
- Clenci, A.; Berquez, J.; Stoica, R.; Niculescu, R.; Cioc, B.; Zaharia, C.; Iorga-Simăn, V. Experimental investigation of the effect of an afterburner on the light-off performance of an exhaust after-treatment system. Energy Rep. 2022, 8, 406–418. [Google Scholar]
- Dinler, N.; Aktas, F.; Taskin, S.; Karaaslan, S.; Yucel, N. Effects of Preheater Load and Location on the Catalytic Converter Efficiency during Cold Start and Idling Conditions. Isı Bilimi Tekniği Dergisi 2021, 41, 239–247. [Google Scholar] [CrossRef]
- Brück, R.; Presti, M.; Keck, M.; Dengler, J.; Faiß, M. Thermal management on demand; the exhaust aftertreatment solution for future heavy duty application. In Internationaler Motorenkongress 2021; Springer Vieweg: Wiesbaden, Germany, 2021; pp. 387–399. [Google Scholar]
- Gehrke, S.; Kovács, D.; Eilts, P.; Rempel, A.; Eckert, P. Investigation of VVA-based exhaust management strategies by means of a HD single cylinder research engine and rapid prototyping systems. SAE Int. J. Commer. Veh. 2013, 6, 47–61. [Google Scholar] [CrossRef]
- Gosala, D.B.; Ramesh, A.K.; Allen, C.M.; Joshi, M.C.; Taylor, A.H.; Van Voorhis, M.; Shaver, G.M.; Farrell, L.; Koeberlein, E.; McCarthy, J., Jr.; et al. Diesel engine aftertreatment warm-up through early exhaust valve opening and internal exhaust gas recirculation during idle operation. Int. J. Eng. Res. 2018, 19, 758–773. [Google Scholar] [CrossRef]
- Roberts, L.; Magee, M.; Shaver, G.; Garg, A.; McCarthy, J.; Koeberlein, E.; Holloway, E.; Shute, R.; Koeberlein, D.; Nielsen, D. Modeling the impact of early exhaust valve opening on exhaust after-treatment thermal management and efficiency for compression ignition engines. Int. J. Eng. Res. 2015, 16, 773–794. [Google Scholar] [CrossRef]
- Basaran, H.U.; Ozsoysal, O.A. Effects of application of variable valve timing on the exhaust gas temperature improvement in a low-loaded diesel engine. Appl. Therm. Eng. 2017, 122, 758–767. [Google Scholar] [CrossRef]
- Morris, A.; McCarthy, J. The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance Up to 3 Bar BMEP; SAE Technical Paper, No. 2020-01-1407; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Ramesh, A.K.; Gosala, D.B.; Allen, C.; Joshi, M.; McCarthy, J., Jr.; Farrell, L.; Koeberlein, E.D.; Shaver, G.M. Cylinder Deactivation for Increased Engine Efficiency and Aftertreatment Thermal Management in Diesel Engines; SAE Technical Paper, 2018-01-0384; SAE International: Warrendale, PA, USA, 2018. [Google Scholar]
- Basaran, H.U. Fuel-saving Exhaust after-treatment Management on a Sparkignition Engine System via Cylinder Deactivation Method. Isı Bilimi ve Tekniği Dergisi 2018, 38, 87–98. [Google Scholar]
- Ramesh, A.K.; Shaver, G.M.; Allen, C.M.; Nayyar, S.; Gosala, D.B.; Caicedo Parra, D.; Koeberlein, E.; McCarthy, J., Jr.; Nielsen, D. Utilizing low airflow strategies, including cylinder deactivation, to improve fuel efficiency and aftertreatment thermal management. Int. J. Eng. Res. 2017, 18, 1005–1016. [Google Scholar] [CrossRef]
- Garcia, E.; Triantopoulos, V.; Trzaska, J.; Taylor, M.; Li, J.; Boehman, A.L. Extreme Miller cycle with high intake boost for improved efficiency and emissions in heavy-duty diesel engines. Int. J. Eng. Res. 2023, 24, 552–566. [Google Scholar] [CrossRef]
- Liu, F.; Liu, B.; Zhang, J.; Wan, P.; Li, B. Study on a Novel Variable Valve Timing and Lift Mechanism for a Miller Cycle Diesel Engine. Energies 2022, 15, 8521. [Google Scholar] [CrossRef]
- Gao, J.; Tian, G.; Sorniotti, A.; Karci, A.E.; Di Palo, R. Review of thermal management of catalytic converters to decrease engine emissions during cold start and warm up. Appl. Therm. Eng. 2019, 147, 177–187. [Google Scholar] [CrossRef]
- Basaran, H.U. Effects of Intake Valve Lift Form Modulation on Exhaust Temperature and Fuel Economy of a Low-loaded Automotive Diesel Engine. Int. J. Automot. Sci. Technol. 2021, 5, 85–98. [Google Scholar] [CrossRef]
- Bharath, A.N.; Kalva, N.; Reitz, R.D.; Rutland, C.J. Use of early exhaust valve opening to improve combustion efficiency and catalyst effectiveness in a multi-cylinder RCCI engine system: A simulation study. In Proceedings of the ASME 2014 Internal Combustion Engine Division Fall Technical Conference, Volume 1: Large Bore Engines; Fuels; Advanced Combustion; Emissions Control Systems, Columbus, IN, USA, 19–22 October 2014; American Society of Mechanical Engineers: New York, NY, USA, 2014. V001T03A011. [Google Scholar]
- Tan, P.; Duan, L.; Li, E.; Hu, Z.; Lou, D. Experimental Study on Thermal Management Strategy of the Exhaust Gas of a Heavy-Duty Diesel Engine Based on In-Cylinder Injection; SAE Technical Paper, No. 2020-01-0621; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Garg, A.; Magee, M.; Ding, C.; Roberts, L.; Shaver, G.; Koeberlein, E.; Shute, R.; Koeberlein, D.; McCarthy, J.J.; Nielsen, D. Fuel-efficient exhaust thermal management using cylinder throttling via intake valve closing timing modulation. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2016, 230, 470–478. [Google Scholar] [CrossRef]
- Basaran, H.U. Utilizing exhaust valve opening modulation for fast warm-up of exhaust after-treatment systems on highway diesel vehicles. Int. J. Automot. Sci. Technol. 2020, 4, 10–22. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Durrett, R.P.; Sun, Z. Late intake valve closing as an emissions control strategy at Tier 2 Bin 5 engine-out NOx level. SAE Int. J. Eng. 2009, 1, 427–443. [Google Scholar] [CrossRef]
- Joshi, M.C.; Gosala, D.; Shaver, G.M.; McCarthy, J.; Farrell, L. Exhaust valve profile modulation for improved diesel engine curb idle aftertreatment thermal management. Int. J. Eng. Res. 2021, 22, 3179–3195. [Google Scholar] [CrossRef]
- Schwoerer, J.A.; Kumar, K.; Ruggiero, B.; Swanbon, B. Lost-Motion VVA Systems for Enabling Next Generation Diesel Engine Efficiency and after-Treatment Optimization; SAE Technical Paper, No. 2010-01-1189; SAE International: Warrendale, PA, USA, 2010. [Google Scholar]
- Piano, A.; Millo, F.; Di Nunno, D.; Gallone, A. Numerical Analysis on the Potential of Different Variable Valve Actuation on a Light-Duty Diesel Engine for Improving Exhaust System Warm Up; SAE Technical Paper, No. 2017-24-0024; SAE International: Warrendale, PA, USA, 2017. [Google Scholar]
- Joshi, M.C.; Gosala, D.B.; Allen, C.M.; Vos, K.; Voorhis, M.V.; Taylor, A.; Shaver, G.M.; McCarthy, J.J.; Stretch, D.; Koeberlein, E.; et al. Reducing diesel engine drive cycle fuel consumption through use of cylinder deactivation to maintain aftertreatment component temperature during idle and low load operating conditions. Front. Mech. Eng. 2017, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.M.; Joshi, M.C.; Gosala, D.B.; Shaver, G.M.; Farrell, L.; McCarthy, J. Experimental assessment of diesel engine cylinder deactivation performance during low-load transient operations. Int. J. Eng. Res. 2021, 22, 606–615. [Google Scholar] [CrossRef]
- Serrano, J.R.; Arnau, F.J.; Martin, J.; Aunon, A. Development of a variable valve actuation control to improve diesel oxidation catalyst efficiency and emissions in a light duty diesel engine. Energies 2020, 13, 4561. [Google Scholar] [CrossRef]
- Lotus Engineering Software. Lotus Engine Simulation (LES) Version 6.01A; Lotus Engineering: Norfolk, UK.
- Lotus Engineering. Getting Started with Lotus Engine Simulation. Available online: https://lotusproactive.files.wordpress.com/2013/08/getting-started-with-lotus-engine-simulation.pdf (accessed on 23 April 2023).
- Pearson, R.J.; Bassett, M.D.; Fleming, N.P.; Rodemann, T. Lotus Engineering Software—An Approach to Model-Based Design; Lotus Engineering: Norfolk, UK, 2002. [Google Scholar]
- Sezer, İ. Alternative gaseous fuels in port fuel injection spark ignition engines. J. Energy Inst. 2011, 84, 207–214. [Google Scholar] [CrossRef]
- Allawi, M.K.; Mejbel, M.K.; Oudah, M.H. Variable valve timing (VVT) modelling by Lotus engine simulation software. Int. J. Automot. Mech. Eng. 2020, 17, 8397–8410. [Google Scholar] [CrossRef]
- Mishra, R.; Saad, S.M. Simulation based study on improving the transient response quality of turbocharged diesel engines. J. Qual. Maint. Eng. 2017, 23, 297–309. [Google Scholar] [CrossRef]
- Vos, K.R.; Shaver, G.M.; Joshi, M.C.; McCarthy, J., Jr. Implementing variable valve actuation on a diesel engine at high-speed idle operation for improved aftertreatment warm-up. Int. J. Eng. Res. 2020, 21, 1134–1146. [Google Scholar] [CrossRef]
- Heywood, J.B. Internal Combustion Engine Fundamentals; McGraw-Hill, Inc., Book Company: New York, NY, USA, 1988. [Google Scholar]
- Sandoval, D.; Heywood, J.B. An Improved Friction Model for Spark-Ignition Engines; SAE Technical Paper No. 2003-01-0725; SAE International: Warrendale, PA, USA, 2003. [Google Scholar]
- Stanton, D.W. Systematic development of highly efficient and clean engines to meet future commercial vehicle greenhouse gas regulations. SAE Int. J. Eng. 2013, 6, 1395–1480. [Google Scholar] [CrossRef]
- Watson, N.; Pilley, A.D.; Marzouk, M. A Combustion Correlation for Diesel Engine Simulation; SAE Technical Paper No. 800029; SAE International: Warrendale, PA, USA, 1980. [Google Scholar]
- Annand, W.J.D. Heat transfer in the cylinders of reciprocating internal combustion engines. Proc. Inst. Mech. Eng. 1963, 177, 973–996. [Google Scholar]
- Incropera, P.; DeWitt, D.; Bergman, T.; Lavine, A. Fundamentals of Heat and Mass Transfer; John Wiley and Sons: Minneapolis, MN, USA, 2007. [Google Scholar]
Model | Six-Cylinder CI Engine |
---|---|
Air intake | Turbocharged |
Bore (mm) | 107 |
Stroke (mm) | 124 |
Connecting rod length (mm) | 192 |
Compression ratio | 17.3:1 |
Maximum engine speed (RPM) | 2800 |
Maximum engine load (as BMEP) (bar) | 19.0 |
EVO | 20 °CA BBDC |
EVC | 20 °CA ATDC |
IVO | 20 °CA BTDC |
IVC | 25 °CA ABDC |
Start of injection (SOI) | 3 °CA BTDC |
Cylinder firing order | 1-5-3-6-2-4 |
Engine Speed (RPM) | Engine BMEP (Bar) |
---|---|
1200 | 2.5 |
Method | Engine Parameter | Nominal Case | Increment (°CA) | Extreme Case |
---|---|---|---|---|
RIVC | IVC (°CA ABDC) | 25 | +10 | 125 |
DEVO | EVO (°CA BBDC) | 20 | −10 | −70 |
RIVC + DEVO | IVC + EVO combined | (25) + (20) | (+10) + (−10) | (85) + (−60) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basaran, H.U. Enhanced Exhaust after-Treatment Warmup in a Heavy-Duty Diesel Engine System via Miller Cycle and Delayed Exhaust Valve Opening. Energies 2023, 16, 4542. https://doi.org/10.3390/en16124542
Basaran HU. Enhanced Exhaust after-Treatment Warmup in a Heavy-Duty Diesel Engine System via Miller Cycle and Delayed Exhaust Valve Opening. Energies. 2023; 16(12):4542. https://doi.org/10.3390/en16124542
Chicago/Turabian StyleBasaran, Hasan Ustun. 2023. "Enhanced Exhaust after-Treatment Warmup in a Heavy-Duty Diesel Engine System via Miller Cycle and Delayed Exhaust Valve Opening" Energies 16, no. 12: 4542. https://doi.org/10.3390/en16124542
APA StyleBasaran, H. U. (2023). Enhanced Exhaust after-Treatment Warmup in a Heavy-Duty Diesel Engine System via Miller Cycle and Delayed Exhaust Valve Opening. Energies, 16(12), 4542. https://doi.org/10.3390/en16124542