Selected Materials and Technologies for Electrical Energy Sector
Abstract
:1. Introduction
2. The Energy Sector Today and Its Main Challenges
3. Materials
3.1. Superconducting Materials
3.2. Functional Materials for Solar Cells
- monocrystalline (single-crystal)—made from pure mono-Si crystals, whose crystal lattice is continuous and unbroken up to its edges. Mono-Si-based cells are the most energy-conversion and space-efficient from the Si group, but at the same time, they are considered the most expensive option;
- polycrystalline (multicrystalline)—highly pure, made from multiple mono-Si crystals. Poly-Si solar cells, compared to mono-Si, are less expensive, however, they are also less efficient and require more space to provide the same power generation;
- amorphous (a-Si)—is an unstructured non-crystalline form of Si with no long lattice order. Cells based on a-Si differ from the crystalline-Si-based ones in their construction, manufacturing technology, and output power and require about 100 times less amount of Si for their functionality.
- silicon is the second most abundant material on our planet after oxygen;
- its PV effect and response to the influence of the electromagnetic field are well understood;
- silicon cells demonstrate an energy efficiency of more than 29%;
- non-toxic, environment-friendly material;
- lightweight, low-cost, and long lifetime (25 years or more) cycle;
- demonstrates good photoconductivity and corrosion resistance;
- works properly in high temperatures and during intensive sunlight.
- it is strongly dependent on weather conditions;
- it demonstrates high light reflectivity of approx. 30% while i.e., typical organic semiconductors show 5–11% [39];
- Si cells are fragile and rigid, so the transportation and installation processes should be well-supervised.
3.3. Amorphous Carbon Nitrides
4. Technologies
4.1. High Temperature Superconductivity
4.2. Materials Processing Technologies
4.2.1. Selected Techniques for Processing of Solar Cell Materials
4.2.2. Plasma Technologies in Material Science and Engineering
4.3. Thermal and Non-Thermal Plasma for Electrical Energy Sector and Environment
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boiko, O.; Koltunowicz, T.N.; Zukowski, P.; Fedotov, A.K.; Larkin, A.V. The effect of sputtering atmosphere parameters on dielectric properties of the ferromagnetic alloy—Ferroelectric ceramics nanocomposite (FeCoZr)x(PbZrTiO3)(100-x). Ceram. Int. 2017, 43, 2511–2516. [Google Scholar] [CrossRef]
- Koltunowicz, T.N.; Zukowski, P.; Boiko, O.; Czarnacka, K.; Bondariev, V.; Saad, A.; Larkin, A.V.; Fedotov, A.K. Capacitive properties of nanocomposite (FeCoZr)x(PZT)(100-x) produced by sputtering with the use of argon and oxygen ions beam. J. Mater. Sci. Mater. Electron. 2016, 27, 1171–1176. [Google Scholar] [CrossRef] [Green Version]
- Koltunowicz, T.N.; Zukowski, P.; Boiko, O.; Fedotov, A.K.; Larkin, A.V. Presence of Inductivity in (CoFeZr)x(PZT)1-x Nanocomposite Produced by Ion Beam Sputtering. Acta Phys. Pol. 2016, 128, 853–856. [Google Scholar] [CrossRef]
- Koltunowicz, T.N.; Zukowski, P.; Boiko, O.; Saad, A.; Fedotova, J.A.; Fedotov, A.K.; Larkin, A.V.; Kasiuk, J. AC Hopping Conductance in Nanocomposite Films with Ferromagnetic Alloy Nanoparticles in a PbZrTiO3 Matrix. J. Electron. Mater. 2015, 44, 2260–2268. [Google Scholar] [CrossRef] [Green Version]
- Zukowski, P.; Koltunowicz, T.N.; Boiko, O.; Bondariev, V.; Czarnacka, K.; Fedotova, J.A.; Fedotov, A.K.; Svito, I.A. Impedance model of metal-dielectric nanocomposites produced by ion-beam sputtering in vacuum conditions and its experimental verification for thin films of (FeCoZr)x(PZT)(100-x). Vacuum 2015, 120, 37–43. [Google Scholar] [CrossRef]
- Boiko, O.; Drozdenko, D.; Minarik, P. Dielectric properties, polarization process, and charge transport in granular (FeCoZr)x(Pb(ZrTi)O3)(100-x) nanocomposites near the percolation threshold. AIP Adv. 2022, 12, 025306. [Google Scholar] [CrossRef]
- Boiko, O. Dielectric relaxation in granular metal-dielectric nanocomposites. In Proceedings of the 15th Selected Issues of Electrical Engineering and Electronics (WZEE), Zakopane, Poland, 8–10 December 2020. [Google Scholar]
- Boiko, O. Dielectric properties of metallic alloy FeCoZr-dielectric ceramic PZT nanostructures prepared by ion sputtering in vacuum conditions. In Proceedings of the 5th Global Conference on Polymer and Composite Materials (PCM), Kitakyushu, Japan, 10–13 April 2018. [Google Scholar] [CrossRef]
- Boiko, O. Granular metal-dielectric nanocomposites as an alternative to passive SMD. Prz. Elektrotech. 2020, 96, 158–161. [Google Scholar] [CrossRef]
- UNECE. Natural Resource Nexuses in the ECE Region; United Nations: Geneva, Switzerland, 2021. [Google Scholar]
- Kåberger, T. Turning around the direction of the fuel-electricity system. Acad. Lett. 2022, 5578. [Google Scholar] [CrossRef]
- Stryczewska, H.D.; Boiko, O. Applications of Plasma Produced with Electrical Discharges in Gases for Agriculture and Biomedicine. Appl. Sci. 2022, 12, 4405. [Google Scholar] [CrossRef]
- Cha, M.S.; Snoeckx, R. Plasma Technology–Preparing for the Electrified Future. Front. Mech. Eng. 2022, 8, 903379. [Google Scholar] [CrossRef]
- Chudy, A.; Stryczewska, H.D. Electric vehicle charging—Aspects of power quality and electromagnetic compatibility. J. Autom. Electron. Electr. Eng. 2019, 1, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Stryczewska, H.D.; Stępień, M.A.; Boiko, O. Plasma and Superconductivity for the Sustainable Development of Energy and the Environment. Energies 2022, 15, 4092. [Google Scholar] [CrossRef]
- Czernichowski, A. Gliding Discharge Reactor for H2S Valorization or Destruction. In Non-Thermal Plasma Techniques for Pollution Control, Part A: Overview, Fundamentals and Supporting Technologies, Proceedings of the NATO Advanced Research Workshop on Non-Thermal Plasma Techniques for Pollution Control, Held at Cambridge, UK, 21–25 September 1992; Penetrante, M., Schultheis, S.E., Eds.; NATO ASI Series G: Ecological Science; Springer: Berlin/Heidelberg, Germany, 1992; Volume 34, p. 393. [Google Scholar]
- Chmielewski, A.G.; Zwolinska, E.A.; Sun, Y. Electron beam flue gas technology for SOx and NOx simultaneous removal-process and its chemistry evolution from power plants to diesel off gases treatment. Rev. Chem. Eng. 2019, 36, 933–945. [Google Scholar]
- Holub, M.; Kalisiak, S.; Borkowski, T.; Myskow, J.; Brandenburg, R. The Influence of Direct Non-Thermal Plasma Treatment on Particulate Matter (PM) and NOx in the Exhaust of Marine Diesel Engines. Pol. J. Environ. Stud. 2010, 19, 1199–1211. [Google Scholar]
- Bisht, S.; Nautiyal, B.; Bhatt, U.M.; Joshi, P. Plasma Applications for Environmental Protection. Int. J. Eng. Adv. Technol. 2014, 3, 77–81. [Google Scholar]
- Veerapandian, S.K.P.; Leys, C.; De Geyter, N.; Morent, R. Abatement of VOCs Using Packed Bed Non-Thermal Plasma Reactors: A Review. Catalysts 2017, 7, 113. [Google Scholar] [CrossRef] [Green Version]
- Bogaerts, A.; Neyts, E.C. Plasma Technology: An Emerging Technology for Energy Storage. ACS Energy Lett. 2018, 3, 1013–1027. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-H.; Teramoto, Y.; Ogata, A.; Takagi, H.; Nanba, T. Plasma Catalysis for Environmental Treatment and Energy Applications. Plasma Chem. Plasma Process. 2016, 36, 45–72. [Google Scholar] [CrossRef]
- National Research Council. Plasma Processing of Materials: Scientific Opportunities and Technological Challenges; The National Academies Press: Washington, DC, USA, 1991. [CrossRef] [Green Version]
- Hrabovsky, M.; Jeremiáš, M.; van Oost, G. Plasma Gasification and Pyrolysis; CRC Press Francis & Taylor Group: Boca Raton, FL, USA, 2022; ISBN 978-0-367-55685-3. [Google Scholar]
- Kambara, M.; Kawaguchi, S.; Lee, H.J.; Ikuse, K.; Hamaguchi, S.; Ohmori, T.; Ishikawa, K. Science-based, data-driven developments in plasma processing for material synthesis and device-integration technologies. Jpn. J. Appl. Phys. 2023, 62, SA0803. [Google Scholar] [CrossRef]
- Adamovich, I.; Agarwal, S.; Ahedo, E.; Alves, L.L.; Baalrud, S.; Babaeva, N.; Bogaerts, A.; Bourdon, A.; Bruggeman, P.J.; Canal, C.; et al. The 2022 plasma roadmap: Low-temperature plasma science and technology. J. Phys. D Appl. Phys. 2022, 55, 373001. [Google Scholar] [CrossRef]
- Oost, G.V. Applications of Thermal Plasmas for the Environment. Appl. Sci. 2022, 12, 7185. [Google Scholar] [CrossRef]
- Miotk, R.; Hrycak, B.; Czylkowski, D.; Jasinski, M.; Dors, M.; Mizeraczyk, J. Liquid fuel reforming using microwave plasma at atmospheric pressure. In Proceedings of the 32nd ICPIG, Iași, Romania, 26–31 July 2015. [Google Scholar]
- Lan, K.; Yao, Y. Feasibility of gasifying mixed plastic waste for hydrogen production and carbon capture and storage. Commun. Earth Environ. 2022, 3, 300. [Google Scholar] [CrossRef]
- Chen, G.; Godfroid, T.; Britun, N.; Georgieva, V.; Delplancke-Ogletree, M.P.; Snyders, R. Plasma-catalytic conversion of CO2 and CO2/H2O in a surface-wave sustained microwave discharge. Appl. Catal. B Environ. 2017, 214, 114–125. [Google Scholar] [CrossRef]
- Seeber, B.; Calzolaio, C.; Zurmühle, D.; Abächerli, V.; Alessandrini, M.; De Marzi, G.; Senatore, C. Reduced strain sensitivity of the critical current of Nb3Sn multifilamentary wires. J. Appl. Phys. 2019, 126, 203905. [Google Scholar] [CrossRef]
- Superconductors Luvata. Available online: https://www.luvata.com/products/superconductors (accessed on 17 December 2022).
- Bruker Energy & Supercon Technologies. Available online: https://www.bruker.com/en/products-and-solutions/superconductors.html (accessed on 17 December 2022).
- Krosny, S.; Woźniak, M.; Hopkins, S.C.; Stępień, M.A.; Grzesik, B.; Głowacki, B.A. Modeling of transient state phenomena of composite superconducting conductors during pulse Ic(B) measurements. J. Phys. Conf. Ser. 2010, 234, 022019. [Google Scholar] [CrossRef]
- Superpower. 2G HTS Wire Specification. Available online: https://www.superpower-inc.com/specification.aspx (accessed on 17 December 2022).
- Ballarino, A.; Flükiger, R. Status of MgB2 wire and cable applications in Europe. J. Phys. Conf. Ser. 2017, 871, 012098. [Google Scholar] [CrossRef] [Green Version]
- Morandi, A.; Ribani, P.; Fiorillo, A.S.; Pullano, S. Development Status and Preliminary Test Results of a Cryogen-Free MgB2 SMES System; CA19108 COST Action Seminar; IEEE: Bologna, Italy, 2021. [Google Scholar]
- This Month in Physics History. Available online: https://www.aps.org/publications/apsnews/200904/physicshistory.cfm (accessed on 29 March 2023).
- Silicon Solar Cells. Available online: https://sinovoltaics.com/solar-cells/guide-to-solar-cells-part-1-silicon-solar-cells/ (accessed on 29 March 2023).
- Silicon Solar Cell: Types, Uses, Advantages & Disadvantages. Available online: https://www.solarsquare.in/blog/silicon-solar-cell/ (accessed on 28 March 2023).
- Mercaldo, L.V.; Usatii, I.; Esposito, E.M.; Veneri, P.D. Light-management potential of dual-function n-SiOx in the top junction of micromorph solar cells with different front electrodes. Sol. Energy Mater. Sol. 2015, 136, 32–37. [Google Scholar] [CrossRef]
- Solar Photovoltaic Cell Basics|Department of Energy. Available online: https://www.energy.gov/eere/solar/solar-photovoltaic-cell-basics (accessed on 28 March 2023).
- Baines, T.; Shalvey, T.P.; Major, J.D. 10—CdTe Solar Cells. In A Comprehensive Guide to Solar Energy Systems; Letcher, T.M., Fthenakis, V.M., Eds.; Elsevier, B.V.: Amsterdam, The Netherlands, 2018; pp. 215–232. [Google Scholar]
- Cadmium Telluride: Advantages & Disadvantages. Available online: https://www.solar-facts-and-advice.com/cadmium-telluride.html (accessed on 29 March 2023).
- Simashkevich, A.; Sherban, D.; Bruk, L.; Usatii, I.; Fedorov, V. Transparent conductive oxide layers and their application in solar energetic. In Proceedings of the CMP 2009: Conference of Moldavian Physicists, Chisinau, Moldova, 26–28 November 2009. [Google Scholar]
- Doroody, C.; Rahman, K.S.; Rosly, H.N.; Harif, M.N.; Haque, F.; Tiong, S.K.; Amin, N. Impact of high resistivity transparent (HRT) layer in cadmium telluride solar cells from numerical simulation. J. Renew. Sustain. Energy 2020, 12, 023702. [Google Scholar] [CrossRef]
- Copper Indium Gallium Diselenide|Department of Energy. Available online: https://www.energy.gov/eere/solar/copper-indium-gallium-diselenide (accessed on 29 March 2023).
- Why Are CIGS Solar Better than Crystalline Solar and Are They? Available online: https://energig.com/guides/why-are-cigs-solar-cells-better-than-crystalline/ (accessed on 30 March 2023).
- Perovskite Solar Cells|Department of Energy. Available online: https://www.energy.gov/eere/solar/perovskite-solar-cells (accessed on 30 March 2023).
- Kim, H.S.; Lee, C.R.; Im, J.H.; Lee, K.B.; Moehl, T.; Marchioro, A.; Moon, S.J.; Humphry-Baker, R.; Yum, J.H.; Moser, J.E.; et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Park, N.G. A thin film (<200 nm) perovskite solar cell with 18% efficiency. J. Mater. Chem. A 2020, 8, 17420–17428. [Google Scholar] [CrossRef]
- Dogan, I.; Di Ciacomo, F.; Shanmuham, S.; Zardetto, V.; Fledderus, H.; Gorter, H.; Kirschner, G.; de Vries, I.; Qiu, W.; Verhees, W.; et al. Towards roll-to-roll production of perovskite solar cells: Sheet-to-sheet slot-die processing of high efficiency cells and modules. In Proceedings of the 10th International Conference on Hybrid and Organic Photovoltaics, Benidorm, Spain, 28–31 May 2018. [Google Scholar] [CrossRef]
- Huang, Y.C.; Li, C.F.; Huang, Z.H.; Liu, P.H.; Tsao, C.S. Rapid and sheet-to-sheet slot-die coating manufacture of highly efficient perovskite solar cells processed under ambient air. Sol. Energy 2019, 177, 255–261. [Google Scholar] [CrossRef]
- Yin, W.J.; Shi, T.; Yan, Y. Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance. Adv. Mater. 2014, 26, 4653–4658. [Google Scholar] [CrossRef] [PubMed]
- Lal, N.N.; Dkhissi, Y.; Li, W.; Hou, Q.; Cheng, Y.; Bach, U. Perovskite Tandem Solar Cells. Adv. Energy Mater. 2017, 7, 1602761. [Google Scholar] [CrossRef]
- Werner, J.; Niesen, B.; Ballif, C. Perovskite/Silicon Tandem Solar Cells: Marriage of Convenience or True Love Story?—An Overview. Adv. Mater. Interfaces 2018, 5, 1700731. [Google Scholar] [CrossRef]
- Kranz, L.; Abate, A.; Feurer, T.; Fu, F.; Avancini, E.; Löckinger, J.; Reinhard, P.; Zakeeruddin, S.M.; Grätzel, M.; Buecheler, S.; et al. High-Efficiency Polycrystalline Thin Film Tandem Solar Cells. J. Phys. Chem. Lett. 2015, 6, 2676–2681. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 2019, 10, 2515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.X. Organic Solar Cells: Recent Progress and Challenges. ACS Energy Lett. 2019, 4, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- McGehee, D.G.; Topinka, M.A. Solar cells: Pictures from the blended zone. Nat. Mater. 2006, 5, 675–676. [Google Scholar] [CrossRef]
- Nelson, J. Organic photovoltaic films. Curr. Opin. Solid State Mater. Sci. 2002, 6, 87–95. [Google Scholar] [CrossRef]
- Halls, J.J.M.; Friend, R.H. Organic photovoltaics devices. In Clean Electricity from Photovoltaics; Archer, M.D., Hill, R.D., Eds.; Imperial College Press: London, UK, 2001; pp. 377–445. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Konik, R.M.; Misewich, J.A.; Wong, S.S. Carbon nanotube-based heterostructures for solar energy applications. Chem. Soc. Rev. 2013, 42, 8134–8156. [Google Scholar] [CrossRef]
- Kesinro, R.O.; O Boyo, A.; Akinyemi, M.L.; Emetere, M.E.; Aizebeokhai, A.P. Progress on Organic Solar Cells: A Short Review. IOP Conf. Ser. Earth Environ. Sci. 2021, 665, 012036. [Google Scholar] [CrossRef]
- Zhan, X.; Zhu, D. Conjugated polymers for high-efficiency organic photovoltaics. Polym. Chem. 2010, 1, 409–419. [Google Scholar] [CrossRef]
- Park, S.Y.; Labanti, C.; Luke, J.; Chin, Y.C.; Kim, J.S. Organic Bilayer Photovoltaics for Efficient Indoor Light Harvesting. Adv. Energy Mater. 2021, 12, 2103237. [Google Scholar] [CrossRef]
- Al-Ahmad, A.; Vaughan, B.; Holdsworth, J.; Belcher, W.; Zhou, X.; Dastoor, P. The Role of the Electron Transport Layer in the Degradation of Organic Photovoltaic Cells. Coatings 2022, 12, 1071. [Google Scholar] [CrossRef]
- Alkarsifi, R.; Ackerman, J.; Margeat, O. Hole transport layers in organic solar cells: A review. J. Met. Mater. Miner. 2022, 32, 1–22. [Google Scholar] [CrossRef]
- Attab, R.R.; Fllayh, A.H. High performance and efficiency enhancement for organic solar cell: Layers thickness optimization. IOP Conf. Ser. Mater. Sci. Eng. 2020, 928, 072025. [Google Scholar] [CrossRef]
- He, Z.; Xiao, B.; Liu, F.; Wu, H.; Yand, Y.; Xiao, S.; Wang, C.; Russel, T.P.; Cao, Y. Single-junction polymer solar cells with high efficiency and photovoltage. Nat. Photon. 2015, 9, 174–179. [Google Scholar] [CrossRef]
- Pan, Z.; Mora-Seró, I.; Shen, Q.; Zhang, H.; Li, Y.; Zhao, K.; Wang, J.; Zhong, X.; Bisquert, J. High-Efficiency “Green” Quantum Dot Solar Cells. J. Am. Chem. Soc. 2014, 136, 9203–9210. [Google Scholar] [CrossRef]
- Pan, Z.; Rao, H.; Mora-Seró, I.; Bisquert, J.; Zhong, X. Quantum dot-sensitized solar cells. Chem. Soc. Rev. 2018, 47, 7659–7702. [Google Scholar] [CrossRef]
- Quantum Dot Solar Cell. Available online: https://sinovoltaics.com/learning-center/solar-cells/quantum-dot-solar-cell/ (accessed on 30 March 2023).
- Carey, G.H.; Abdelhady, A.L.; Ning, Z.; Thon, S.M.; Bakr, O.M.; Sargent, E.H. Colloidal Quantum Dot Solar Cells. Chem. Rev. 2015, 115, 12732–12763. [Google Scholar] [CrossRef]
- Chowdhury, K.; Mandal, R. Advancement of Schottky Barrier Solar Cells: A Review. Top. Intell. Comput. Ind. Des. 2020, 2, 93–98. [Google Scholar] [CrossRef]
- Gunchhait, A.; Rath, A.K.; Pal, A.J. To make polymer: Quantum dot hybrid solar cells NIR-active by increasing diameter of PbS nanoparticles. Sol. Energy Mater. Sol. Cells 2011, 95, 651–656. [Google Scholar] [CrossRef]
- Sahu, A.; Garg, A.; Dixit, A. A review on quantum dot sensitized solar cells: Past, present and future towards carrier multiplication with a possibility for higher efficiency. Sol. Energy 2020, 203, 210–239. [Google Scholar] [CrossRef]
- Chung, N.T.K.; Nguyen, P.T.; Tung, H.T.; Phuc, D.H. Quantum Dot Sensitized Solar Cell: Photoanodes, Counter Electrodes, and Electrolytes. Molecules 2021, 26, 2638. [Google Scholar] [CrossRef]
- Ahmad, Z.; Najeeb, M.A.; Shakoor, R.A.; Al-Muhtaseb, S.A.; Touati, F. Limits and possible solutions in quantum dot organic solar cells. Renew. Sust. Energ. Rev. 2018, 82, 1551–1564. [Google Scholar] [CrossRef]
- Baek, S.W.; Jun, S.; Kim, B.; Proppe, A.H.; Ouellette, O.; Voznyy, O.; Kim, C.; Kim, J.; Walters, G.; Song, J.H.; et al. Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules. Nat. Energy 2019, 4, 969–976. [Google Scholar] [CrossRef]
- Grill, A. Diamond-like Carbon: State of the art. Diam. Relat. Mater. 1999, 8, 428–434. [Google Scholar] [CrossRef]
- Lin, C.R.; Wei, D.H.; Chang, C.K.; Liao, W.H. Optical Properties of Di-amond-like Carbon Films for Antireflection Coating by RF Magnetron Sputtering Method. Phys. Procedia 2011, 18, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Fiaschi, G.; Rota, A.; Ballestrazzi, A.; Marchetto, D.; Vezzalini, E.; Valeri, S. A Chemical, Mechanical, and Tribological Analysis of DLC Coatings Deposited by Magnetron Sputtering. Lubricants 2019, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- Hasebe, T.; Murakami, K.; Nagashima, S.; Yoshimoto, Y.; Ihara, A.; Otake, M.; Kasai, R.; Kasuya, S.; Kitamura, N.; Kamijo, A.; et al. Design for improved adhesion of fluorine-incorporated hydrogenated amorphous carbon on metallic stent: Three-layered structure with controlled surface free energy. Diam. Relat. Mater. 2011, 20, 902–906. [Google Scholar] [CrossRef]
- Enomoto, K.; Hasebe, T.; Asakaw, R.; Kamijo, A.; Yoshimoto, Y.; Suzuki, T.; Takahashi, K.; Hotta, A. Controlling the drug release rate from biocompatible polymers with micro-patterned diamond-like carbon (DLC) coating. Diam. Relat. Mater. 2010, 19, 806–813. [Google Scholar] [CrossRef]
- Ohtake, N.; Nakahigashi, T.; Ohana, T.; Saito, H. Semi- quantification of CO2 reduction (2) by DLC coating [DLC coating ni yoru CO2 sakugen no han teiryouka]. New Diam. 2009, 92, 22–29. (In Japanese) [Google Scholar]
- Tsujioka, M. The Technological Trend and Application of Environment-friendly Hard Coating. J. Surf. Finish. Soc. Jpn. 2012, 63, 134–139. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Holmberg, K.; Andersson, P.; Erdemir, A. Global energy consumption due to friction in passenger cars. Tribol. Int. 2012, 47, 221–234. [Google Scholar] [CrossRef]
- Aono, M.; Nitta, S. High resistivity and low dielectric constant amorphous carbon nitride films: Application to low-k materials for ULSI. Diam. Relat. Mater. 2002, 11, 1219–1222. [Google Scholar] [CrossRef]
- Alotaibi, S.; Manjunatha, K.N.; Paul, S. Stability of hydrogenated amorphous carbon thin films for application in electronic devices. Diam. Relat. Mater. 2018, 90, 172–180. [Google Scholar] [CrossRef]
- Santini, C.A.; Sebastian, A.; Marchiori, C.; Jonnalagadda, V.P.; Dellmann, L.; Koelmans, W.W.; Rossell, M.D.; Rossel, C.P.; Eleftheriou, E. Oxygenated amorphous carbon for resistive memory applications. Nat. Commun. 2015, 6, 8600. [Google Scholar] [CrossRef] [Green Version]
- Honda, K.; Waki, Y.; Matsumoto, A.; Kondo, B.; Shimai, Y. Amorphous carbon having higher catalytic activity toward oxygen reduction reaction: Quinone and carboxy groups introduced onto its surface. Diam. Relat. Mater. 2020, 107, 107900. [Google Scholar] [CrossRef]
- Allon-Alaluf, M.; Croitoru, N. Electrical measurements of iodine doped amorphous diamond like films grown on silicon substrate. Appl. Phys. Lett. 1996, 69, 2932–2934. [Google Scholar] [CrossRef]
- Omer, A.M.M.; Adhikari, S.; Adhikary, S.; Uchida, H.; Umeno, M. Effects of iodine doping on optoelectronic properties of diamond-like carbon thin films deposited by microwave surface wave plasma CVD. Diam. Relat. Mater. 2004, 13, 2136–2139. [Google Scholar] [CrossRef]
- Dayana, K.; Fadzilah, A.F.; Ishak, A.; Rusop, M. Properties of Iodine Doped Amorphous Carbon Thin Films Grown by Thermal CVD. Solid State Sci. Technol. 2017, 25, 126–134. [Google Scholar] [CrossRef]
- Inoki, T.; Baba, K.; Flege, S.; Hatada, R.; Ensinger, W. Preparation of iodine containing diamond-like carbon films by trifluoroiodomethane. Mater. Lett. 2018, 215, 68–70. [Google Scholar] [CrossRef]
- Yamazato, M.; Saida, Y.; Higa, A.; Toguchi, M. Dedoping phenomenon of iodine-doped a-C:Hfilms. Diam. Relat. Mater. 2008, 17, 1652–1654. [Google Scholar] [CrossRef]
- Awerty, A.D.; Conick, R.E. The Absorption Spectra of I2, I3−, I− IO3−, S4O5−, S2O3−. Heat of the Reaction I3− = I2 + I−. J. Am. Chem. Soc. 1951, 73, 1842–1843. [Google Scholar]
- Li, X.; Peng, Y.; Jia, Q. Construction of hypercrosslinked polymers with dual nitrogen-enrichedbuilding blocks for efficient iodine capture. Sep. Purif. Technol. 2020, 236, 116260. [Google Scholar] [CrossRef]
- Grzesik, B.; Janowski, T.; Stępień, M. HTS toroidal helical transformer. J. Phys. Conf. Ser. 2008, 97, 012311. [Google Scholar] [CrossRef]
- Janowski, T.; Wojtasiewicz, G. Transpositioners of the parallel connected superconducting tapes as an alternative to Roebel cable. Przegląd Elektrotech. 2016, 1, 59–62. [Google Scholar] [CrossRef]
- Hao, L.; Shen, B.; Ma, J.; Yang, J.; Patel, I.; Hu, J.; Tian, M.; Wei, H.; Shah, A.; Wang, Q.; et al. Conceptual design and optimisation of HTS Roebel tapes. IEEE Trans. Appl. Supercond. 2022, 32, 1–5. [Google Scholar] [CrossRef]
- Goldacker, W. HTS Roebel cable research from KIT and partners. In Proceedings of the 2015 12th European Conference on Applied Superconductivity, EUCAS 2015, Lyon, France, 6–10 September 2015. [Google Scholar]
- Lasek, P. Analysis and Examination of Selected Methods of Pulsed-Field Magnetization of High-Temperature Superconductors. Ph.D. Dissertation, Silesian University of Technology, Gliwice, Poland, 2021. [Google Scholar]
- Kubiczek, K.; Kampik, M.; Stępień, M. Characterization of high-temperature superconducting tapes. IEEE Trans. Instrum. Meas. 2020, 69, 2959–2965. [Google Scholar] [CrossRef]
- Lasek, P.; Michalak, J.; Stępień, M. Critical current of HTS 2G tape operating under high-frequency triangular wave current with DC bias. In Proceedings of the 2019 20th International Symposium on Power Electronics (Ee), Novi Sad, Serbia, 23–26 October 2019. [Google Scholar]
- Fraas, L.M. History of Solar Cell Development. In Low-Cost Solar Electric Power, 1st ed.; Springer: Cham, Switzerland, 2014; pp. 1–12. [Google Scholar] [CrossRef]
- Bhandari, K.P.; Ellingson, R.J. 11—An Overview of Hybrid Organic–Inorganic Metal Halide Perovskite Solar Cells. In A Comprehensive Guide to Solar Energy Systems; Letcher, T.M., Fthenakis, V.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 233–254. [Google Scholar] [CrossRef]
- Song, J.H.; Jeong, S. Colloidal quantum dot based solar cells: From materials to devices. Nano Converg. 2017, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.; Sharma, V.; Sharma, S.S. Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Res. Lett. 2018, 13, 381. [Google Scholar] [CrossRef] [PubMed]
- Silicon (Si) for Solar Cells: How Is It Produced? Available online: https://sinovoltaics.com/learning-center/solar-cells/silicon-si-solar-cells-produced/ (accessed on 30 March 2023).
- Serikhanov, A.; Pavlov, A.; Mukashev, B.; Turmagambetov, T.; Kantarbayeva, D.; Zholdybayev, K. The Possibility of Silicon Purification by Metallurgical Methods: Part, I. Processes 2022, 10, 1353. [Google Scholar] [CrossRef]
- Mining and Refining: Pure Silicon and the Incredible Effort It Takes to Get There|Hackaday. Available online: https://hackaday.com/2021/11/15/mining-and-refining-pure-silicon-and-the-incredible-effort-it-takes-to-get-there/ (accessed on 30 March 2023).
- Yilbas, B.S.; Al-Shafari, A.; Ali, H. Chapter 3—Surfaces for Self-Cleaning. In Self-Cleaning of Surfaces and Water Droplet Mobility; Elsevier: Amsterdam, The Netherlands, 2019; pp. 45–98. [Google Scholar] [CrossRef]
- Zarabinia, N.; Lucarelli, G.; Rasuli, R.; De Rossi, F.; Taheri, B.; Javanbakht, H.; Brunetti, F.; Brown, T.M. Simple and effective deposition method for solar cell perovskite films using a sheet of paper. iScience 2022, 25, 103712. [Google Scholar] [CrossRef]
- Thin Film Deposition Technologies and Application in Photovoltaics|IntechOpen. Available online: https://www.intechopen.com/chapters/84163 (accessed on 30 March 2023).
- Holladay, J.D.; Hu, J.; King, D.L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today 2009, 139, 244–260. [Google Scholar] [CrossRef]
- Lui, J.; Chen, W.-H.; Tsang, D.C.; You, S. A critical review on the principles, applications, and challenges of waste-to-hydrogen technologies. Renew. Sustain. Energy Rev. 2020, 134, 110365. [Google Scholar] [CrossRef]
- Jędrzejczyk, T.; Kołaciński, Z.; Koza, D.; Raniszewski, G.; Szymański, Ł.; Wiak, A. Plasma recycling of chloroorganic wastes. Open Chem. 2015, 13, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Zhovtyansky, V.A.; Kolesnikova, E.P.; Iakymovych, M.V. Plasma-assisted “waste-to-energy” processes. Probl. At. Sci. Technol. 2017, 23, 231–236. [Google Scholar]
- Green Ventures Climate Solutions. Green Hydrogen from Waste. 2021. Available online: http://www.greenovate.eu/en/green-hydrogen-from-waste (accessed on 30 March 2023).
- Rico, V.J.; Hueso, J.L.; Cotrino, J.; Gallardo, V.; Sarmiento, B.; Brey, J.J.; González-Elipe, A.R. Hybrid catalytic-DBD plasma reactor for the production of hydrogen and preferential CO oxidation (CO-PROX) at reduced temperatures. Chem. Commun. 2009, 41, 6192–6194. [Google Scholar] [CrossRef]
- At 300 MW/1, 200 MWh, The World’s Largest Battery Storage System so Far Is up and Running—Energy Storage News. Available online: https://www.energy-storage.news/at-300mw-1200mwh-the-worlds-largest-battery-storage-system-so-far-is-up-and-running/ (accessed on 30 March 2023).
- H2 Green Steel. Available online: https://www.h2greensteel.com/ (accessed on 30 March 2023).
- General Chemistry Laboratory. Available online: http://generalchemistry.chemeng.ntua.gr/uest/corfu2022/proceedings/XXIV/1930.pdf (accessed on 29 March 2023).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; A hydrogen strategy for a climate-neutral Europe; European Commission: Brussels, Belgium, 2020. [Google Scholar]
a-C:H | a-CNx:H | |
---|---|---|
Input power [W] | 100 | |
Total gas pressure [Pa] | 40 | |
Total gas flow rate [SCCM] | 40 | |
Gases | CH4 + Ar + 1%H2 | CH4 + N2 |
CH4 gas flow ratio [%] | 10 | 30 |
Deposition time [min] | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stryczewska, H.D.; Boiko, O.; Stępień, M.A.; Lasek, P.; Yamazato, M.; Higa, A. Selected Materials and Technologies for Electrical Energy Sector. Energies 2023, 16, 4543. https://doi.org/10.3390/en16124543
Stryczewska HD, Boiko O, Stępień MA, Lasek P, Yamazato M, Higa A. Selected Materials and Technologies for Electrical Energy Sector. Energies. 2023; 16(12):4543. https://doi.org/10.3390/en16124543
Chicago/Turabian StyleStryczewska, Henryka Danuta, Oleksandr Boiko, Mariusz Adam Stępień, Paweł Lasek, Masaaki Yamazato, and Akira Higa. 2023. "Selected Materials and Technologies for Electrical Energy Sector" Energies 16, no. 12: 4543. https://doi.org/10.3390/en16124543
APA StyleStryczewska, H. D., Boiko, O., Stępień, M. A., Lasek, P., Yamazato, M., & Higa, A. (2023). Selected Materials and Technologies for Electrical Energy Sector. Energies, 16(12), 4543. https://doi.org/10.3390/en16124543