Key Aspects and Challenges in the Implementation of Energy Communities
Abstract
:1. Introduction
2. Regulatory Framework for Energy Communities
2.1. Energy Communities Examples and Their Objectives
2.2. Potential Benefits of Energy Communities
3. Technological Aspects of Energy Communities
3.1. Energy Communities and Smart Grids
3.2. Architectural Views
3.2.1. SGAM Architecture
3.2.2. The 1 + 5 Architectural Views Model
3.3. Energy Assets
3.3.1. Energy Generation
3.3.2. Energy Storage
3.4. Operation and Control
3.4.1. Smart Grid Technologies
- Advanced Metering Infrastructure
- Demand-Side Management
3.4.2. Operation Concepts
- Peer-2-Peer
- Electric Vehicles Management Systems
- Virtual Power Plants
4. Data Management Challenges in Energy Communities
4.1. Data Management in General Context
4.1.1. SGAM Communication Layer
- Communication interfaces enable a standard way for different devices and systems to communicate, and they can include physical, transport and application layer interfaces, such as Ethernet, Transmission Control Protocol/Internet Protocol (TCP/IP) and HyperText Transfer Protocol (HTTP).
- Communication protocols define standards and rules for data exchange between the devices and systems, intending to ensure interoperability and compatibility between them.
- Communication infrastructure includes the hardware and software modules that enable efficient communication. The communication should be performed securely and privately, which requires the implementation of different security measures, such as authentication, authorisation and encryption, to prevent unauthorised access and ensure the integrity and confidentiality of the data and information.
4.1.2. SGAM Information Layer
4.2. Data Management in EC Context
4.2.1. Operation Aligned with GDPR Principles
4.2.2. Edge-Based vs. Cloud-Based Analytics
5. Financial Aspects of Energy Communities
Possible Solutions to Overcome Economic and Financial Barriers
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yiasoumas, G.; Psara, K.; Georghiou, G.E. A review of Energy Communities: Definitions, Technologies, Data Management. In Proceedings of the 2022 2nd International Conference on Energy Transition in the Mediterranean Area (SyNERGY MED), Thessaloniki, Greece, 17–19 October 2022. [Google Scholar] [CrossRef]
- IEA. What Does the Current Global Energy Crisis Mean for Energy Investment? 2022. Available online: https://www.iea.org/commentaries/what-does-the-current-global-energy-crisis-mean-for-energy-investment (accessed on 12 April 2023).
- Boulanger, S.O.M.; Massari, M.; Longo, D.; Turillazzi, B.; Nucci, C.A. Designing Collaborative Energy Communities: A European Overview. Energies 2021, 14, 8226. [Google Scholar] [CrossRef]
- REScoop. Mobilising European Citizens to Invest in Sustainable Energy. 2020. Available online: https://www.rescoop.eu/uploads/rescoop/downloads/Mobilising-European-Citizens-to-Invest-in-Sustainable-Energy.pdf (accessed on 12 April 2023).
- Larsson, M. Global Energy Transformation: Four Necessary Steps to Make Clean Energy the Next Success Story; Palgrave Macmillan: Basingstoke, UK, 2018. [Google Scholar] [CrossRef]
- Caramizaru, A.; Uihlein, A. Energy Communities: An Overview of Energy and Social Innovation; Publications Office of the European Union: Luxembourg, 2020.
- Ceglia, F.; Marrasso, E.; Pallotta, G.; Roselli, C.; Sasso, M. The State of the Art of Smart Energy Communities: A Systematic Review of Strengths and Limits. Energies 2022, 15, 3462. [Google Scholar] [CrossRef]
- Górski, T. Verification of Architectural Views Model 1+5 Applicability. In Proceedings of the EUROCAST 2019: Computer Aided Systems Theory—EUROCAST 2019, Las Palmas de Gran Canaria, Spain, 17–22 February 2019; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 12013 LNCS, pp. 499–506. [Google Scholar] [CrossRef]
- Lode, M.; Boveldt, G.T.; Coosemans, T.; Camargo, L.R. A transition perspective on Energy Communities: A systematic literature review and research agenda. Renew. Sustain. Energy Rev. 2022, 163, 112479. [Google Scholar] [CrossRef]
- Kubli, M.; Puranik, S. A typology of business models for energy communities: Current and emerging design options. Renew. Sustain. Energy Rev. 2023, 176, 113165. [Google Scholar] [CrossRef]
- Bashi, M.H.; De Tommasi, L.; Le Cam, A.; Relaño, L.S.; Lyons, P.; Mundó, J.; Pandelieva-Dimova, I.; Schapp, H.; Loth-Babut, K.; Egger, C.; et al. A review and mapping exercise of energy community regulatory challenges in European member states based on a survey of collective energy actors. Renew. Sustain. Energy Rev. 2023, 172, 113055. [Google Scholar] [CrossRef]
- Gjorgievski, V.Z.; Cundeva, S.; Georghiou, G.E. Social arrangements, technical designs and impacts of energy communities: A review. Renew. Energy 2021, 169, 1138–1156. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.L. Energy Communities Overview: Managerial Policies, Economic Aspects, Technologies, and Models. J. Risk Financ. Manag. 2022, 15, 521. [Google Scholar] [CrossRef]
- Janev, V.; Vidal, M.-E.; Pujić, D.; Popadić, D.; Iglesias, E.; Sakor, A.; Čampa, A. Responsible Knowledge Management in Energy Data Ecosystems. Energies 2022, 15, 3973. [Google Scholar] [CrossRef]
- EU. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (recast). Off. J. Eur. Union 2018, 2018, 82–209. [Google Scholar]
- European Parliament and Council of the European Union. Directive (EU) 2019/944 on Common Rules for the Internal Market for Electricity and Amending Directive 2012/27/EU. Off. J. Eur. Union 2019, 18. Available online: http://data.europa.eu/eli/dir/2019/944/oj (accessed on 23 March 2023).
- CEER. Regulatory Aspects of Self- Consumption and Energy Communities CEER Report. 2019. Available online: https://www.ceer.eu/documents/104400/6509669/C18-CRM9_DS7-05-03_Report+on+Regulatory+Aspects+of+Self-Consumption+and+Energy+Communities_final/8ee38e61-a802-bd6f-db27-4fb61aa6eb6a?version=1.1 (accessed on 29 April 2023).
- Chantrel, S.P.M.; Surmann, A.; Erge, T.; Thomsen, J. Participative Renewable Energy Community—How Blockchain-Based Governance Enables a German Interpretation of RED II. Electricity 2021, 2, 471–486. [Google Scholar] [CrossRef]
- Dorahaki, S.; Rashidinejad, M.; Ardestani, S.F.F.; Abdollahi, A.; Salehizadeh, M.R. An integrated model for citizen energy communities and renewable energy communities based on clean energy package: A two-stage risk-based approach. Energy 2023, 277, 127727. [Google Scholar] [CrossRef]
- Di Silvestre, M.L.; Ippolito, M.G.; Sanseverino, E.R.; Sciumè, G.; Vasile, A. Energy self-consumers and renewable energy communities in Italy: New actors of the electric power systems. Renew. Sustain. Energy Rev. 2021, 151, 111565. [Google Scholar] [CrossRef]
- Coenen, F.H.J.M.; Hoppe, T. Renewable Energy Communities and the Low Carbon Energy Transition in Europe; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Lowitzsch, J.; Kreutzer, K.; George, J.; Croonenbroeck, C.; Breitschopf, B. Development prospects for energy communities in the EU identifying best practice and future opportunities using a morphological approach. Energy Policy 2023, 174, 113414. [Google Scholar] [CrossRef]
- Wierling, A.; Schwanitz, V.J.; Zeiss, J.P.; von Beck, C.; Paudler, H.A.; Koren, I.K.; Kraudzun, T.; Marcroft, T.; Müller, L.; Andreadakis, Z.; et al. A Europe-wide inventory of citizen-led energy action with data from 29 countries and over 10,000 initiatives. Sci. Data 2023, 10, 9. [Google Scholar] [CrossRef]
- Simcock, N.; Rebecca, W.; Peter, C. Cultures of Community Energy. 2016. Available online: https://base.socioeco.org/docs/coce_international_case_studies_online.pdf (accessed on 13 February 2023).
- Albizu, L.G.; Maegaard, P.; Kruse, J. Community Power for the World. Denmark. 2015. Available online: https://www.folkecenter.eu/pages/Publications_and_downloads_full.php (accessed on 23 March 2023).
- Lohrengel, H. Jühnde Bio-Energy Village in Germany. 2013. Available online: https://www.eesc.europa.eu/sites/default/files/resources/docs/un_climate_conference_2013_11_1lohrengel.pdf (accessed on 3 January 2023).
- Edinburgh Community Solar Co-Operative. Available online: https://www.edinburghsolar.coop/projects/how-the-co-op-works/ (accessed on 26 October 2022).
- Cares Case Study Edinburgh Community Solar. Edinburgh. Available online: http://localenergy.scot/wp-content/uploads/attachments/edinburgh-community-solar-coop-case-study-for-cares.pdf (accessed on 10 May 2022).
- Ruggiero, S. The Housing Association Vilde 70; Aalto University School of Business: Helsinki, Finland, 2018. [Google Scholar]
- Svalin Co-Housing P2P Energy Community. Available online: https://www.housingevolutions.eu/project/svalin-co-housing-p2p-energy-community/ (accessed on 10 May 2022).
- Sustainable Ameland. Available online: https://duurzaamameland.nl/over-ons/ (accessed on 10 May 2022).
- AEC. Ameland Energy Covenant, Islands of Innovation. Available online: https://innovationislands.com/2019/10/23/ameland-energy-covenant/ (accessed on 13 May 2022).
- Jelic, M.; Sosic, D.; Tomasevic, N. Effects of coordinated prosumer operation on power distribution systems. In Proceedings of the 2021 29th Telecommunications Forum (TELFOR), Belgrade, Serbia, 23–24 November 2021. [Google Scholar] [CrossRef]
- Janev, V.; Jakupovic, G. Electricity Balancing: Challenges and Perspectives. In Proceedings of the 2020 28th Telecommunications Forum (TELFOR), Belgrade, Serbia, 24–25 November 2020. [Google Scholar] [CrossRef]
- Medved, P.; Kogovšek, T.; Berzelak, N.; Golob, U.; Kamin, T. Potential of energy communities to increase energy literacy, attitudes, perceptions and support for the energy transition among members and the general public. Deliverable developed as part of the NEWCOMERS project under grant agreement 837752. In New Clean Energy Communities in a Changing European Energy System (NEWCOMERS); NEWCOMERS: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Kiamba, L.; Rodrigues, L.; Marsh, J.; Naghiyev, E.; Sumner, M.; Empringham, L.; De Lillo, L.; Gillott, M. Socio-Economic Benefits in Community Energy Structures. Sustainability 2022, 14, 1890. [Google Scholar] [CrossRef]
- Geczy, C.; Jeffers, J.S.; Musto, D.K.; Tucker, A.M. Contracts with (Social) benefits: The implementation of impact investing. J. Financial Econ. 2021, 142, 697–718. [Google Scholar] [CrossRef]
- Soeiro, S.; Dias, M.F. Community renewable energy: Benefits and drivers. Energy Rep. 2020, 6, 134–140. [Google Scholar] [CrossRef]
- Bauwens, T.; Gotchev, B.; Holstenkamp, L. What drives the development of community energy in Europe? The case of wind power cooperatives. Energy Res. Soc. Sci. 2016, 13, 136–147. [Google Scholar] [CrossRef]
- Frederiks, E.R.; Stenner, K.; Hobman, E.V. Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour. Renew. Sustain. Energy Rev. 2015, 41, 1385–1394. [Google Scholar] [CrossRef] [Green Version]
- Weinand, J.M.; Scheller, F.; McKenna, R. Reviewing energy system modelling of decentralized energy autonomy. Energy 2020, 203, 117817. [Google Scholar] [CrossRef]
- Vineetha, C.P.; Babu, C.A. Smart grid challenges, issues and solutions. In Proceedings of the Intelligent Green Building and Smart Grid International Conference (IGBSG 2014), Taipei, Taiwan, 23–25 April 2014. [Google Scholar] [CrossRef]
- Colak, I.; Bayindir, R.; Sagiroglu, S. The Effects of the Smart Grid System on the National Grids. In Proceedings of the 2020 8th International Conference on Smart Grid (icSmartGrid), Paris, France, 17–19 June 2020; pp. 122–126. [Google Scholar] [CrossRef]
- IEA. Demand Response; IEA: Paris, France, 2021. [Google Scholar]
- van Summeren, L.F.; Wieczorek, A.J.; Bombaerts, G.J.; Verbong, G.P. Community energy meets smart grids: Reviewing goals, structure, and roles in Virtual Power Plants in Ireland, Belgium and the Netherlands. Energy Res. Soc. Sci. 2019, 63, 101415. [Google Scholar] [CrossRef]
- Scerri, S.; Tuikka, T.; de Vallejo, I.L.; Curry, E. Common European Data Spaces: Challenges and Opportunities. In Data Spaces; Springer: Cham, Switzerland, 2022; pp. 337–357. [Google Scholar] [CrossRef]
- Dognini, A.; Challagonda, C.; Moro, E.M.; Helmholt, K.; Madsen, H.; Daniele, L.; Schmitt, L.; Abella, A.; Monti, A.; Eytan, A.; et al. Data Spaces for Energy, Home and Mobility. Zenodo 2022, 7. [Google Scholar] [CrossRef]
- Smart Grid Coordination Group. CEN-CENELEC-ETSI Smart Grid Coordination Group Smart Grid Reference Architecture. 2012. Available online: http://www.prisonstudies.org/country/united-states-america (accessed on 28 March 2023).
- Stockl, J.; Makoschitz, M.; Strasser, T.; Blanes, L.M.; Janev, V.; Lissa, P.; Seri, F. Survey on Technologies Driving the Smart Energy Sector. In Proceedings of the 2021 29th Telecommunications Forum (TELFOR), Belgrade, Serbia, 23–24 November 2021. [Google Scholar] [CrossRef]
- Janev, V.; Popadić, D.; Pujić, D.; Vidal, M.E.; Endris, K. Reuse of Semantic Models for Emerging Smart Grids Applications. In Proceedings of the ICIST 2021, Semarang, Indonesia, 17 December 2021; pp. 119–123. Available online: https://www.eventiotic.com/eventiotic/library/paper/652 (accessed on 22 March 2023).
- Górski, T. The 1 + 5 Architectural Views Model in Designing Blockchain and IT System Integration Solutions. Symmetry 2021, 13, 2000. [Google Scholar] [CrossRef]
- Kumar, G.P.; Ayou, D.S.; Narendran, C.; Saravanan, R.; Maiya, M.; Coronas, A. Renewable heat powered polygeneration system based on an advanced absorption cycle for rural communities. Energy 2023, 262, 125300. [Google Scholar] [CrossRef]
- Fraile-Ardanuy, J.; Conti, G.; Fernández-Muñoz, D.; Gutiérrez, A.; Castaño-Solis, S.; Jimenez Bermejo, D.; Pérez-Díaz, J.I.; Díaz, P.; Corrales, M.; Gago, V.; et al. Limitations and Shortcomings for Optimal Use of Local Resources; 2022. [Google Scholar]
- IEA. Net Zero by 2050: A Roadmap for the Global Energy Sector; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- Salman, C.A.; Li, H.; Li, P.; Yan, J. Improve the flexibility provided by combined heat and power plants (CHPs)—A review of potential technologies. e-Prime 2021, 1, 100023. [Google Scholar] [CrossRef]
- Pastore, L.M.; Basso, G.L.; Ricciardi, G.; de Santoli, L. Synergies between Power-to-Heat and Power-to-Gas in renewable energy communities. Renew. Energy 2022, 198, 1383–1397. [Google Scholar] [CrossRef]
- Ghosh, S.; Yadav, R. Future of photovoltaic technologies: A comprehensive review. Sustain. Energy Technol. Assess. 2021, 47, 101410. [Google Scholar] [CrossRef]
- Østergaard, P.A.; Johannsen, R.M.; Shah, M.; Pogaku, R.; Beech, M.; Roccatagliata, F.; Comodi, G.; Bartolini, A.; Nadeem, A. Multi Utilities Smart Energy GRIDS WP1, WP1—“Synergies between Grids and MUSE GRIDS Technologies Assessment”, D1.1—“Catalogue for Technologies that Enable Grid Interactions”; European Commission, Innovation and Networks Executive Agency: Brussels, Belgium, 2022; pp. 1–106. [Google Scholar]
- Brunner, E.J.; Schwegman, D.J. Commercial wind energy installations and local economic development: Evidence from U.S. counties. Energy Policy 2022, 165, 112993. [Google Scholar] [CrossRef]
- Wilberforce, T.; Olabi, A.; Sayed, E.T.; Alalmi, A.H.; Abdelkareem, M.A. Wind turbine concepts for domestic wind power generation at low wind quality sites. J. Clean. Prod. 2023, 394, 136137. [Google Scholar] [CrossRef]
- IEA. The Future of Hydrogen: Seizing Today’s Opportunities; OECD: Paris, France, 2019. [Google Scholar] [CrossRef]
- Ali, S.; Stewart, R.A.; Sahin, O. Drivers and barriers to the deployment of pumped hydro energy storage applications: Systematic literature review. Clean. Eng. Technol. 2021, 5, 100281. [Google Scholar] [CrossRef]
- Yue, M.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renew. Sustain. Energy Rev. 2021, 146, 111180. [Google Scholar] [CrossRef]
- Kumar, R.; Subramanian, K. Enhancement of efficiency and power output of hydrogen fuelled proton exchange membrane (PEM) fuel cell using oxygen enriched air. Int. J. Hydrogen Energy 2023, 48, 6067–6075. [Google Scholar] [CrossRef]
- Raimondi, G.; Spazzafumo, G. Exploring Renewable Energy Communities integration through a hydrogen Power-to-Power system in Italy. Renew. Energy 2023, 206, 710–721. [Google Scholar] [CrossRef]
- Karunathilake, H.; Hewage, K.; Mérida, W.; Sadiq, R. Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty. Renew. Energy 2019, 130, 558–573. [Google Scholar] [CrossRef]
- Bakhtavar, E.; Prabatha, T.; Karunathilake, H.; Sadiq, R.; Hewage, K. Assessment of renewable energy-based strategies for net-zero energy communities: A planning model using multi-objective goal programming. J. Clean. Prod. 2020, 272, 122886. [Google Scholar] [CrossRef]
- Aruta, G.; Ascione, F.; Bianco, N.; Iovane, T.; Mastellone, M.; Mauro, G.M. Optimizing the energy transition of social housing to renewable nearly zero-energy community: The goal of sustainability. Energy Build. 2023, 282, 112798. [Google Scholar] [CrossRef]
- Kamal, M.; Ashraf, I.; Fernandez, E. Optimal sizing of standalone rural microgrid for sustainable electrification with renewable energy resources. Sustain. Cities Soc. 2023, 88, 104298. [Google Scholar] [CrossRef]
- Jin, L.; Rossi, M.; Ciabattoni, L.; Di Somma, M.; Graditi, G.; Comodi, G. Environmental constrained medium-term energy planning: The case study of an Italian university campus as a multi-carrier local energy community. Energy Convers. Manag. 2023, 278, 116701. [Google Scholar] [CrossRef]
- Le, T.S.; Nguyen, T.N.; Bui, D.-K.; Ngo, T.D. Optimal sizing of renewable energy storage: A techno-economic analysis of hydrogen, battery and hybrid systems considering degradation and seasonal storage. Appl. Energy 2023, 336, 120817. [Google Scholar] [CrossRef]
- Abruña, H.D.; Kiya, Y.; Henderson, J.C. Batteries and electrochemical capacitors. Present and future applications of electrical energy storage devices are stimulating research into innovative new materials and novel architectures. Phys. Today 2008, 61, 43–47. Available online: http://ptonline.aip.org/journals/doc/PHTOAD-ft/vol_61/iss_12/43_1.shtml (accessed on 7 July 2022). [CrossRef] [Green Version]
- Poonam, K.; Sharma, K.; Arora, A.; Tripathi, S.K. Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801–825. [Google Scholar] [CrossRef]
- Cisek, P.; Taler, D. Numerical analysis and performance assessment of the Thermal Energy Storage unit aimed to be utilized in Smart Electric Thermal Storage (SETS). Energy 2019, 173, 755–771. [Google Scholar] [CrossRef]
- Breeze, P. Compressed Air Energy Storage. In Power System Energy Storage Technologies; Breeze, P., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 23–31. [Google Scholar] [CrossRef]
- Al Katsaprakakis, D.; Voumvoulakis, M. A hybrid power plant towards 100% energy autonomy for the island of Sifnos, Greece. Perspectives created from energy cooperatives. Energy 2018, 161, 680–698. [Google Scholar] [CrossRef]
- Mulder, M.; Perey, P.; Moraga, J.L. Outlook for a Dutch Hydrogen Market, no. 5. 2019. Available online: https://www.rug.nl/ceer/blog/ceer_policypaper_5_web.pdf (accessed on 21 May 2022).
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen Production for Energy: An Overview. Int. J. Hydrog. Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Motealleh, B.; Liu, Z.; Masel, R.I.; Sculley, J.P.; Ni, Z.R.; Meroueh, L. Next-generation anion exchange membrane water electrolyzers operating for commercially relevant lifetimes. Int. J. Hydrogen Energy 2021, 46, 3379–3386. [Google Scholar] [CrossRef]
- Li, C.; Baek, J.-B. The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy 2021, 87, 106162. [Google Scholar] [CrossRef]
- Jin, L.; Rossi, M.; Ferrario, A.M.; Alberizzi, J.C.; Renzi, M.; Comodi, G. Integration of battery and hydrogen energy storage systems with small-scale hydropower plants in off-grid local energy communities. Energy Convers. Manag. 2023, 286, 117019. [Google Scholar] [CrossRef]
- Secchi, M.; Barchi, G.; Macii, D.; Moser, D.; Petri, D. Multi-objective battery sizing optimisation for renewable energy communities with distribution-level constraints: A prosumer-driven perspective. Appl. Energy 2021, 297, 117171. [Google Scholar] [CrossRef]
- Blasuttigh, N.; Negri, S.; Pavan, A.M.; Tironi, E. Optimal Sizing and Environ-Economic Analysis of PV-BESS Systems for Jointly Acting Renewable Self-Consumers. Energies 2023, 16, 1244. [Google Scholar] [CrossRef]
- Agajie, T.F.; Ali, A.; Fopah-Lele, A.; Amoussou, I.; Khan, B.; Velasco, C.L.R.; Tanyi, E. A Comprehensive Review on Techno-Economic Analysis and Optimal Sizing of Hybrid Renewable Energy Sources with Energy Storage Systems. Energies 2023, 16, 642. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, K.; Yang, S. Optimal selection of energy storage system sharing schemes in industrial parks considering battery degradation. J. Energy Storage 2023, 57, 106215. [Google Scholar] [CrossRef]
- Aranzabal, I.; Gomez-Cornejo, J.; López, I.; Zubiria, A.; Mazón, J.; Feijoo-Arostegui, A.; Gaztañaga, H. Optimal Management of an Energy Community with PV and Battery-Energy-Storage Systems. Energies 2023, 16, 789. [Google Scholar] [CrossRef]
- Mignoni, N.; Scarabaggio, P.; Carli, R.; Dotoli, M. Control frameworks for transactive energy storage services in energy communities. Control. Eng. Pract. 2023, 130, 105364. [Google Scholar] [CrossRef]
- Gu, B.; Mao, C.; Wang, D.; Liu, B.; Fan, H.; Fang, R.; Sang, Z. A data-driven stochastic energy sharing optimization and implementation for community energy storage and PV prosumers. Sustain. Energy Grids Netw. 2023, 34, 101051. [Google Scholar] [CrossRef]
- Pasqui, M.; Felice, A.; Messagie, M.; Coosemans, T.; Bastianello, T.T.; Baldi, D.; Lubello, P.; Carcasci, C. A new smart batteries management for Renewable Energy Communities. Sustain. Energy Grids Netw. 2023, 34, 101043. [Google Scholar] [CrossRef]
- Alam, M.; Bin Mofidul, R.; Jang, Y.M. Community energy storage system: Deep learning based optimal energy management solution for residential community. J. Energy Storage 2023, 64, 107100. [Google Scholar] [CrossRef]
- Hjalmarsson, J.; Thomas, K.; Boström, C. Service stacking using energy storage systems for grid applications—A review. J. Energy Storage 2023, 60, 106639. [Google Scholar] [CrossRef]
- Berg, K.; Rana, R.; Farahmand, H. Quantifying the benefits of shared battery in a DSO-energy community cooperation. Appl. Energy 2023, 343, 121105. [Google Scholar] [CrossRef]
- Cerna, F.V.; Pourakbari-Kasmaei, M.; Barros, R.G.; Naderi, E.; Lehtonen, M.; Contreras, J. Optimal operating scheme of neighborhood energy storage communities to improve power grid performance in smart cities. Appl. Energy 2023, 331, 120411. [Google Scholar] [CrossRef]
- Manbachi, M. Impact of Distributed Energy Resource Penetrations on Smart Grid Adaptive Energy Conservation and Optimization Solutions. In Operation of Distributed Energy Resources in Smart Distribution Networks; Elsevier: London, UK, 2018; pp. 101–138. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Hong, T.; Kang, C. Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges. IEEE Trans. Smart Grid 2018, 10, 3125–3148. [Google Scholar] [CrossRef] [Green Version]
- Martins, J.F.; Pronto, A.G.; Delgado-Gomes, V.; Sanduleac, M. Smart Meters and Advanced Metering Infrastructure. In Pathways to a Smarter Power System; Academic Press: London, UK, 2019; pp. 89–114. [Google Scholar] [CrossRef]
- Krause, T.; Ernst, R.; Klaer, B.; Hacker, I.; Henze, M. Cybersecurity in Power Grids: Challenges and Opportunities. Sensors 2021, 21, 6225. [Google Scholar] [CrossRef]
- Gelazanskas, L.; Gamage, K.A. Demand side management in smart grid: A review and proposals for future direction. Sustain. Cities Soc. 2013, 11, 22–30. [Google Scholar] [CrossRef]
- Panda, S.; Mohanty, S.; Rout, P.K.; Sahu, B.K.; Bajaj, M.; Zawbaa, H.M.; Kamel, S. Residential Demand Side Management model, optimization and future perspective: A review. Energy Rep. 2022, 8, 3727–3766. [Google Scholar] [CrossRef]
- Usman, R.; Mirzania, P.; Alnaser, S.W.; Hart, P.; Long, C. Systematic Review of Demand-Side Management Strategies in Power Systems of Developed and Developing Countries. Energies 2022, 15, 7858. [Google Scholar] [CrossRef]
- Marino, A.; Bertoldi, P.; Rezessy, S.; Boza-Kiss, B. A snapshot of the European energy service market in 2010 and policy recommendations to foster a further market development. Energy Policy 2011, 39, 6190–6198. [Google Scholar] [CrossRef]
- Cagno, E.; Franzò, S.; Storoni, E.; Trianni, A. A characterisation framework of energy services offered by energy service companies. Appl. Energy 2022, 324, 119674. [Google Scholar] [CrossRef]
- Ceglia, F.; Marrasso, E.; Roselli, C.; Sasso, M. Small Renewable Energy Community: The Role of Energy and Environmental Indicators for Power Grid. Sustainability 2021, 13, 2137. [Google Scholar] [CrossRef]
- Marshall, E.; Steinberger, J.K.; Dupont, V.; Foxon, T.J. Combining energy efficiency measure approaches and occupancy patterns in building modelling in the UK residential context. Energy Build. 2016, 111, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Alshehri, F.; Beck, S.; Ingham, D.; Ma, L.; Pourkashanian, M. Technico-economic modelling of ground and air source heat pumps in a hot and dry climate. Proc. Inst. Mech. Eng. Part A: J. Power Energy 2020, 235, 1225–1239. [Google Scholar] [CrossRef]
- Jin, R.; Hong, J.; Zuo, J. Environmental performance of off-site constructed facilities: A critical review. Energy Build. 2020, 207, 109567. [Google Scholar] [CrossRef]
- Chiu, H.-J.; Lo, Y.-K.; Chen, J.-T.; Cheng, S.-J.; Lin, C.-Y.; Mou, S.-C. A High-Efficiency Dimmable LED Driver for Low-Power Lighting Applications. IEEE Trans. Ind. Electron. 2009, 57, 735–743. [Google Scholar] [CrossRef]
- Zhou, K.; Fu, C.; Yang, S. Big data driven smart energy management: From big data to big insights. Renew. Sustain. Energy Rev. 2016, 56, 215–225. [Google Scholar] [CrossRef]
- Jelić, M.; Batić, M.; Tomašević, N. Demand-Side Flexibility Impact on Prosumer Energy System Planning. Energies 2021, 14, 7076. [Google Scholar] [CrossRef]
- Nawaz, A.; Zhou, M.; Wu, J.; Long, C. A comprehensive review on energy management, demand response, and coordination schemes utilization in multi-microgrids network. Appl. Energy 2022, 323, 119596. [Google Scholar] [CrossRef]
- Paul, S.; Choudhary, S.; Padhy, N.P. A Review on Residential Area Demand Response Analysis in Smart Grid Era. In Proceedings of the 2018 IEEE 8th Power India International Conference (PIICON), Kurukshetra, India, 10–12 December 2018. [Google Scholar] [CrossRef]
- Albadi, M.; El-Saadany, E. A summary of demand response in electricity markets. Electr. Power Syst. Res. 2008, 78, 1989–1996. [Google Scholar] [CrossRef]
- Ruano, A.; Hernandez, A.; Ureña, J.; Ruano, M.; Garcia, J. NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review. Energies 2019, 12, 2203. [Google Scholar] [CrossRef] [Green Version]
- Baglietto, G.; Massucco, S.; Silvestro, F.; Vinci, A.; Conte, F. A Non-Intrusive Load Disaggregation Tool based on Smart Meter Data for Residential Buildings. In Proceedings of the 23rd EEEIC International Conference on Environment and Electrical Engineering, Madrid, Spain, 6–9 June 2023. [Google Scholar]
- Giuseppi, A.; Manfredi, S.; Menegatti, D.; Pietrabissa, A.; Poli, C. Decentralized Federated Learning for Nonintrusive Load Monitoring in Smart Energy Communities. In Proceedings of the 2022 30th Mediterranean Conference on Control and Automation (MED), Vouliagmeni, Greece, 28 June–1 July 2022; pp. 312–317. [Google Scholar] [CrossRef]
- Jogunola, O.; Ikpehai, A.; Anoh, K.; Adebisi, B.; Hammoudeh, M.; Gacanin, H.; Harris, G. Comparative Analysis of P2P Architectures for Energy Trading and Sharing. Energies 2017, 11, 62. [Google Scholar] [CrossRef] [Green Version]
- Beitollahi, H.; Deconinck, G. Peer-to-Peer Networks Applied to Power Grid. Int. Conf. Risks Secur. Internet Syst., no. November, p. 8. 2007. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.7160&rep=rep1&type=pdf (accessed on 3 April 2023).
- Jurca, D.; Chakareski, J.; Wagner, J.-P.; Frossard, P. Enabling adaptive video streaming in P2P systems [Peer-to-Peer Multimedia Streaming]. IEEE Commun. Mag. 2007, 45, 108–114. [Google Scholar] [CrossRef]
- Chen, H.; Jin, H.; Liu, Y.; Ni, L.M. Difficulty-Aware Hybrid Search in Peer-to-Peer Networks. IEEE Trans. Parallel Distrib. Syst. 2008, 20, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Tushar, W.; Saha, T.K.; Yuen, C.; Morstyn, T.; McCulloch, M.D.; Poor, H.V.; Wood, K.L. A motivational game-theoretic approach for peer-to-peer energy trading in the smart grid. Appl. Energy 2019, 243, 10–20. [Google Scholar] [CrossRef]
- Tushar, W.; Saha, T.K.; Yuen, C.; Smith, D.; Poor, H.V. Peer-to-Peer Trading in Electricity Networks: An Overview. IEEE Trans. Smart Grid 2020, 11, 3185–3200. [Google Scholar] [CrossRef] [Green Version]
- Bogensperger, A.; Ferstl, J.; Yu, Y. Comparison of Pricing Mechanisms in Peer-to-Peer Energy Communities. In Proceedings of the IEWT 2021—Internationale Energiewirtschaftstagung, Vienna, Austria, 8–10 September 2021; pp. 1–23. [Google Scholar]
- Kang, J.; Yu, R.; Huang, X.; Maharjan, S.; Zhang, Y.; Hossain, E. Enabling Localized Peer-to-Peer Electricity Trading among Plug-in Hybrid Electric Vehicles Using Consortium Blockchains. IEEE Trans. Ind. Inform. 2017, 13, 3154–3164. [Google Scholar] [CrossRef]
- Fan, G.; Liu, Z.; Liu, X.; Shi, Y.; Wu, D.; Guo, J.; Zhang, S.; Yang, X.; Zhang, Y. Energy management strategies and multi-objective optimization of a near-zero energy community energy supply system combined with hybrid energy storage. Sustain. Cities Soc. 2022, 83, 103970. [Google Scholar] [CrossRef]
- Kirli, D.; Couraud, B.; Robu, V.; Salgado-Bravo, M.; Norbu, S.; Andoni, M.; Antonopoulos, I.; Negrete-Pincetic, M.; Flynn, D.; Kiprakis, A. Smart contracts in energy systems: A systematic review of fundamental approaches and implementations. Renew. Sustain. Energy Rev. 2022, 158, 112013. [Google Scholar] [CrossRef]
- Iskakova, A.; Kumar Nunna, H.S.V.S.; Siano, P. Ethereum Blockchain-Based Peer-To-Peer Energy Trading Platform. In Proceedings of the 2020 IEEE International Conference on Power and Energy (PECon2020), Virtual, 7–8 December 2020; pp. 327–331. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Ma, R.; Su, Y.; Ma, T. Blockchain enabled smart community for bilateral energy transaction. Int. J. Electr. Power Energy Syst. 2023, 148, 108997. [Google Scholar] [CrossRef]
- Chinnici, M.; Telesca, L.; Islam, M.; Georges, J.-P. Scalable and Transparent Blockchain Multi-Layer Approach for Smart Energy Communities. In Proceedings of the 4th International Congress on Blockchain and Applications, L’Aquila, Italy/Virtual, 13–15 July 2022; pp. 183–197. [Google Scholar] [CrossRef]
- Cirrincione, L.; La Gennusa, M.; Peri, G.; Rizzo, G.; Scaccianoce, G. Foster Carbon-Neutrality in the Built Environment: A Blockchain-Based Approach for the Energy Interaction among Buildings. In Proceedings of the 1st Workshop on BLOckchain for Renewables INtegration, BLORIN 2022, Palermo, Italy/Virtual, 2–3 September 2022; pp. 167–171. [Google Scholar] [CrossRef]
- Guerrero, J.; Chapman, A.C.; Verbic, G. Decentralized P2P Energy Trading under Network Constraints in a Low-Voltage Network. IEEE Trans. Smart Grid 2018, 10, 5163–5173. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Xu, Q.; Li, F. Grid-friendly pricing mechanism for peer-to-peer energy sharing market diffusion in communities. Appl. Energy 2023, 334, 120685. [Google Scholar] [CrossRef]
- Zhao, F.; Li, Z.; Wang, D.; Ma, T. Peer-to-peer energy sharing with demand-side management for fair revenue distribution and stable grid interaction in the photovoltaic community. J. Clean. Prod. 2023, 383, 135271. [Google Scholar] [CrossRef]
- Sarfarazi, S.; Mohammadi, S.; Khastieva, D.; Hesamzadeh, M.R.; Bertsch, V.; Bunn, D. An optimal real-time pricing strategy for aggregating distributed generation and battery storage systems in energy communities: A stochastic bilevel optimization approach. Int. J. Electr. Power Energy Syst. 2023, 147, 108770. [Google Scholar] [CrossRef]
- IEA. Global EV Outlook 2022 Securing Supplies for an Electric Future. 221p. 2022. Available online: https://iea.blob.core.windows.net/assets/ad8fb04c-4f75-42fc-973a-6e54c8a4449a/GlobalElectricVehicleOutlook2022.pdf (accessed on 8 July 2022).
- Ota, Y.; Yoshizawa, S.; Sakai, K.; Ueda, Y.; Takashima, M.; Kagawa, K.; Iwata, A. e-mobility and energy coupled simulation for designing carbon neutral cities and communities. IATSS Res. 2023, in press. [CrossRef]
- Piazza, G.; Bracco, S.; Delfino, F.; Di Somma, M.; Graditi, G. Impact of electric mobility on the design of renewable energy collective self-consumers. Sustain. Energy Grids Netw. 2023, 33, 100963. [Google Scholar] [CrossRef]
- Borge-Diez, D.; Icaza, D.; Açıkkalp, E.; Amaris, H. Combined vehicle to building (V2B) and vehicle to home (V2H) strategy to increase electric vehicle market share. Energy 2021, 237, 121608. [Google Scholar] [CrossRef]
- MUSE GRIDS. Available online: https://muse-grids.eu/technologies/ (accessed on 10 September 2022).
- Uddin, K.; Dubarry, M.; Glick, M.B. The viability of vehicle-to-grid operations from a battery technology and policy perspective. Energy Policy 2018, 113, 342–347. [Google Scholar] [CrossRef]
- Deng, Y.; Mu, Y.; Wang, X.; Jin, S.; He, K.; Jia, H.; Li, S.; Zhang, J. Two-stage residential community energy management utilizing EVs and household load flexibility under grid outage event. Energy Rep. 2023, 9, 337–344. [Google Scholar] [CrossRef]
- Zajc, M.; Kolenc, M.; Suljanović, N. 11—Virtual power plant communication system architecture. In Smart Power Distribution Systems, Control, Communication, and Optimization; Yang, Q., Yang, T., Li, W., Eds.; Elsevier: London, UK, 2019; pp. 231–250. [Google Scholar] [CrossRef]
- Sierla, S.; Pourakbari-Kasmaei, M.; Vyatkin, V. A taxonomy of machine learning applications for virtual power plants and home/building energy management systems. Autom. Constr. 2022, 136, 104174. [Google Scholar] [CrossRef]
- Monie, S.; Nilsson, A.M.; Widén, J.; Åberg, M. A residential community-level virtual power plant to balance variable renewable power generation in Sweden. Energy Convers. Manag. 2020, 228, 113597. [Google Scholar] [CrossRef]
- Venkatachary, S.K.; Prasad, J.; Samikannu, R. Challenges, opportunities and profitability in virtual power plant business models in Sub Saharan Africa—Botswana. Int. J. Energy Econ. Policy 2017, 7, 48–58. [Google Scholar]
- Gligor, A.; Cofta, P.; Marciniak, T.; Dumitru, C.-D. Challenges for the Large-Scale Integration of Distributed Renewable Energy Resources in the Next Generation Virtual Power Plants. Proceedings 2020, 63, 20. [Google Scholar] [CrossRef]
- Loock, M. Unlocking the value of digitalization for the European energy transition: A typology of innovative business models. Energy Res. Soc. Sci. 2020, 69, 101740. [Google Scholar] [CrossRef]
- Kazmi, H.; Munné-Collado, Í.; Mehmood, F.; Syed, T.A.; Driesen, J. Towards data-driven energy communities: A review of open-source datasets, models and tools. Renew. Sustain. Energy Rev. 2021, 148, 111290. [Google Scholar] [CrossRef]
- Heuninckx, S.; Meitern, M.; Boveldt, G.T.; Coosemans, T. Practical problems before privacy concerns: How European energy community initiatives struggle with data collection. Energy Res. Soc. Sci. 2023, 98, 103040. [Google Scholar] [CrossRef]
- Popadić, D.; Iglesias, E.; Sakor, A.; Janev, V.; Vidal, M.-E. Toward a Solution for an Energy Knowledge Graph. In Proceedings of the ISIC 2022, Savannah, GA, USA, 17–19 May 2022; pp. 1–10. [Google Scholar]
- Wu, J.; Orlandi, F.; AlSkaif, T.; O’sullivan, D.; Dev, S. A semantic web approach to uplift decentralized household energy data. Sustain. Energy Grids Netw. 2022, 32, 100891. [Google Scholar] [CrossRef]
- Zhang, Y.; Qu, Y.; Gao, L.; Luan, T.H.; Jolfaei, A.; Zheng, J.X. Privacy-preserving data analytics for smart decision-making energy systems in sustainable smart community. Sustain. Energy Technol. Assess. 2023, 57, 103144. [Google Scholar] [CrossRef]
- Yang, C.; Liu, J.; Liao, H.; Liang, G.; Zhao, J. An improved carbon emission flow method for the power grid with prosumers. Energy Rep. 2023, 9, 114–121. [Google Scholar] [CrossRef]
- Zhang, W.; Yuan, H. Promoting Energy Performance Contracting for Achieving Urban Sustainability: What is the Research Trend? Energies 2019, 12, 1443. [Google Scholar] [CrossRef] [Green Version]
- Tzani, D.; Stavrakas, V.; Santini, M.; Thomas, S.; Rosenow, J.; Flamos, A. Pioneering a performance-based future for energy efficiency: Lessons learnt from a comparative review analysis of pay-for-performance programmes. Renew. Sustain. Energy Rev. 2022, 158, 112162. [Google Scholar] [CrossRef]
- EU. Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency. Off. J. Eur. Union 2012, 1–56. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:315:0001:0056:en:PDF (accessed on 28 March 2023).
- Szinai, J.; Borgeson, M.; Levin, E. Putting Your Money Where Your Meter Is: A Study of Pay-for-Performance Energy Efficiency Programs in the United States; Natural Resources Defense Council: New York, NY, USA, 2017; Available online: https://www.nrdc.org/sites/default/files/pay-for-performance-efficiency-report.pdf (accessed on 28 March 2023).
- Shang, T.; Zhang, K.; Liu, P.; Chen, Z. A review of energy performance contracting business models: Status and recommendation. Sustain. Cities Soc. 2017, 34, 203–210. [Google Scholar] [CrossRef]
- Ruggeri, L. Needs and Barriers of Prosumerism in the Energy Transition Era. SSRN Electron. J. 2021. [Google Scholar] [CrossRef]
- Langner, R.; Hendron, B.; Bonnema, E. Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated with Building Performance Uncertainties: Small Buildings and Small Portfolios Program. 2014. Available online: https://www.nrel.gov/docs/fy14osti/60976.pdf (accessed on 27 March 2023).
- European Commission and Directorage-General for Energy. The Quantitative Relationship between Energy Efficiency Improvements and Lower Probability of Default of Associated Loans and Increased Value of the Underlying Assets: Final Report on Risk Assessment. 2022. Available online: https://data.europa.eu/doi/10.2833/532126 (accessed on 1 March 2023).
- Kidney, S.; Giuliani, D.; Sonerud, B. Stimulating Private Market Development in Green Securitisation in Europe: The Public Sector Agenda. 2017. Available online: https://www.climatebonds.net/files/files/-GreenSecuritization-EU_policy-paper_20_04_17-FINAL.pdf (accessed on 28 March 2023).
- Billio, M.; Hristova, I. EE and Credit Risk Correlation: Evolution of the Basel Regulation Framework and Its Potential Impact on EEM. 2022. Available online: https://energyefficientmortgages.eu/wp-content/uploads/2022/04/EE-and-credit-risk-correlation-Evolution-of-the-Basel-regulation-framework-and-its-potential-impact-on-EEM.pdf (accessed on 28 March 2023).
- Copenhagen Economics. Appropriate Prudential Framework for Energy Efficient Mortgages Energy Efficient Mortgage Market Implementation Plan. 2021. Available online: https://copenhageneconomics.com/wp-content/uploads/2021/12/appropriate-prudential-framework-for-energy-efficient-mortgages.pdf (accessed on 28 March 2023).
- Scarpellini, S.; Gimeno, J.Á.; Portillo-Tarragona, P.; Llera-Sastresa, E. Financial Resources for the Investments in Renewable Self-Consumption in a Circular Economy Framework. Sustainability 2021, 13, 6838. [Google Scholar] [CrossRef]
Aspect | Renewable Energy Communities (RECs) | Citizen Energy Communities (CECs) |
---|---|---|
Form | “a legal entity” [RED II, Article 2, para 16] | “a legal entity” [EMD, Article 2, para 11] |
Membership Eligibility | “in accordance with the applicable national law, is based on open and voluntary participation, is autonomous, and is effectively controlled by shareholders or members that are located in the proximity of the renewable energy projects that are owned and developed by that legal entity; the shareholders or members of which are natural persons, SMEs or local authorities, including municipalities” [RED II, Article 2, para 16] | “that is based on voluntary and open participation and is effectively controlled by members or shareholders that are natural persons, local authorities, including municipalities, or small enterprises” [EMD, Article 2, para 11] |
Primary Purpose | “the primary purpose of which is to provide environmental, economic or social community benefits for its shareholders or members or for the local areas where it operates, rather than financial profits” [RED II, Article 2, para 16] | “has for its primary purpose to provide environmental, economic or social community benefits to its members or shareholders or to the local areas where it operates rather than to generate financial profits” [EMD, Article 2, para 11] |
Activities | The REDII also states that RECs shall be entitled to produce, consume, store and sell renewable energy, including through renewables power purchase agreements. [RED II, Article 22, para 2(a)] | “and may engage in generation, including from renewable sources, distribution, supply, consumption, aggregation, energy storage, energy efficiency services or charging services for electric vehicles or provide other energy services to its members or shareholders” [EMD, Article 2, para 11] |
Challenges | Requirements |
---|---|
| Collective self-consumption Joint purchase |
| Remuneration and smart contracts for energy saving and shared flexibility Energy Performance Contracting (EPC) and Pay for Performance (P4P) contracting |
| Maintenance and control of community assets Analysis of flexibility potential and balancing of exported energy Optimisation of the community energy profile Optimisation of energy production and demand response strategies Building management and consumption optimisation |
| Prepare decarbonisation scenarios for decreasing the final energy consumption and operation costs |
Energy Service | Payback Period | Financial Channels | Drivers | Barriers |
---|---|---|---|---|
Collective self- consumption | Mid–long-term | Credit institutions, retail energy companies, financial investors of the energy sector, grants and subsidies, and own financing (private capital) |
|
|
Electricity compensation with hydrogen storage during the off-PV production period | Long-term | Banking disintermediation through the financing of the retail energy company, cost savings in equipment, in addition to financing provided by public subsidies |
|
|
HVAC system optimisation and control | Short–mid-term | Banking loans, crowdfunding, owner financing, EPC |
|
|
EV charging from RES | Short–mid-term | Public subsidies or private energy companies |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yiasoumas, G.; Berbakov, L.; Janev, V.; Asmundo, A.; Olabarrieta, E.; Vinci, A.; Baglietto, G.; Georghiou, G.E. Key Aspects and Challenges in the Implementation of Energy Communities. Energies 2023, 16, 4703. https://doi.org/10.3390/en16124703
Yiasoumas G, Berbakov L, Janev V, Asmundo A, Olabarrieta E, Vinci A, Baglietto G, Georghiou GE. Key Aspects and Challenges in the Implementation of Energy Communities. Energies. 2023; 16(12):4703. https://doi.org/10.3390/en16124703
Chicago/Turabian StyleYiasoumas, Georgios, Lazar Berbakov, Valentina Janev, Alessandro Asmundo, Eneko Olabarrieta, Andrea Vinci, Giovanni Baglietto, and George E. Georghiou. 2023. "Key Aspects and Challenges in the Implementation of Energy Communities" Energies 16, no. 12: 4703. https://doi.org/10.3390/en16124703
APA StyleYiasoumas, G., Berbakov, L., Janev, V., Asmundo, A., Olabarrieta, E., Vinci, A., Baglietto, G., & Georghiou, G. E. (2023). Key Aspects and Challenges in the Implementation of Energy Communities. Energies, 16(12), 4703. https://doi.org/10.3390/en16124703