Ion Exchange Resin and Entrapped Candida rugosa Lipase for Biodiesel Synthesis in the Recirculating Packed-Bed Reactor: A Performance Comparison of Heterogeneous Catalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Resin Activation
2.3. Enzyme Immobilization
2.4. Enzyme Loading
2.5. Continuous Transesterification in a Packed Bed Reactor
2.6. Resin Regeneration
2.7. Biodiesel Washing
2.8. Analysis of FAME Content
- = ester content (% w/w)
- = total peak area of methyl ester C6:0–C24:1
- = peak area of internal standard C19
- = weight of internal standard (mg)
- = weight of sample (mg).
3. Results
3.1. The Use of Ion Exchange Resins for Biodiesel Synthesis in Recirculating Packed Bed Reactors
3.1.1. The Effect of Resin Types on the Biodiesel Yield
3.1.2. Effect of Dry Weight of Activated Ion Exchange Resin in Biodiesel Yield
3.1.3. Effect of Synthesis Time in Biodiesel Yield
3.1.4. Reusability Test for Activated Ion Exchange Resin
3.2. The Use of Immobilized Lipase for Biodiesel Synthesis in Recirculating Packed Bed Reactors
3.2.1. Lipase Loading for Biodiesel Synthesis
3.2.2. Effect of the Substrate Flow Rate on Biodiesel Synthesis
3.2.3. Stability Test for the Immobilized Enzyme
4. Discussions
4.1. Enzyme vs. Resin Amount
4.2. Synthesis Time
4.3. Reusability Test
4.4. Catalyst Cost Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meher, L.C.; Vidya Sagar, D.; Naik, S.N. Technical aspects of biodiesel production by transesterification—A review. Renew. Sustain. Energy Rev. 2006, 10, 248–268. [Google Scholar] [CrossRef]
- Tran, D.T.; Chang, J.S.; Lee, D.J. Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes. Appl. Energy 2017, 185, 376–409. [Google Scholar] [CrossRef]
- Demirbas, A. Biodiesel: A Realistic Fuel Alternative for Diesel Engines; Springer: London, UK, 2008; pp. 1–208. [Google Scholar]
- Jazayeri, S.M. Characterization of Genes Related to Oil Palm (Elaeis guineensis Jacq.) Drought Stress Responses [Internet]. 2015. Available online: http://www.bdigital.unal.edu.co/47936/1/378408.2015.pdf (accessed on 22 October 2022).
- Dey, S.; Reang, N.M.; Das, P.K.; Deb, M. A comprehensive study on prospects of economy, environment, and efficiency of palm oil biodiesel as a renewable fuel. J. Clean. Prod. 2021, 286, 124981. [Google Scholar] [CrossRef]
- Ferreira, R.S.B.; Bejarano-alva, I.J.; Shimamoto, G.G.; Tubino, M.; Meirelles, A.J.A.; Batista, E.A.C. Industrial Crops & Products Optimizing the production of biodiesel from palm olein (Elaeis guineensis Jacq.) using a strong basic anionic resin as a heterogeneous catalyst. Ind. Crop. Prod. 2021, 174, 114121. [Google Scholar] [CrossRef]
- Fu, J.; Li, Z.; Xing, S.; Wang, Z.; Miao, C.; Lv, P.; Yuan, Z. Cation exchange resin catalysed biodiesel production from used cooking oil (UCO): Investigation of impurities effect. Fuel 2016, 181, 1058–1065. [Google Scholar] [CrossRef]
- Shibasaki-kitakawa, N.; Honda, H.; Kuribayashi, H.; Toda, T. Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst. Bioresour. Technol. 2007, 98, 416–421. [Google Scholar] [CrossRef]
- Shibasaki-kitakawa, N.; Hiromori, K.; Ihara, T.; Nakashima, K.; Yonemoto, T. Production of high quality biodiesel from waste acid oil obtained during edible oil refining using ion-exchange resin catalysts. Fuel 2015, 139, 11–17. [Google Scholar] [CrossRef]
- Iseoluwa, J.; Oderinde, O.; Aron, G.; Ahmed, A.; Abiola, S.; Ejeromedoghene, O.; Sunday, E.; Michael, O.; Blessing, O.; Oluwaseyi, E.; et al. Recent advances in heterogeneous catalysis for green biodiesel production by transesterification. Energy Convers. Manag. 2022, 258, 115406. [Google Scholar] [CrossRef]
- Cavalcante, F.T.T.; Neto, F.S.; Rafael de Aguiar Falcão, I.; Erick da Silva Souza, J.; de Moura Junior, L.S.; da Silva Sousa, P.; Rocha, T.G.; de Sousa, I.G.; de Lima Gomes, P.H.; de Souza, M.C.M.; et al. Opportunities for improving biodiesel production via lipase catalysis. Fuel 2021, 288, 119577. [Google Scholar] [CrossRef]
- Betigeri, S.S.; Neau, S.H. Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Biomaterials 2002, 23, 3627–3636. [Google Scholar] [CrossRef] [PubMed]
- Bucke, C. Cell Immobilization in Calcium Alginate. Methods Enzymol. 1987, 135, 175–189. [Google Scholar] [CrossRef]
- Ozyilmaz, G.; Gezer, E. Production of aroma esters by immobilized Candida rugosa and porcine pancreatic lipase into calcium alginate gel. J. Mol. Catal. B Enzym. 2010, 64, 140–145. [Google Scholar] [CrossRef]
- Vetrano, A.; Gabriele, F.; Germani, R.; Spreti, N. Characterization of lipase from Candida rugosa entrapped in alginate beads to enhance its thermal stability and recyclability. New J. Chem. 2022, 46, 10037–10047. [Google Scholar] [CrossRef]
- Won, K.; Kim, S.; Kim, K.J.; Park, H.W.; Moon, S.J. Optimization of lipase entrapment in Ca-alginate gel beads. Process Biochem. 2005, 40, 2149–2154. [Google Scholar] [CrossRef]
- Shimada, Y.; Watanabe, Y.; Samukawa, T.; Sugihara, A.; Noda, H.; Fukuda, H.; Tominaga, Y. Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. JAOCS J. Am. Oil Chem. Soc. 1999, 76, 789–793. [Google Scholar] [CrossRef]
- Watanabe, Y.; Shimada, Y.; Sugihara, A.; Noda, H.; Fukuda, H.; Tominaga, Y. Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. JAOCS J. Am. Oil Chem. Soc. 2000, 77, 355–360. [Google Scholar] [CrossRef]
- Rahman, H.; Sitompul, J.P.; Tjokrodiningrat, S. The composition of fatty acids in several vegetable oils from Indonesia. Biodiversitas 2022, 23, 2167–2176. [Google Scholar] [CrossRef]
- Subroto, E.; Indiarto, R.; Pangawikan, A.D.; Huda, S.; Yarlina, V.P. Characteristics, immobilization, and application of Candida rugosa lipase: A review. Food Res. 2020, 4, 1391–1401. [Google Scholar] [CrossRef]
- Hernández-Montelongo, R.; García-Sandoval, J.P.; González-Álvarez, A.; Dochain, D.; Aguilar-Garnica, E. Biodiesel production in a continuous packed bed reactor with recycle: A modeling approach for an esterification system. Renew. Energy 2018, 116, 857–865. [Google Scholar] [CrossRef]
- Ren, Y.; He, B.; Yan, F.; Wang, H.; Cheng, Y.; Lin, L.; Feng, Y.; Li, J. Continuous biodiesel production in a fixed bed reactor packed with anion-exchange resin as heterogeneous catalyst. Bioresour. Technol. 2012, 113, 19–22. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Zhao, C.; Ding, Y.; Xu, P. Biodiesel production in packed-bed reactors using lipase-nanoparticle biocomposite. Bioresour. Technol. 2011, 102, 6352–6355. [Google Scholar] [CrossRef] [PubMed]
- Bakkiyaraj, S.; Syed, M.B.; Devanesan, M.G.; Thangavelu, V. Production and optimization of biodiesel using mixed immobilized biocatalysts in packed bed reactor. Environ. Sci. Pollut. Res. 2016, 23, 9276–9283. [Google Scholar] [CrossRef] [PubMed]
- Dalla Rosa, C.; de Oliveira, D.; Oliveira, J.V. The role of organic solvent amount in the lipase-catalyzed biodiesel production. Food Sci. Technol. 2010, 30, 76–78. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Zhang, A.; Li, J.; He, B. A continuous process for biodiesel production in a fixed bed reactor packed with cation-exchange resin as heterogeneous catalyst. Bioresour. Technol. 2011, 102, 3607–3609. [Google Scholar] [CrossRef]
- De Oliveira, D.; Do Nascimento Filho, I.; Di Luccio, M.; Faccio, C.; Dalla Rosa, C.; Bender, J.P.; Lipke, N.; Amroginski, C.; Dariva, C.; De Oliveira, J.V. Kinetics of enzyme-catalyzed alcoholysis of soybean oil in n-hexane. Appl. Biochem. Biotechnol.-Part A Enzym. Eng. Biotechnol. 2005, 121, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Sandaka, B.P.; Kumar, J.; Melo, J.S. Mitigation of methanol inactivation of lipases by reaction medium engineering with glycine betaine for enzymatic biodiesel synthesis. Fuel 2022, 313, 122637. [Google Scholar] [CrossRef]
- Bhushan, I.; Parshad, R.; Qazi, G.N.; Gupta, V.K. Immobilization of lipase by entrapment in Ca-alginate beads. J. Bioact. Compat. Polym. 2008, 23, 552–562. [Google Scholar] [CrossRef]
- Shibasaki-Kitakawa, N.; Tsuji, T.; Chida, K.; Kubo, M.; Yonemoto, T. Simple continuous production process of biodiesel fuel from oil with high content of free fatty acid using ion-exchange resin catalysts. Energy Fuels 2010, 24, 3634–3638. [Google Scholar] [CrossRef]
- Ting, W.J.; Huang, C.M.; Giridhar, N.; Wu, W.T. An enzymatic/acid-catalyzed hybrid process for biodiesel production from soybean oil. J. Chin. Inst. Chem. Eng. 2008, 39, 203–210. [Google Scholar] [CrossRef]
- Hartono, R.; Mulia, B.; Sahlan, M.; Utami, T.S.; Wijanarko, A.; Hermansyah, H. The modification of ion exchange heterogeneous catalysts for biodiesel synthesis. AIP Conf. Proc. 2017, 1826, 020020. [Google Scholar]
- Brahma, S.; Nath, B.; Basumatary, B.; Das, B.; Saikia, P.; Patir, K.; Basumatary, S. Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. Chem. Eng. J. Adv. 2022, 10, 100284. [Google Scholar] [CrossRef]
- Pan, H.; Li, H.; Zhang, H.; Wang, A.; Jin, D.; Yang, S. Effective production of biodiesel from non-edible oil using facile synthesis of imidazolium salts-based BrØnsted-Lewis solid acid and co-solvent. Energy Convers. Manag. 2018, 166, 534–544. [Google Scholar] [CrossRef]
- Yanfei, H.; Xiaoxiang, H.; Qing, C.; Lingxiao, Z. Transesterification of Soybean Oil to Biodiesel by Brønsted-Type Ionic Liquid Acid Catalysts. Chem. Eng. Technol. 2013, 36, 1559–1567. [Google Scholar] [CrossRef]
- Patiño, Y.; Faba, L.; Díaz, E.; Ordóñez, S. Biodiesel production from wastewater sludge using exchange resins as heterogeneous acid catalyst: Catalyst selection and sludge pre-treatments. J. Water Process Eng. 2021, 44, 102335. [Google Scholar] [CrossRef]
- Son, S.M.; Kimura, H.; Kusakabe, K. Esterification of oleic acid in a three-phase, fixed-bed reactor packed with a cation exchange resin catalyst. Bioresour. Technol. 2011, 102, 2130–2132. [Google Scholar] [CrossRef] [PubMed]
- Hama, S.; Yamaji, H.; Fukumizu, T.; Numata, T.; Tamalampudi, S.; Kondo, A.; Noda, H.; Fukuda, H. Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochem. Eng. J. 2007, 34, 273–278. [Google Scholar] [CrossRef]
- Saha, B.; Haigh, K.F.; Abidin, S.Z.; Vladisavljevic, G.T. Comparison of Novozyme 435 and Purolite D5081 as heterogeneous catalysts for the pretreatment of used cooking oil for biodiesel production. Fuel 2013, 111, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.C.; Liang, S.H.; Chen, S.S.; Su, C.H.; Lin, J.H.; Chien, C.C. Enzymatic production of biodiesel from insect fat using methyl acetate as an acyl acceptor: Optimization by using response surface methodology. Energy Convers. Manag. 2018, 158, 168–175. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Liang, S.H.; Doan, T.T.; Su, C.H.; Yang, P.C. Lipase-catalyzed synthesis of biodiesel from black soldier fly (Hermetica illucens): Optimization by using response surface methodology. Energy Convers. Manag. 2017, 145, 335–342. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, S.B.; Park, C.; Tae, B.; Han, S.O.; Kim, S.W. Development of batch and continuous processes on biodiesel production in a packed-bed reactor by a mixture of immobilized Candida rugosa and Rhizopus oryzae lipases. Appl. Biochem. Biotechnol. 2010, 161, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.C.; Ju, H.Y.; Wu, T.T.; Liu, Y.C.; Lee, C.C.; Chang, C.; Chung, Y.L.; Shieh, C.J. Continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: Optimization and enzyme reuse study. J. Biomed. Biotechnol. 2011, 2011, 950725. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Das, T.; Giri, B.S.; Verma, B. Optimization of biodiesel synthesis from nonedible oil using immobilized bio-support catalysts in jacketed packed bed bioreactor by response surface methodology. J. Clean. Prod. 2020, 244, 118700. [Google Scholar] [CrossRef]
- Zhang, Z.; Lee, W.J.; Sun, X.; Wang, Y. Enzymatic interesterification of palm olein in a continuous packed bed reactor: Effect of process parameters on the properties of fats and immobilized Thermomyces lanuginosus lipase. Lwt 2022, 162, 113459. [Google Scholar] [CrossRef]
- Kareem, S.O.; Falokun, E.I.; Balogun, S.A.; Akinloye, O.A.; Omeike, S.O. Improved biodiesel from palm oil using lipase immobilized calcium alginate and Irvingia gabonensis matrices. Beni-Suef Univ. J. Basic Appl. Sci. 2020, 9, 59. [Google Scholar] [CrossRef]
- Malhotra, I.; Basir, S.F. Immobilization of invertase in calcium alginate and calcium alginate-kappa-carrageenan beads and its application in bioethanol production. Prep. Biochem. Biotechnol. 2020, 50, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Rial, R.C.; de Freitas, O.N.; Cavalheiro, L.F.; Nazário, C.E.D.; Viana, L.H. Biodiesel production using Candida rugosa as biocatalytic lipase immobilized on p-nitrobenzyl cellulose xanthate (NBXCel). Biofuels Bioprod. Biorefining 2021, 15, 1789–1801. [Google Scholar] [CrossRef]
- Nuraliyah, A.; Perdani, M.S.; Putri, D.N.; Sahlan, M.; Wijanarko, A.; Hermansyah, H. Effect of Additional Amino Group to Improve the Performance of Immobilized Lipase from Aspergillus niger by Adsorption-Crosslinking Method. Front. Energy Res. 2021, 9, 616945. [Google Scholar] [CrossRef]
- Changmai, B.; Vanlalveni, C.; Ingle, A.P.; Bhagat, R.; Rokhum, L. Widely used catalysts in biodiesel production: A review. RSC Adv. 2020, 10, 41625–41679. [Google Scholar] [CrossRef]
- Feng, Y.; He, B.; Cao, Y.; Li, J.; Liu, M.; Yan, F.; Liang, X. Biodiesel production using cation-exchange resin as heterogeneous catalyst. Bioresour. Technol. 2010, 101, 1518–1521. [Google Scholar] [CrossRef]
- Fu, J.; Chen, L.; Lv, P.; Yang, L.; Yuan, Z. Free fatty acids esterification for biodiesel production using self-synthesized macroporous cation exchange resin as solid acid catalyst. Fuel 2015, 154, 1–8. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Huong, D.T.M.; Juan, H.Y.; Su, C.H.; Chien, C.C. Liquid lipase-catalyzed esterification of oleic acid with methanol for biodiesel production in the presence of superabsorbent polymer: Optimization by using response surface methodology. Energies 2018, 11, 1085. [Google Scholar] [CrossRef] [Green Version]
- Baradia, H.; Kumar, S.M.; Chattopadhyay, S. Techno-economic analysis of production and purification of lipase from Bacillus subtilis (NCIM 2193). Prep. Biochem. Biotechnol. 2023; 1–6, ahead of print. [Google Scholar] [CrossRef]
- Zauba. Import Lewatit [Internet]. Available online: https://www.zauba.com/import-lewatit/fp-germany-hs-code.html (accessed on 25 April 2023).
- Peterson, C.L. Vegetable Oil as a Diesel Fuel: Status and Research Priorities. Trans. Am. Soc. Agric. Eng. 1986, 29, 1413–1422. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidayatullah, I.M.; Soetandar, F.; Sudiyasa, P.V.; Cognet, P.; Hermansyah, H. Ion Exchange Resin and Entrapped Candida rugosa Lipase for Biodiesel Synthesis in the Recirculating Packed-Bed Reactor: A Performance Comparison of Heterogeneous Catalysts. Energies 2023, 16, 4765. https://doi.org/10.3390/en16124765
Hidayatullah IM, Soetandar F, Sudiyasa PV, Cognet P, Hermansyah H. Ion Exchange Resin and Entrapped Candida rugosa Lipase for Biodiesel Synthesis in the Recirculating Packed-Bed Reactor: A Performance Comparison of Heterogeneous Catalysts. Energies. 2023; 16(12):4765. https://doi.org/10.3390/en16124765
Chicago/Turabian StyleHidayatullah, Ibnu Maulana, Frederick Soetandar, Pingkan Vanessa Sudiyasa, Patrick Cognet, and Heri Hermansyah. 2023. "Ion Exchange Resin and Entrapped Candida rugosa Lipase for Biodiesel Synthesis in the Recirculating Packed-Bed Reactor: A Performance Comparison of Heterogeneous Catalysts" Energies 16, no. 12: 4765. https://doi.org/10.3390/en16124765
APA StyleHidayatullah, I. M., Soetandar, F., Sudiyasa, P. V., Cognet, P., & Hermansyah, H. (2023). Ion Exchange Resin and Entrapped Candida rugosa Lipase for Biodiesel Synthesis in the Recirculating Packed-Bed Reactor: A Performance Comparison of Heterogeneous Catalysts. Energies, 16(12), 4765. https://doi.org/10.3390/en16124765