Disperse Partial Shading Effect of Photovoltaic Array by Means of the Modified Complementary SuDoKu Puzzle Topology
Abstract
:1. Introduction
2. Methodology
2.1. Circuit Model of the PV Array and Calculation of Row Current
2.2. Static Reconfiguration of PV Array Based on the MC-SDKP Topology
3. Results
3.1. Experimental Setup for the Performance Evaluation
3.2. Results of the Performance Evaluations of the Topologies
3.2.1. Estimated Results for the Topologies
3.2.2. Results of the Simulations of the Performance of the Topologies
3.2.3. Comparison of the P-V Curves for the Five Topologies
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Reatti, A.; Kazimierczuk, M.; Catelani, M.; Ciani, L. Monitoring and field data acquisition system for hybrid static concentrator plant. Measurement 2017, 98, 384–392. [Google Scholar] [CrossRef]
- Cappelletti, A.; Reatti, A.; Martelli, F. Numerical and Experimental Analysis of a CPV/T Receiver Suitable for Low Solar Concentration Factors. Energy Procedia 2015, 82, 724–729. [Google Scholar] [CrossRef] [Green Version]
- Al Abri, W.; Abri, R.A.; Yousef, H.; Al-Hinai, A. A Simple Method for Detecting Partial Shading in PV Systems. Energies 2021, 14, 4938. [Google Scholar] [CrossRef]
- Akram, N.; Khan, L.; Agha, S.; Hafeez, K. Global Maximum Power Point Tracking of Partially Shaded PV System Using Advanced Optimization Techniques. Energies 2022, 15, 4055. [Google Scholar] [CrossRef]
- Rezazadeh, S.; Moradzadeh, A.; Pourhossein, K.; Akrami, M.; Mohammadi-Ivatloo, B.; Anvari-Moghaddam, A. Photovoltaic array reconfiguration under partial shading conditions for maximum power extraction: A state-of-the-art review and new solution method. Energy Convers. Manag. 2022, 258, 115468. [Google Scholar] [CrossRef]
- Fathy, A. Recent meta-heuristic grasshopper optimization algorithm for optimal reconfiguration of partially shaded PV array. Sol. Energy 2018, 171, 638–651. [Google Scholar] [CrossRef]
- Huang, Y.-P.; Huang, M.-Y.; Ye, C.-E. A Fusion Firefly Algorithm With Simplified Propagation for Photovoltaic MPPT Under Partial Shading Conditions. IEEE Trans. Sustain. Energy 2020, 11, 2641–2652. [Google Scholar] [CrossRef]
- Vankadara, S.K.; Chatterjee, S.; Balachandran, P.K.; Mihet-Popa, L. Marine Predator Algorithm (MPA)-Based MPPT Technique for Solar PV Systems under Partial Shading Conditions. Energies 2022, 15, 6172. [Google Scholar] [CrossRef]
- Huang, Y.-P.; Ye, C.-E.; Chen, X. A Modified Firefly Algorithm with Rapid Response Maximum Power Point Tracking for Photovoltaic Systems under Partial Shading Conditions. Energies 2018, 11, 2284. [Google Scholar] [CrossRef] [Green Version]
- Cappelletti, A.; Catelani, M.; Ciani, L.; Kazimierczuk, M.K.; Reatti, A. Practical Issues and Characterization of a Photovoltaic/Thermal Linear Focus $20\times $ Solar Concentrator. IEEE Trans. Instrum. Meas. 2016, 65, 2464–2475. [Google Scholar] [CrossRef]
- Alves, T.; Torres, J.P.N.; Marques Lameirinhas, R.A.; Fernandes, C.A.F. Different Techniques to Mitigate Partial Shading in Photovoltaic Panels. Energies 2021, 14, 3863. [Google Scholar] [CrossRef]
- Corti, F.; Laudani, A.; Lozito, G.M.; Reatti, A. Computationally Efficient Modeling of DC-DC Converters for PV Applications. Energies 2020, 13, 5100. [Google Scholar] [CrossRef]
- Chalh, A.; El Hammoumi, A.; Motahhir, S.; El Ghzizal, A.; Derouich, A.; Masud, M.; AlZain, M.A. Investigation of Partial Shading Scenarios on a Photovoltaic Array’s Characteristics. Electronics 2022, 11, 96. [Google Scholar] [CrossRef]
- Nguyen-Duc, T.; Le-Viet, T.; Nguyen-Dang, D.; Dao-Quang, T.; Bui-Quang, M. Photovoltaic Array Reconfiguration under Partial Shading Conditions Based on Short-Circuit Current Estimated by Convolutional Neural Network. Energies 2022, 15, 6341. [Google Scholar] [CrossRef]
- Díaz, M.; Muñoz, J.; Rivera, M.; Rohten, J. A Comprehensive Control Strategy for a Push–Pull Microinverter Connected to the Grid. Energies 2023, 16, 3196. [Google Scholar] [CrossRef]
- Raj, R.D.A.; Naik, K.A. Optimal reconfiguration of PV array based on digital image encryption algorithm: A comprehensive simulation and experimental investigation. Energy Convers. Manag. 2022, 261, 115666. [Google Scholar] [CrossRef]
- Mehedi, I.; Salam, Z.; Ramli, M.; Chin, V.; Bassi, H.; Rawa, M.; Abdullah, M. Critical evaluation and review of partial shading mitigation methods for grid-connected PV system using hardware solutions: The module-level and array-level approaches. Renew. Sustain. Energy Rev. 2021, 146, 111138. [Google Scholar] [CrossRef]
- Belhachat, F.; Larbes, C. PV array reconfiguration techniques for maximum power optimization under partial shading conditions: A review. Sol. Energy 2021, 230, 558–582. [Google Scholar] [CrossRef]
- Kour, J.; Shukla, A. Comparative analysis of different reconfiguration schemes for power enhancement under various shading scenarios. Sol. Energy 2021, 230, 91–108. [Google Scholar] [CrossRef]
- Srinivasan, A.; Devakirubakaran, S.; Sundaram, B.M. Mitigation of mismatch losses in solar PV system–Two-step reconfiguration approach. Sol. Energy 2020, 206, 640–654. [Google Scholar] [CrossRef]
- Pillai, D.S.; Rajasekar, N.; Ram, J.P.; Chinnaiyan, V.K. Design and testing of two phase array reconfiguration procedure for maximizing power in solar PV systems under partial shade conditions (PSC). Energy Convers. Manag. 2018, 178, 92–110. [Google Scholar] [CrossRef]
- Huang, Y.-P.; Chen, X.; Ye, C.-E. Implementation of a modified circuit reconfiguration strategy in high concentration photovoltaic modules under partial shading conditions. Sol. Energy 2019, 194, 628–648. [Google Scholar] [CrossRef]
- Nasiruddin, I.; Khatoon, S.; Jalil, M.F.; Bansal, R. Shade diffusion of partial shaded PV array by using odd-even structure. Sol. Energy 2019, 181, 519–529. [Google Scholar] [CrossRef]
- Reddy, S.S.; Yammani, C. Odd-Even-Prime pattern for PV array to increase power output under partial shading conditions. Energy 2020, 213, 118780. [Google Scholar] [CrossRef]
- Rezazadeh, S.; Moradzadeh, A.; Hashemzadeh, S.M.; Pourhossein, K.; Mohammadi-Ivatloo, B.; Hosseini, S.H. A novel prime numbers-based PV array reconfiguration solution to produce maximum energy under partial shade conditions. Sustain. Energy Technol. Assess. 2021, 47, 101498. [Google Scholar] [CrossRef]
- Krishnan, V.R.; Blaabjerg, F.; Sangwongwanich, A.; Natarajan, R. Twisted Two-Step Arrangement for Maximum Power Extraction From a Partially Shaded PV Array. IEEE J. Photovolt. 2022, 12, 871–879. [Google Scholar] [CrossRef]
- Venkateswari, R.; Rajasekar, N. Power enhancement of PV system via physical array reconfiguration based Lo Shu technique. Energy Convers. Manag. 2020, 215, 112885. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Thanikanti, S.B.; Bai, J.; Yadav, V.K.; Aljafari, B.; Ghosh, S.; Alhelou, H.H. Ancient Chinese magic square-based PV array reconfiguration methodology to reduce power loss under partial shading conditions. Energy Convers. Manag. 2022, 253, 115148. [Google Scholar] [CrossRef]
- Sahu, H.S.; Nayak, S.K.; Mishra, S. Maximizing the Power Generation of a Partially Shaded PV Array. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 626–637. [Google Scholar] [CrossRef]
- Dhanalakshmi, B.; Rajasekar, N. Dominance square based array reconfiguration scheme for power loss reduction in solar PhotoVoltaic (PV) systems. Energy Convers. Manag. 2018, 156, 84–102. [Google Scholar] [CrossRef]
- Dhanalakshmi, B.; Rajasekar, N. A novel Competence Square based PV array reconfiguration technique for solar PV maximum power extraction. Energy Convers. Manag. 2018, 174, 897–912. [Google Scholar] [CrossRef]
- Sharma, D.; Jalil, M.F.; Ansari, M.S.; Bansal, R. A review of PV array reconfiguration techniques for maximum power extraction under partial shading conditions. Optik 2023, 275, 170559. [Google Scholar] [CrossRef]
- Yousri, D.; Fathy, A.; El-Saadany, E.F. Four square sudoku approach for alleviating shading effect on total-cross-tied PV array. Energy Convers. Manag. 2022, 269, 116105. [Google Scholar] [CrossRef]
- Aljafari, B.; Satpathy, P.R.; Madeti, S.R.K.; Vishnuram, P.; Thanikanti, S.B. Reliability Enhancement of Photovoltaic Systems under Partial Shading through a Two-Step Module Placement Approach. Energies 2022, 15, 7766. [Google Scholar] [CrossRef]
- Chavan, V.C.; Mikkili, S.; Senjyu, T. Hardware Implementation of Novel Shade Dispersion PV Reconfiguration Technique to Enhance Maximum Power under Partial Shading Conditions. Energies 2022, 15, 3515. [Google Scholar] [CrossRef]
- Mikkili, S.; Kanjune, A.; Bonthagorla, P.K.; Senjyu, T. Non-Symmetrical (NS) Reconfiguration Techniques to Enhance Power Generation Capability of Solar PV System. Energies 2022, 15, 2124. [Google Scholar] [CrossRef]
- Ye, C.-E.; Tai, C.-C.; Huang, Y.-P.; Chen, J.-J. Dispersed partial shading effect and reduced power loss in a PV array using a complementary SuDoKu puzzle topology. Energy Convers. Manag. 2021, 246, 114675. [Google Scholar] [CrossRef]
- Krishna, S.G.; Moger, T. Optimal SuDoKu Reconfiguration Technique for Total-Cross-Tied PV Array to Increase Power Output Under Non-Uniform Irradiance. IEEE Trans. Energy Convers. 2019, 34, 1973–1984. [Google Scholar] [CrossRef]
- Yadav, A.S.; Mukherjee, V. Line losses reduction techniques in puzzled PV array configuration under different shading conditions. Sol. Energy 2018, 171, 774–783. [Google Scholar] [CrossRef]
- Tatabhatla, V.M.R.; Agarwal, A.; Kanumuri, T. Minimising the power loss of solar photo voltaic array through efficient reconfiguration of panels. Proc. Inst. Mech. Eng. Part J. Power Energy 2020, 234, 690–708. [Google Scholar] [CrossRef]
- Bingöl, O.; Özkaya, B. Analysis and comparison of different PV array configurations under partial shading conditions. Sol. Energy 2018, 160, 336–343. [Google Scholar] [CrossRef]
- Manjunath; Suresh, H.; Rajanna, S. Maximization of photo-voltaic array power output through Lo Sho Square shade dispersion technique based re-configuration scheme. Energy Convers. Manag. 2022, 260, 115588. [Google Scholar] [CrossRef]
- Krishna, G.S.; Moger, T. Reconfiguration strategies for reducing partial shading effects in photovoltaic arrays: State of the art. Sol. Energy 2019, 182, 429–452. [Google Scholar] [CrossRef]
- Yadav, V.K.; Yadav, A.; Yadav, R.; Mittal, A.; Wazir, N.H.; Gupta, S.; Pachauri, R.K.; Ghosh, S. A novel reconfiguration technique for improvement of PV reliability. Renew. Energy 2022, 182, 508–520. [Google Scholar] [CrossRef]
Variable | Spec. |
---|---|
Open circuit voltage (Voc) | 22 V |
Short circuit current (Isc) | 4.7 A |
Voltage at the MPP (Vmp) | 18 V |
Current at the MPP (Imp) | 4.4 A |
Power at the MPP (Pmp) | 79.2 W |
Parallel strings (NP) | 1 |
Series-connected modules per strings (Ns) | 1 |
TCT | Odd-Even | Optimal SDKP | C-SDKP | MC-SDKP | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pattern | Varray | ΔIR | Parray | Varray | ΔIR | Parray | Varray | ΔIR | Parray | Varray | ΔIR | Parray | Varray | ΔIR | Parray |
#1 | 8 Vm | 2 Im | 48 Pm | 8 Vm | 0.4 Im | 54.4 Pm | 8 Vm | 0.2 Im | 56 Pm | 8 Vm | 0.2 Im | 56 Pm | 8 Vm | 0.2 Im | 56 Pm |
#2 | 8 Vm | 2.6 Im | 43.2 Pm | 8 Vm | 0.8 Im | 52.8 Pm | 8 Vm | 0.4 Im | 53.6 Pm | 8 Vm | 0.4 Im | 53.6 Pm | 8 Vm | 0.4 Im | 53.6 Pm |
#3 | 8 Vm | 2.8 Im | 41.6 Pm | 8 Vm | 2.8 Im | 41.6 Pm | 8 Vm | 0.2 Im | 52.8 Pm | 8 Vm | 0.6 Im | 51.2 Pm | 8 Vm | 0.2 Im | 52.8 Pm |
#4 | 8 Vm | 3 Im | 40 Pm | 8 Vm | 3 Im | 40 Pm | 8 Vm | 0.3 Im | 51.2 Pm | 8 Vm | 0.5 Im | 50.4 Pm | 8 Vm | 0.3 Im | 51.2 Pm |
#5 | 8 Vm | 3 Im | 40 Pm | 8 Vm | 0.6 Im | 49.6 Pm | 8 Vm | 0.2 Im | 51.2 Pm | 8 Vm | 1.6 Im | 45.6 Pm | 8 Vm | 0.2 Im | 51.2 Pm |
#6 | 8 Vm | 2.4 Im | 44.8 Pm | 8 Vm | 3.2 Im | 38.4 Pm | 8 Vm | 2 Im | 44.8 Pm | 8 Vm | 2.4 Im | 44.8 Pm | 8 Vm | 1.2 Im | 48 Pm |
#7 | 5 Vm | 4.6 Im | 40 Pm | 8 Vm | 2.2 Im | 43.2 Pm | 8 Vm | 0.9 Im | 49.6 Pm | 8 Vm | 0.5 Im | 51.2 Pm | 8 Vm | 0.7 Im | 50.4 Pm |
#8 | 6 Vm | 3.4 Im | 40.8 Pm | 8 Vm | 3.8 Im | 33.6 Pm | 8 Vm | 0.5 Im | 45.6 Pm | 8 Vm | 0.5 Im | 45.6 Pm | 8 Vm | 0.3 Im | 46.4 Pm |
#9 | 8 Vm | 2.1 Im | 47.2 Pm | 8 Vm | 2 Im | 48 Pm | 8 Vm | 1.1 Im | 50.4 Pm | 8 Vm | 0.7 Im | 51.2 Pm | 8 Vm | 1 Im | 51.2 Pm |
Avg. | - | 2.9 Im | 42.8 Pm | - | 2.1 Im | 44.6 Pm | - | 0.6 Im | 50.6 Pm | - | 0.8 Im | 50.0 Pm | - | 0.5 Im | 51.2 Pm |
TCT | Odd-Even | Optimal SDKP | C-SDKP | MC-SDKP | ||
---|---|---|---|---|---|---|
Pattern #1 | Pmp (W) | 4100.2 | 4464.2 | 4488.8 | 4488.8 | 4488.8 |
Ploss (%) | 8.99 | 0.91 | 0.36 | 0.36 | 0.36 | |
Pmp improvement (%) | - | 8.88 | 9.48 | 9.48 | 9.48 | |
Pattern #2 | Pmp (W) | 3752.7 | 4313.3 | 4336.3 | 4344.2 | 4336.4 |
Ploss (%) | 14.30 | 1.50 | 0.97 | 0.79 | 0.97 | |
Pmp improvement (%) | - | 14.94 | 15.55 | 15.76 | 15.55 | |
Pattern #3 | Pmp (W) | 3594.7 | 3594.8 | 4225.5 | 4196.2 | 4229.3 |
Ploss (%) | 15.48 | 15.48 | 0.65 | 1.34 | 0.56 | |
Pmp improvement (%) | - | 0 | 17.55 | 16.73 | 17.65 | |
Pattern #4 | Pmp (W) | 3441.3 | 3441.3 | 4130.0 | 4104.9 | 4121.6 |
Ploss (%) | 17.2 | 17.2 | 0.63 | 1.23 | 0.83 | |
Pmp improvement (%) | - | 0 | 20.01 | 19.28 | 19.77 | |
Pattern #5 | Pmp (W) | 3396.5 | 4065.7 | 4103.5 | 3823.7 | 4100.3 |
Ploss (%) | 17.7 | 1.49 | 0.57 | 7.35 | 0.65 | |
Pmp improvement (%) | - | 19.7 | 20.82 | 12.58 | 20.72 | |
Pattern #6 | Pmp (W) | 3800.9 | 3407.8 | 3886.8 | 3846.7 | 4072.5 |
Ploss (%) | 9.97 | 19.29 | 7.94 | 8.89 | 3.54 | |
Pmp improvement (%) | - | −10.34 | 2.26 | 1.21 | 7.15 | |
Pattern #7 | Pmp (W) | 3303.8 | 3724.6 | 4112.3 | 4174.4 | 4153.8 |
Ploss (%) | 21.75 | 11.78 | 2.6 | 1.13 | 1.62 | |
Pmp improvement (%) | − | 12.74 | 24.47 | 26.35 | 25.73 | |
Pattern #8 | Pmp (W) | 3186.0 | 3004.4 | 3732.0 | 3712.4 | 3742.4 |
Ploss (%) | 15.71 | 20.52 | 1.27 | 1.79 | 0.99 | |
Pmp improvement (%) | - | −5.7 | 17.14 | 16.52 | 17.46 | |
Pattern #9 | Pmp (W) | 3999.7 | 4049.0 | 4202.0 | 4254.2 | 4216.0 |
Ploss (%) | 7.31 | 6.16 | 2.62 | 1.41 | 2.30 | |
Pmp improvement (%) | - | 1.23 | 5.06 | 6.36 | 5.41 |
Method | Averaged Pmp (W) | Standard Deviation | Averaged Ploss (%) | Standard Deviation | Averaged Pmp Improvement (%) | Standard Deviation |
---|---|---|---|---|---|---|
TCT | 3619.5 | 315.4 | 14.27 | 4.67 | - | - |
Odd-Even | 3785 | 474.1 | 10.48 | 8.08 | 4.61 | 10.02 |
Optimal SDKP | 4135.3 | 224.7 | 1.96 | 2.40 | 14.70 | 7.51 |
C-SDKP | 4105.1 | 259.8 | 2.70 | 3.12 | 13.81 | 7.43 |
MC-SDKP | 4162.3 | 204.4 | 1.31 | 1.02 | 15.44 | 6.77 |
TCT | Odd-Even | Optimal SDKP | C-SDKP | MC-SDKP | ||
---|---|---|---|---|---|---|
5 °C | Averaged Pmp (W) | 3887.8 | 4016.4 | 4435.3 | 4389.6 | 4468.0 |
Averaged Ploss (%) | 13.46 | 10.95 | 2.09 | 2.87 | 1.41 | |
Averaged Pmp improvement (%) | - | 3.02 | 13.39 | 12.42 | 14.15 | |
15 °C | Averaged Pmp (W) | 3698.3 | 3885.5 | 4283.3 | 4239.6 | 4314.1 |
Averaged Ploss (%) | 14.71 | 10.92 | 2.25 | 3.02 | 1.59 | |
Averaged Pmp improvement (%) | - | 4.62 | 14.97 | 14.04 | 15.73 | |
25 °C | Averaged Pmp (W) | 3619.5 | 3785.0 | 4135.3 | 4105.1 | 4162.3 |
Averaged Ploss (%) | 14.27 | 10.48 | 1.96 | 2.70 | 1.31 | |
Averaged Pmp improvement (%) | - | 4.61 | 14.70 | 13.81 | 15.44 | |
35 °C | Averaged Pmp (W) | 3441.9 | 3614.4 | 3967.9 | 3930.1 | 3994.3 |
Averaged Ploss (%) | 13.99 | 10.20 | 1.83 | 2.55 | 1.22 | |
Averaged Pmp improvement (%) | - | 4.58 | 14.47 | 13.60 | 15.16 | |
45 °C | Averaged Pmp (W) | 3308.5 | 3472.8 | 3804.2 | 3768.5 | 3829.2 |
Averaged Ploss (%) | 13.73 | 9.96 | 1.78 | 2.49 | 1.17 | |
Averaged Pmp improvement (%) | - | 4.54 | 14.19 | 13.33 | 14.87 |
Method | Averaged Pmp (W) | Standard Deviation | Averaged Ploss (%) | Standard Deviation | Averaged Pmp Improvement (%) | Standard Deviation |
---|---|---|---|---|---|---|
TCT | 3627.7 | 359.7 | 14.03 | 4.38 | - | - |
Odd-Even | 3781.2 | 494.0 | 10.5 | 7.76 | 4.27 | 9.51 |
Optimal SDKP | 4131.8 | 311.6 | 1.98 | 2.28 | 14.34 | 7.05 |
C-SDKP | 4101.5 | 333.7 | 2.73 | 2.97 | 13.44 | 6.80 |
MC-SDKP | 4158.9 | 300.2 | 1.34 | 0.99 | 15.07 | 6.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, C.-E.; Tai, C.-C.; Huang, Y.-P. Disperse Partial Shading Effect of Photovoltaic Array by Means of the Modified Complementary SuDoKu Puzzle Topology. Energies 2023, 16, 4910. https://doi.org/10.3390/en16134910
Ye C-E, Tai C-C, Huang Y-P. Disperse Partial Shading Effect of Photovoltaic Array by Means of the Modified Complementary SuDoKu Puzzle Topology. Energies. 2023; 16(13):4910. https://doi.org/10.3390/en16134910
Chicago/Turabian StyleYe, Cheng-En, Cheng-Chi Tai, and Yu-Pei Huang. 2023. "Disperse Partial Shading Effect of Photovoltaic Array by Means of the Modified Complementary SuDoKu Puzzle Topology" Energies 16, no. 13: 4910. https://doi.org/10.3390/en16134910
APA StyleYe, C. -E., Tai, C. -C., & Huang, Y. -P. (2023). Disperse Partial Shading Effect of Photovoltaic Array by Means of the Modified Complementary SuDoKu Puzzle Topology. Energies, 16(13), 4910. https://doi.org/10.3390/en16134910