Comprehensive Review of Dust Properties and Their Influence on Photovoltaic Systems: Electrical, Optical, Thermal Models and Experimentation Techniques
Abstract
:1. Introduction
2. Dust Properties on PV
2.1. Optical Properties
2.1.1. Dust Light Absorption
2.1.2. Dust Transmittance
2.1.3. Dust Reflection
2.1.4. Dust Emissivity
3. Thermal Properties
4. Physical Properties
4.1. Dust Size
4.2. Dust Shape
4.3. Dust Density
5. Chemical Characteristics
6. Experimental Studies
6.1. Dust Collection
6.1.1. Collecting Accumulated Dust on PV
6.1.2. Natural Deposition on a Glass Sheet
6.1.3. Collect Dust from Related Resources
6.1.4. Artificial Dust
6.2. Dust Deposition
6.2.1. Dust Deposition Chambers
6.2.2. Free Fall Dust Method
6.2.3. Process of Manual Sieving
6.2.4. Spraying Dusty Solution
6.3. Chemical Measurement
6.3.1. X-ray Fluorescence (XRF)
6.3.2. Scanning Electron Microscopy (SEM)
6.3.3. Energy Dispersive X-ray Spectroscopy (EDS)
6.3.4. X-ray Diffraction (XRD)
6.4. Physical Measurements
6.4.1. Shape and Weight
6.4.2. Size
6.5. Optical Measurements
6.5.1. Spectrophotometer
6.5.2. Pyranometer
7. Experimental Procedures
7.1. Dust Monitoring Systems
7.2. Temperature Measurements
7.2.1. Thermal Cameras
7.2.2. Thermocouples
7.3. Electrical Measurement
7.4. Meteorological Stations
7.4.1. Irradiance Measurements: Pyranometers and Photometers
7.4.2. Measuring Ambient Temperature
7.4.3. Measuring Ambient Humidity
7.4.4. Wind Speed
7.5. Accelerated Aging Tests
7.6. Solar Simulator
- Filter-based solar simulators employ a lamp (such as xenon or halogen lamp) with a filter in front of the bulb to generate comparable light [76]. A filter is selected with a spectral distribution near that of natural sunlight, as is practical. For example, a xenon lamp has been used as a solar simulator to mimic outdoor conditions [71]. To mimic solar radiation levels, Ref. [111] used a solar simulator consisting of 90 LED lights (12 V, 50 W) connected in series and controlled by three AC–AC converters, which allowed for varying irradiation levels up to a maximum of 1000 W/m2.
- According to international standard IEC 60904-9, a Class-AAA solar simulator is one that mimics the spectral distribution of sunshine to within 2% [68]. A solar simulator was utilized by Ref. [74] to mimic natural sunshine, and a pyranometer was employed for precise irradiance regulation. Solar simulators are normally used in combination with measuring instruments to track the power generated by solar cells to examine the efficiency and performance of solar cells under different weather situations. For example, Ref. [69] used a solar simulator to provide illumination to the solar cell and a sensor to measure the electrical output of the solar cell. Additionally, in Ref. [50], the I–V curve of the photovoltaic panels was measured with the help of a sun simulator (SPIRE 5600SLP) where at standard test conditions (STC), the sun simulator can sweep an I–V curve in less than one second.
7.7. Monitoring System
8. Modeling Dust Impacts
8.1. Electrical Modeling
8.2. Optical Modeling
8.3. Thermal Modeling
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almukhtar, H.M.; Al-Tameemi, Z.H.; Al-Anbary, K.M.; Abbas, M.K.; Hsu, H.Y.; Al-Mamoori, D.H. Feasibility study of achieving reliable electricity supply using hybrid power system for rural primary schools in Iraq: A case study with Umm Qasr primary school. Int. J. Electr. Comput. Eng. 2019, 9, 2822–2830. [Google Scholar] [CrossRef]
- Fahim, S.R.; Hasanien, H.M.; Turky, R.A.; Aleem, S.H.E.A.; Ćalasan, M. A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction. Energies 2022, 15, 8941. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Abdelgaied, M.; Sathyamurthy, R.; Kabeel, A. A comprehensive review of technologies used to improve the performance of PV systems in a view of cooling mediums, reflectors design, spectrum splitting, and economic analysis. Environ. Sci. Pollut. Res. Int. 2021, 28, 7955–7980. [Google Scholar] [CrossRef]
- Awadh, S.M. Impact of North African Sand and Dust Storms on the Middle East Using Iraq as an Example: Causes, Sources, and Mitigation. Atmosphere 2023, 14, 180. [Google Scholar] [CrossRef]
- Al-Dahidi, S.; Al-Nazer, S.; Ayadi, O.; Shawish, S.; Omran, N. Analysis of the effects of cell temperature on the predictability of the solar photovoltaic power production. Int. J. Energy Econ. Policy 2020, 10, 208–219. [Google Scholar] [CrossRef]
- Jha, A.; Tripathy, P.P. Heat transfer modeling and performance evaluation of photovoltaic system in different seasonal and climatic conditions. Renew. Energy 2019, 135, 856–865. [Google Scholar] [CrossRef]
- Goudelis, G.; Lazaridis, P.I.; Dhimish, M. A Review of Models for Photovoltaic Crack and Hotspot Prediction. Energies 2022, 15, 4303. [Google Scholar] [CrossRef]
- Kazem, H.A.; Chaichan, M.T.; Al-Waeli, A.H.A.; Sopian, K. Effect of dust and cleaning methods on mono and polycrystalline solar photovoltaic performance: An indoor experimental study. Sol. Energy 2022, 236, 626–643. [Google Scholar] [CrossRef]
- Quan, Z.; Lu, H.; Zhao, W.; Zheng, C.; Zhu, Z.; Qin, J.; Yue, M. A Review of Dust Deposition Mechanism and Self-Cleaning Methods for Solar Photovoltaic Modules. Coatings 2022, 13, 49. [Google Scholar] [CrossRef]
- Smestad, G.P.; Germer, T.A.; Alrashidi, H.; Fernández, E.F.; Dey, S.; Brahma, H.; Sarmah, N.; Ghosh, A.; Sellami, N.; Hassan, I.A.I.; et al. Modelling photovoltaic soiling losses through optical characterization. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Adıgüzel, E.; Subaşı, N.; Mumcu, T.V.; Ersoy, A. The effect of the marble dust to the efficiency of photovoltaic panels efficiency by SVM. Energy Rep. 2023, 9, 66–76. [Google Scholar] [CrossRef]
- Sahouane, N.; Ziane, A.; Dabou, R.; Neçaibia, A.; Rouabhia, A.; Lachtar, S.; Blal, M.; Slimani, A.; Boudjamaa, T. Technical and economic study of the sand and dust accumulation impact on the energy performance of photovoltaic system in Algerian Sahara. Renew. Energy 2023, 205, 142–155. [Google Scholar] [CrossRef]
- Said, S.A.M.; Walwil, H.M. Fundamental studies on dust fouling effects on PV module performance. Sol. Energy 2014, 107, 328–337. [Google Scholar] [CrossRef]
- Mustafa, R.J.; Gomaa, M.R.; Al-Dhaifallah, M.; Rezk, H. Environmental impacts on the performance of solar photovoltaic systems. Sustainability 2020, 12, 608. [Google Scholar] [CrossRef] [Green Version]
- Maghami, M.R.; Hizam, H.; Gomes, C.; Radzi, M.A.; Rezadad, M.I.; Hajighorbani, S. Power loss due to soiling on solar panel: A review. Renew. Sustain. Energy Rev. 2016, 59, 1307–1316. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; Zhang, H.; Xiao, B.; Zhou, Z.; Yan, X. In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules. Renew. Energy 2017, 101, 1273–1284. [Google Scholar] [CrossRef]
- Chanchangi, Y.N.; Ghosh, A.; Sundaram, S.; Mallick, T.K. Dust and PV Performance in Nigeria: A review. Renew. Sustain. Energy Rev. 2020, 121, 109704. [Google Scholar] [CrossRef]
- Said, S.A.M.; Hassan, G.; Walwil, H.M.; Al-Aqeeli, N. The effect of environmental factors and dust accumulation on photovoltaic modules and dust-accumulation mitigation strategies. Renew. Sustain. Energy Rev. 2018, 82, 743–760. [Google Scholar] [CrossRef]
- Vedulla, G.; Geetha, A.; Senthil, R. Review of Strategies to Mitigate Dust Deposition on Solar Photovoltaic Systems. Energies 2023, 16, 109. [Google Scholar] [CrossRef]
- Figgis, B.; Ennaoui, A.; Ahzi, S.; Rémond, Y. Review of PV soiling particle mechanics in desert environments. Renew. Sustain. Energy Rev. 2017, 76, 872–881. [Google Scholar] [CrossRef]
- Kazem, A.A.; Chaichan, M.T.; Kazem, H.A. Dust effect on photovoltaic utilization in Iraq: Review article. Renew. Sustain. Energy Rev. 2014, 37, 734–749. [Google Scholar] [CrossRef]
- Jamil, W.J.; Rahman, H.A.; Shaari, S.; Salam, Z. Performance degradation of photovoltaic power system: Review on mitigation methods. Renew. Sustain. Energy Rev. 2017, 67, 876–891. [Google Scholar] [CrossRef]
- Dust Deposition Effect on Solar Photovoltaic Modules Performance: A Review. J. Appl. Emerg. Sci. 2020, 10, 117–125. [CrossRef]
- Dantas, G.M.; Mendes, O.L.C.; Maia, S.M.; de Alexandria, A.R. Dust detection in solar panel using image processing techniques: A review. Res. Soc. Dev. 2020, 9, e321985107. [Google Scholar] [CrossRef]
- Abuzaid, H.; Awad, M.; Shamayleh, A. Impact of dust accumulation on photovoltaic panels: A review paper. Int. J. Sustain. Eng. 2022, 15, 266–287. [Google Scholar] [CrossRef]
- Chanchangi, Y.N.; Ghosh, A.; Sundaram, S.; Mallick, T.K. An analytical indoor experimental study on the effect of soiling on PV, focusing on dust properties and PV surface material. Sol. Energy 2020, 203, 46–68. [Google Scholar] [CrossRef]
- Shenouda, R.; Abd-Elhady, M.S.; Kandil, H.A. A review of dust accumulation on PV panels in the MENA and the Far East regions. J. Eng. Appl. Sci. 2022, 69, 1–29. [Google Scholar] [CrossRef]
- Wu, Y.; Du, J.; Liu, G.; Ma, D.; Jia, F.; Klemeš, J.J.; Wang, J. A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating. Renew. Energy 2022, 185, 1034–1061. [Google Scholar] [CrossRef]
- Hasan, K.; Yousuf, S.B.; Tushar, M.S.H.K.; Das, B.K.; Das, P.; Islam, M.S. Effects of different environmental and operational factors on the PV performance: A comprehensive review. Energy Sci. Eng. 2022, 10, 656–675. [Google Scholar] [CrossRef]
- Sayyah, A.; Horenstein, M.N.; Mazumder, M.K. Energy yield loss caused by dust deposition on photovoltaic panels. Sol. Energy 2014, 107, 576–604. [Google Scholar] [CrossRef]
- Alnasser, T.M.A.; Mahdy, A.M.J.; Abass, K.I.; Chaichan, M.T.; Kazem, H.A. Impact of dust ingredient on photovoltaic performance: An experimental study. Sol. Energy 2020, 195, 651–659. [Google Scholar] [CrossRef]
- Müller, T.; Schladitz, A.; Massling, A.; Kaaden, N.; Kandler, K.; Wiedensohler, A. Spectral absorption coefficients and imaginary parts of refractive indices of Saharan dust during SAMUM-1. Tellus B Chem. Phys. Meteorol. 2009, 61, 79–95. [Google Scholar] [CrossRef]
- Linke, C.; Möhler, O.; Veres, A.; Mohácsi, Á.; Bozóki, Z.; Szabó, G.; Schnaiter, M. Optical properties and mineralogical composition of different Saharan mineral dust samples: A laboratory study. Atmos. Meas. Tech. 2006, 6, 3315–3323. Available online: www.atmos-chem-phys.net/6/3315/2006/ (accessed on 9 January 2022).
- Fernández-Solas, Á.; Micheli, L.; Almonacid, F.; Fernández, E.F. Optical degradation impact on the spectral performance of photovoltaic technology. Renew. Sustain. Energy Rev. 2021, 141, 110782. [Google Scholar] [CrossRef]
- Lin, W.; Ma, Z.; Li, K.; Tyagi, V.; Pandey, A.K. A dynamic simulation platform for fault modelling and characterisation of building integrated photovoltaics. Renew. Energy 2021, 179, 963–981. [Google Scholar] [CrossRef]
- Boyle, L.; Flinchpaugh, H.; Hannigan, M.P. Natural soiling of photovoltaic cover plates and the impact on transmission. Renew. Energy 2015, 77, 166–173. [Google Scholar] [CrossRef]
- Wu, Z.; Yan, S.; Ming, T.; Zhao, X.; Zhang, N. Analysis and modeling of dust accumulation-composed spherical and cubic particles on PV module relative transmittance. Sustain. Energy Technol. Assess. 2021, 44, 101015. [Google Scholar] [CrossRef]
- Sarver, T.; Al-Qaraghuli, A.; Kazmerski, L.L. A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renew. Sustain. Energy Rev. 2013, 22, 698–733. [Google Scholar] [CrossRef]
- Hachicha, A.A.; Al-Sawafta, I.; Hamadou, D. Numerical and experimental investigations of dust effect on CSP performance under United Arab Emirates weather conditions. Renew. Energy 2019, 143, 263–276. [Google Scholar] [CrossRef]
- Liu, L.; Qian, H.; Sun, E.; Li, B.; Zhang, Z.; Miao, B.; Li, Z. Power reduction mechanism of dust-deposited photovoltaic modules: An experimental study. J. Clean. Prod. 2022, 378, 134518. [Google Scholar] [CrossRef]
- Algarni, S.; Nutter, D. Influence of dust accumulation on building roof thermal performance and radiant heat gain in hot-dry climates. Energy Build 2015, 104, 181–190. [Google Scholar] [CrossRef]
- Levins, W.P.; Hall, J.A. Measured Effects of Dust on The Performance of Radiant Barriers Installed on Top of Attic Insulation; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1990. [Google Scholar]
- Al-Ahmed, A.; Al-Sulaiman, F.A.; Khan, F. The Effects of Dust and Heat on Photovoltaic Modules: Impacts and Solutions; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Abderrezek, M.; Fathi, M. Experimental study of the dust effect on photovoltaic panels’ energy yield. Sol. Energy 2017, 142, 308–320. [Google Scholar] [CrossRef]
- Kadhum, A.K.; Rasheed, M.A. Some characteristics of sand and dust storm sources in Iraq. In Proceedings of the 2nd International Conference for Engineering, Technology and Sciences of Al-Kitab, ICETS 2018, Karkuk, Iraq, 4–6 December 2018; pp. 11–15. [Google Scholar] [CrossRef]
- Abdolzadeh, M.; Nikkhah, R. Experimental study of dust deposition settled over tilted PV modules fixed in different directions in the southeast of Iran. Environ. Sci. Pollut. Res. 2019, 26, 31478–31490. [Google Scholar] [CrossRef]
- Saidan, M.; Albaali, A.G.; Alasis, E.; Kaldellis, J.K. Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment. Renew. Energy 2016, 92, 499–505. [Google Scholar] [CrossRef]
- Pulipaka, S.; Mani, F.; Kumar, R. Modeling of soiled PV module with neural networks and regression using particle size composition. Sol. Energy 2016, 123, 116–126. [Google Scholar] [CrossRef]
- Tanesab, J.; Parlevliet, D.; Whale, J.; Urmee, T. Dust Effect and its Economic Analysis on PV Modules Deployed in a Temperate Climate Zone. Energy Procedia 2016, 100, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Tanesab, J.; Parlevliet, D.; Whale, J.; Urmee, T. The effect of dust with different morphologies on the performance degradation of photovoltaic modules. Sustain. Energy Technol. Assess. 2019, 31, 347–354. [Google Scholar] [CrossRef]
- Salamah, T.; Ramahi, A.; Alamara, K.; Juaidi, A.; Abdallah, R.; Abdelkareem, M.A.; Amer, E.-C.; Olabi, A.G. Effect of dust and methods of cleaning on the performance of solar PV module for different climate regions: Comprehensive review. Sci. Total Environ. 2022, 827, 154050. [Google Scholar] [CrossRef]
- Buni, M.J.B. A Review of Solar Energy Applications in Baghdad-Iraq. 2020. Available online: www.ijtrd.com (accessed on 1 March 2022).
- Shah, A.H.; Hassan, A.; Laghari, M.S.; Alraeesi, A. The influence of cleaning frequency of photovoltaic modules on power losses in the desert climate. Sustainability 2020, 12, 9750. [Google Scholar] [CrossRef]
- Jiang, C.-S.; Moutinho, H.R.; To, B.; Xiao, C.; Perkins, C.; Muller, M.; Al-Jassim, M.M.; Simpson, L.J. Strong Attraction and Adhesion Forces of Dust Particles by System Voltages of Photovoltaic Modules. IEEE J. Photovolt. 2019, 9, 1121–1127. [Google Scholar] [CrossRef]
- Zarei, T.; Abdolzadeh, M.; Yaghoubi, M. Comparing the impact of climate on dust accumulation and power generation of PV modules: A comprehensive review. Energy Sustain. Dev. 2022, 66, 238–270. [Google Scholar] [CrossRef]
- Tang, M.; Yan, Y.; Zhang, Y.; Wang, W.; An, B. Motion control of photovoltaic module dust cleaning robotic arm based on model predictive control. J. Ind. Manag. Optim. 2023, 11, 1. [Google Scholar] [CrossRef]
- Liu, X.; Yue, S.; Lu, L.; Li, J. Mechanism underlying the effect of physical properties on the dynamic behaviours and erosion characteristics of particles on solar photovoltaic panels. Chem. Pap. 2022, 76, 4443–4457. [Google Scholar] [CrossRef]
- Ilse, K.K.; Figgis, B.W.; Naumann, V.; Hagendorf, C.; Bagdahn, J. Fundamentals of soiling processes on photovoltaic modules. Renew. Sustain. Energy Rev. 2018, 98, 239–254. [Google Scholar] [CrossRef]
- Liu, X.; Yue, S.; Lu, L.; Li, J. Investigation of the Dust Scaling Behaviour on Solar Photovoltaic Panels. J. Clean. Prod. 2021, 295, 126391. [Google Scholar] [CrossRef]
- Chaichan, M.T.; Kazem, H.A.; Al-Waeli, A.H.A.; Sopian, K. The effect of dust components and contaminants on the performance of photovoltaic for the four regions in Iraq: A practical study. Renew. Energy Environ. Sustain. 2020, 5, 3. [Google Scholar] [CrossRef]
- Craciunescu, D.; Fara, L. Investigation of the Partial Shading Effect of Photovoltaic Panels and Optimization of Their Performance Based on High-Efficiency FLC Algorithm. Energies 2023, 16, 1169. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Tian, Z.; Dong, Y.; Zhou, Y.; Wang, X.; Wang, D. Experimental study on the effect of dust deposition on photovoltaic panels. Energy Procedia 2019, 158, 483–489. [Google Scholar] [CrossRef]
- Chaouki, F.; Anana, W.; Laarabi, B.; Sebbar, M.A.; El Mahi, M.; Barhdadi, A.; Fathi, M.; Mrabet, A.; Benyoussef, A.; Boardman, J. Physical and chemical analysis of outdoor dust deposited on photovoltaic panels installed in Rabat. In Proceedings of the 2016 International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 14–17 November 2016. [Google Scholar]
- Xiong, C.; Zhang, Y.; Yuan, Q. Characterization of Dust on the Surface of Photovoltaic Panels in Low Latitude and High Altitude Plateau Areas. J. Phys. Conf. Ser. 2022, 2356, 012007. [Google Scholar] [CrossRef]
- Zhao, W.; Lv, Y.; Zhou, Q.; Yan, W. Investigation on particle deposition criterion and dust accumulation impact on solar PV module performance. Energy 2021, 233, 121240. [Google Scholar] [CrossRef]
- Ali, H.M.; Zafar, M.A.; Bashir, M.A.; Nasir, M.A.; Ali, M.; Siddiqui, A.M. Effect of dust deposition on the performance of photovoltaic modules in city of taxila, Pakistan. Therm. Sci. 2017, 21, 915–923. [Google Scholar] [CrossRef]
- Olivares, D.; Ferrada, P.; Bijman, J.; Rodríguez, S.; Trigo-González, M.; Marzo, A.; Rabanal-Arabach, J.; Alonso-Montesinos, J.; Batlles, F.J.; Fuentealba, E. Determination of the Soiling Impact on Photovoltaic Modules at the Coastal Area of the Atacama Desert. Energies 2020, 13, 3819. [Google Scholar] [CrossRef]
- Hachicha, A.A.; Al-Sawafta, I.; Said, Z. Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions. Renew. Energy 2019, 141, 287–297. [Google Scholar] [CrossRef]
- Qasem, H.; Betts, T.R.; Müllejans, H.; Albusairi, H.; Gottschalg, R. Dust-induced shading on photovoltaic modules. Prog. Photovolt. Res. Appl. 2014, 22, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Mastekbayeva, G.A.; Kumar, S. Effect of Dust on the Transmittance of Low Density Polyethylene Glazing in A Tropical Climate. 2000. Available online: www.elsevier.com/locate/solener (accessed on 18 February 2022).
- Klugmann-Radziemska, E. Degradation of electrical performance of a crystalline photovoltaic module due to dust deposition in northern Poland. Renew. Energy 2015, 78, 418–426. [Google Scholar] [CrossRef]
- Yousif, J.H.; Kazem, H.A.; Al-Balushi, H.; Abuhmaidan, K.; Al-Badi, R. Artificial Neural Network Modelling and Experimental Evaluation of Dust and Thermal Energy Impact on Monocrystalline and Polycrystalline Photovoltaic Modules. Energies 2022, 15, 4138. [Google Scholar] [CrossRef]
- Kazem, H.A.; Chaichan, M.T. Experimental analysis of the effect of dust’s physical properties on photovoltaic modules in Northern Oman. Sol. Energy 2016, 139, 68–80. [Google Scholar] [CrossRef]
- Abderrezek, M.; Fathi, M. Effect of dust deposition on the performance of thin film solar cell. Elektron. Ir Elektrotechnika 2018, 24, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Simmons, J.J.H.; Kleban, P.; Ziff, R.M. To Cite This Article: A Molki. 2010. Available online: www.fuelcellstore.com (accessed on 22 October 2022).
- Jiang, H.; Lu, L.; Sun, K. Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmos Environ. 2011, 45, 4299–4304. [Google Scholar] [CrossRef]
- Beattie, N.S.; Moir, R.S.; Chacko, C.; Buffoni, G.; Roberts, S.H.; Pearsall, N.M. Understanding the effects of sand and dust accumulation on photovoltaic modules. Renew. Energy 2012, 48, 448–452. [Google Scholar] [CrossRef] [Green Version]
- Mazumder, M.; Mark, H.; Jeremy, S.; Peter, G.; Robert, S.; Brooks, H.; Omar, S.; Ishihara, H.; Alex, B.; Rajesh, S. Characterization of electrodynamic screen performance for dust removal from solar panels and solar hydrogen generators. IEEE Trans. Ind. Appl. 2013, 49, 1793–1800. [Google Scholar] [CrossRef]
- Mehmood, U.; Irshad, H.M.; Al-Sulaiman, F.A.; Bashir, S.; Yilbas, B.S. Effect of Accumulation of Environmental Dust and Subsequent Mud Formation on Textural, Chemical, and Optical Properties of Silicon Wafers for Photovoltaic Cells. IEEE J. Photovolt. 2018, 8, 1274–1280. [Google Scholar] [CrossRef]
- Xu, Z.; Qu, H.; Li, X.; Zhao, Y.; Li, Y.; Han, Z. Theoretical model of optical transmission and reflection characteristics of dusty PV modules. Sol. Energy Mater. Sol. Cells 2020, 213. [Google Scholar] [CrossRef]
- Fan, S.; Wang, Y.; Cao, S.; Sun, T.; Liu, P. A novel method for analyzing the effect of dust accumulation on energy efficiency loss in photovoltaic (PV) system. Energy 2021, 234, 121112. [Google Scholar] [CrossRef]
- Diop, D.; Drame, M.S.; Diallo, M.; Malec, D.; Mary, D.; Guillot, P. Modelling of Photovoltaic Modules Optical Losses Due to Saharan Dust Deposition in Dakar, Senegal, West Africa. Smart Grid Renew. Energy 2020, 11, 89–102. [Google Scholar] [CrossRef]
- Al Garni, H.Z. The Impact of Soiling on PV Module Performance in Saudi Arabia. Energies 2022, 15, 8033. [Google Scholar] [CrossRef]
- Mehmood, U.; Al-Sulaiman, F.A.; Yilbas, B.S. Characterization of dust collected from PV modules in the area of Dhahran, Kingdom of Saudi Arabia, and its impact on protective transparent covers for photovoltaic applications. Sol. Energy 2017, 141, 203–209. [Google Scholar] [CrossRef]
- Mulu, A.; Ayenew, T. Characterization of Abattoir Wastewater and Evaluation of the Effectiveness of the Wastewater Treatment Systems in Luna and Kera Abattoirs in Central Ethiopia. Int. J. Sci. Eng. Res. 2015, 6, 1026–1040. Available online: http://www.ijser.org (accessed on 1 December 2022).
- Alfaris, F.E. A Sensorless Intelligent System to Detect Dust on PV Panels for Optimized Cleaning Units. Energies 2023, 16, 1287. [Google Scholar] [CrossRef]
- Nayshevsky, I.; Xu, Q.F.; Barahman, G.; Lyons, A.M. Fluoropolymer coatings for solar cover glass: Anti-soiling mechanisms in the presence of dew. Sol. Energy Mater. Sol. Cells 2020, 206, 110281. [Google Scholar] [CrossRef]
- Elminir, H.K.; Ghitas, A.E.; Hamid, R.H.; El-Hussainy, F.; Beheary, M.M.; Abdel-Moneim, K.M. Effect of dust on the transparent cover of solar collectors. Energy Convers. Manag. 2006, 47, 3192–3203. [Google Scholar] [CrossRef]
- Li, X.; Qin, H.; Zhang, Y.; Yao, W.; Li, Y.; Liu, H. Dust effect on the optical-thermal properties of absorber plate in a transpired solar air collector. Energy Convers. Manag. 2018, 169, 13–21. [Google Scholar] [CrossRef]
- Pan, A.; Lu, H.; Zhang, L.Z. Experimental investigation of dust deposition reduction on solar cell covering glass by different self-cleaning coatings. Energy 2019, 181, 645–653. [Google Scholar] [CrossRef]
- Tanesab, J.; Parlevliet, D.; Whale, J.; Urmee, T.; Pryor, T. The contribution of dust to performance degradation of PV modules in a temperate climate zone. Sol. Energy 2015, 120, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Wang, Z.; Lai, Z.; Jiang, M. TVACPSO-assisted analysis of the effects of temperature and irradiance on the PV module performances. Energy 2021, 227, 120390. [Google Scholar] [CrossRef]
- Kumar, A.; Alaraj, M.; Rizwan, M.; Alsaidan, I.; Jamil, M. Development of Novel Model for the Assessment of Dust Accumulation on Solar PV Modules. IEEE J. Photovolt. 2022, 13, 150–157. [Google Scholar] [CrossRef]
- Behura, A.K.; Kumar, A.; Rajak, D.K.; Pruncu, C.I.; Lamberti, L. Towards better performances for a novel rooftop solar PV system. Sol. Energy 2021, 216, 518–529. [Google Scholar] [CrossRef]
- Panji Asmara, B. Overview of the Photovoltaic (PV) Potential Output Power Parameters of the Effect of Dust Contamination on the Surface, Tilt Angle and Use of Reflectors. In First Mandalika International Multi-Conference on Science and Engineering 2022, MIMSE 2022 (Mechanical and Electrical) (MIMSE-MEI-2022); Atlantis Press: Paris, France, 2022. [Google Scholar] [CrossRef]
- Zhang, C.; Shen, C.; Wei, S.; Wang, Y.; Lv, G.; Sun, C. A Review on Recent Development of Cooling Technologies for Photovoltaic Modules. J. Therm. Sci. 2020, 29, 1410–1430. [Google Scholar] [CrossRef]
- Segado, P.M.; Carretero, J.; Sidrach-de-Cardona, M. Models to predict the operating temperature of different photovoltaic modules in outdoor conditions. Prog. Photovolt. Res. Appl. 2015, 23, 1267–1282. [Google Scholar] [CrossRef]
- Khan, R.A.; Farooqui, S.A.; Khan, M.H.; Sarfraz, M.; Luqman, M.; Khan, M.F. Dust Deposition on PV Module and Its Characteristics. In Green Energy and Technology; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2022; pp. 59–95. [Google Scholar] [CrossRef]
- Sohani, A.; Sayyaadi, H. Providing an accurate method for obtaining the efficiency of a photovoltaic solar module. Renew. Energy 2020, 156, 395–406. [Google Scholar] [CrossRef]
- Chiang, W.H.; Wu, H.S.; Wu, J.S.; Lin, S.J. A Method for Estimating On-Field Photovoltaics System Efficiency Using Thermal Imaging and Weather Instrument Data and an Unmanned Aerial Vehicle. Energies 2022, 15, 5835. [Google Scholar] [CrossRef]
- Chaudhary, A.S.; Chaturvedi, D.K. Efficient Thermal Image Segmentation for Heat Visualization in Solar Panels and Batteries using Watershed Transform. Int. J. Image Graph. Signal Process. 2017, 9, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, A.S.; Chaturvedi, D.K. Analyzing Defects of Solar Panels under Natural Atmospheric Conditions with Thermal Image Processing. Int. J. Image Graph. Signal Process. 2018, 10, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Elnozahy, A.; Rahman, A.K.A.; Ali, A.H.H.; Abdel-Salam, M.; Ookawara, S. Performance of a PV module integrated with standalone building in hot arid areas as enhanced by surface cooling and cleaning. Energy Build. 2015, 88, 100–109. [Google Scholar] [CrossRef]
- Mehmood, M.U.; Ulasyar, A.; Ali, W.; Zeb, K.; Zad, H.S.; Uddin, W.; Kim, H.-J. A New Cloud-Based IoT Solution for Soiling Ratio Measurement of PV Systems Using Artificial Neural Network. Energies 2023, 16, 996. [Google Scholar] [CrossRef]
- Al-Ghezi, M.K.S.; Ahmed, R.T.; Chaichan, M.T. The Influence of Temperature and Irradiance on Performance of the Photovoltaic Panel in the Middle of Iraq. Int. J. Renew. Energy Dev. 2022, 11, 501–513. [Google Scholar] [CrossRef]
- Kunelbayev, M.; Amirgaliyev, Y.; Sundetov, T. Improving the Efficiency of Environmental Temperature Control in Homes and Buildings. Energies 2022, 15, 8839. [Google Scholar] [CrossRef]
- Al Siyabi, I.; al Mayasi, A.; al Shukaili, A.; Khanna, S. Effect of soiling on solar photovoltaic performance under desert climatic conditions. Energies 2021, 14, 659. [Google Scholar] [CrossRef]
- Ascencio-Vásquez, J.; Bevc, J.; Reba, K.; Brecl, K.; Jankovec, M.; Topič, M. Advanced PV performance modelling based on different levels of irradiance data accuracy. Energies 2020, 13, 2166. [Google Scholar] [CrossRef]
- Liu, W.; Liu, C.; Lin, Y.; Ma, L.; Xiong, F.; Li, J. Ultra-short term forecast of photovoltaic output power under fog and haze weather. Energies 2018, 11, 528. [Google Scholar] [CrossRef] [Green Version]
- Farah, A.; Khalfalla, E.; Mohamed, O. Effect of Dust on the Efficiency of Solar PV Panel in Khartoum. In Proceedings of the 6th International Conference on Energy Harvesting, Storage, and Transfer (EHST’22), Niagara Falls, ON, Canada, 8–10 June 2022. [Google Scholar] [CrossRef]
- Hussien, H.A.; Numan, A.H.; Abdulmunem, A.R. Improving of the photovoltaic / thermal system performance using water cooling technique. IOP Conf. Ser. Mater. Sci. Eng. 2015, 78, 1–9. [Google Scholar] [CrossRef]
- Al-Amri, F.; Maatallah, T.S.; Al-Amri, O.F.; Ali, S.; Ali, S.; Ateeq, I.S.; Zachariah, R.; Kayed, T.S. Innovative technique for achieving uniform temperatures across solar panels using heat pipes and liquid immersion cooling in the harsh climate in the Kingdom of Saudi Arabia. Alex. Eng. J. 2022, 61, 1413–1424. [Google Scholar] [CrossRef]
- Zjavka, L. Solar and Wind Quantity 24 h—Series Prediction Using PDE-Modular Models Gradually Developed according to Spatial Pattern Similarity. Energies 2023, 16, 1085. [Google Scholar] [CrossRef]
- Hammami, M.; Torretti, S.; Grimaccia, F.; Grandi, G. Thermal and performance analysis of a photovoltaic module with an integrated energy storage system. Appl. Sci. 2017, 7, 107. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Wang, X.; Cao, S.; Wang, Y.; Zhang, Y.; Liu, B. A novel model to determine the relationship between dust concentration and energy conversion efficiency of photovoltaic (PV) panels. Energy 2022, 252, 123927. [Google Scholar] [CrossRef]
- Liu, J.; Tao, W.; Liu, Z.; Liu, Y.; Wang, M.; Wu, Q. Study on snail trail formation in PV module through modeling and accelerated aging tests. Sol. Energy Mater. Sol. Cells 2017, 164, 80–86. [Google Scholar] [CrossRef]
- Lu, H.; Zheng, C. Comparison of Dust Deposition Reduction Performance by Super-Hydrophobic and Super-Hydrophilic Coatings for Solar PV Cells. Coatings 2022, 12, 502. [Google Scholar] [CrossRef]
- Touati, F.; Alam Chowdhury, N.; Benhmed, K.; San Pedro Gonzales, A.J.R.; Al-Hitmi, M.A.; Benammar, M.; Gastli, A.; Ben-Brahim, L. Long-term performance analysis and power prediction of PV technology in the State of Qatar. Renew. Energy 2017, 113, 952–965. [Google Scholar] [CrossRef]
- Al-Ghussain, L.; Subaih, M.A.; Annuk, A. Evaluation of the Accuracy of Different PV Estimation Models and the Effect of Dust Cleaning: Case Study a 103 MW PV Plant in Jordan. Sustainability 2022, 14, 982. [Google Scholar] [CrossRef]
- Ramli, M.A.M.; Prasetyono, E.; Wicaksana, R.W.; Windarko, N.A.; Sedraoui, K.; Al-Turki, Y.A. On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions. Renew. Energy 2016, 99, 836–844. [Google Scholar] [CrossRef]
- Kasim, N.K.; Al-Wattar, A.J.; Abbas, K.K. New Technique for Treatment of the dust accumulation from PV solar panels surface. Iraqi J. Physic 2010, 8, 54–59. [Google Scholar]
- Dida, M.; Boughali, S.; Bechki, D.; Bouguettaia, H. Output power loss of crystalline silicon photovoltaic modules due to dust accumulation in Saharan environment. Renew. Sustain. Energy Rev. 2020, 124, 109787. [Google Scholar] [CrossRef]
- Singla, P.; Duhan, M.; Saroha, S. A comprehensive review and analysis of solar forecasting techniques. Front. Energy 2022, 16, 187–223. [Google Scholar] [CrossRef]
- Salari, A.; Hakkaki-Fard, A. A numerical study of dust deposition effects on photovoltaic modules and photovoltaic-thermal systems. Renew. Energy 2019, 135, 437–449. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, W. CFD prediction of dust pollution and impact on an isolated ground-mounted solar photovoltaic system. Renew. Energy 2019, 131, 829–840. [Google Scholar] [CrossRef]
- Alnaser, N.W.; Dakhel, A.A.; Al Othman, M.J.; Batarseh, I.; Lee, J.K.; Najmaii, S.; Alnaser, W.E. Nanomaterials for photocatalysis View project Nonlinear Optics of Natural Dye Extracts View project Dust Accumulation Study on the Bapco 0.5 MW p PV Project at University of Bahrain. Int. J. Power Renew. Energy Syst. 2015, 2, 53. [Google Scholar] [CrossRef]
- Hammad, B.; Al-Abed, M.; Al-Ghandoor, A.; Al-Sardeah, A.; Al-Bashir, A. Modeling and analysis of dust and temperature effects on photovoltaic systems’ performance and optimal cleaning frequency: Jordan case study. Renew. Sustain. Energy Rev. 2018, 82, 2218–2234. [Google Scholar] [CrossRef]
- Al-hasan, A.Y.; Ghoneim, A.A. A new correlation between photovoltaic panel’s efficiency and amount of sand dust accumulated on their surface. Int. J. Sustain. Energy 2005, 24, 187–197. [Google Scholar] [CrossRef]
- Benghanem, M.; Almohammedi, A.; Khan, M.T.; Al-Masraqi, A. Effect of dust accumulation on the performance of photovoltaic panels in desert countries: A case study for Madinah, Saudi Arabia. Int. J. Power Electron. Drive Syst. 2018, 9, 1356. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Kapsali, M. Simulating the dust effect on the energy performance of photovoltaic generators based on experimental measurements. Energy 2011, 36, 5154–5161. [Google Scholar] [CrossRef]
- Baras, A.; Jones, R.K.; Alqahtani, A.; Alodan, M.; Abdullah, K. Measured soiling loss and its economic impact for PV plants in central Saudi Arabia. In Proceedings of the 2016 Saudi Arabia Smart Grid Conference, SASG 2016, Jeddah, Saudi Arabia, 13 February 2017. [Google Scholar] [CrossRef]
- Lu, H.; Lu, L.; Wang, Y. Numerical investigation of dust pollution on a solar photovoltaic (PV) system mounted on an isolated building. Appl. Energy 2016, 180, 27–36. [Google Scholar] [CrossRef]
- Kother, A.H.; Jawad, Z.W.A.L.-S.W.; Kother, S.; Taha, I.A.; Almukhtar, H.; Azizan, M.M.; Rahman, A.S.F.; Hasikin, K. Assessment of renewable energy sources to generate electricity for remote areas, South Iraq. Int. J. Power Electron. Drive Syst. 2022, 13, 2378–2385. [Google Scholar] [CrossRef]
- Hariri, N. A novel dust mitigation technology solution of a self-cleaning method for a PV module capable of harnessing reject heat using shape memory alloy. Case Stud. Therm. Eng. 2022, 32, 101894. [Google Scholar] [CrossRef]
- Piedra, P.G.; Llanza, L.R.; Moosmüller, H. Optical losses of photovoltaic modules due to mineral dust deposition: Experimental measurements and theoretical modeling. Sol. Energy 2018, 164, 160–173. [Google Scholar] [CrossRef]
- Hegazy, A.A. Effect of Dust Accumulation on Solar Transmittance through Glass Covers of Plate-Type Collectors. 2001. Available online: www.elsevier.nl/locate/renene (accessed on 10 January 2023).
- Gholami, A.; Khazaee, I.; Eslami, S.; Zandi, M.; Akrami, E. Experimental investigation of dust deposition effects on photo-voltaic output performance. Sol. Energy 2018, 159, 346–352. [Google Scholar] [CrossRef]
- Haddad, A.G.; Dhaouadi, R. Modeling and analysis of PV soiling and its effect on the transmittance of solar radiation. In Proceedings of the 2018 Advances in Science and Engineering Technology International Conferences, ASET 2018, Dubai, Sharjah, Abu Dhabi, United Arab Emirates, 11 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Lu, S.; Li, T.; Yan, X.; Yang, S. Evaluation of Photovoltaic Consumption Potential of Residential Temperature-Control Load Based on ANP-Fuzzy and Research on Optimal Incentive Strategy. Energies 2022, 15, 8640. [Google Scholar] [CrossRef]
- Coskun, C.; Toygar, U.; Sarpdag, O.; Oktay, Z. Sensitivity analysis of implicit correlations for photovoltaic module temperature: A review. J. Clean. Prod. 2017, 164, 1474–1485. [Google Scholar] [CrossRef]
- Naghavi, M.S.; Esmaeilzadeh, A.; Singh, B.; Ang, B.C.; Yoon, T.M.; Ong, K.S. Experimental and numerical assessments of underlying natural air movement on PV modules temperature. Sol. Energy 2021, 216, 610–622. [Google Scholar] [CrossRef]
- Matusz-Kalász, D.; Bodnár, I. Operation problems of solar panel caused by the surface contamination. Energies 2021, 14, 5461. [Google Scholar] [CrossRef]
- Fathi, M.; Abderrezek, M.; Friedrich, M. Reducing dust effects on photovoltaic panels by hydrophobic coating. Clean Technol Environ. Policy 2017, 19, 577–585. [Google Scholar] [CrossRef]
- Tomar, V.; Tiwari, G.N.; Bhatti, T.S.; Norton, B. Thermal modeling and experimental evaluation of five different photovoltaic modules integrated on prototype test cells with and without water flow. Energy Convers. Manag. 2018, 165, 219–235. [Google Scholar] [CrossRef]
- Santhakumari, M.; Sagar, N. A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques. Renew. Sustain. Energy Rev. 2019, 110, 83–100. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almukhtar, H.; Lie, T.T.; Al-Shohani, W.A.M.; Anderson, T.; Al-Tameemi, Z. Comprehensive Review of Dust Properties and Their Influence on Photovoltaic Systems: Electrical, Optical, Thermal Models and Experimentation Techniques. Energies 2023, 16, 3401. https://doi.org/10.3390/en16083401
Almukhtar H, Lie TT, Al-Shohani WAM, Anderson T, Al-Tameemi Z. Comprehensive Review of Dust Properties and Their Influence on Photovoltaic Systems: Electrical, Optical, Thermal Models and Experimentation Techniques. Energies. 2023; 16(8):3401. https://doi.org/10.3390/en16083401
Chicago/Turabian StyleAlmukhtar, Hussam, Tek Tjing Lie, Wisam A. M. Al-Shohani, Timothy Anderson, and Zaid Al-Tameemi. 2023. "Comprehensive Review of Dust Properties and Their Influence on Photovoltaic Systems: Electrical, Optical, Thermal Models and Experimentation Techniques" Energies 16, no. 8: 3401. https://doi.org/10.3390/en16083401
APA StyleAlmukhtar, H., Lie, T. T., Al-Shohani, W. A. M., Anderson, T., & Al-Tameemi, Z. (2023). Comprehensive Review of Dust Properties and Their Influence on Photovoltaic Systems: Electrical, Optical, Thermal Models and Experimentation Techniques. Energies, 16(8), 3401. https://doi.org/10.3390/en16083401