Experimental Study on the Effects of Applied Electric Field on Liquid Infiltration into Hydrophobic Zeolite
Abstract
:1. Introduction
2. Experimental Setup
2.1. Construction of the Experimental System
2.2. Sealing Method
2.3. Insulation Method
2.4. Experimental Sample Preparation
2.5. Test Conditions and Procedures
3. Physical Process and Analysis Method
4. Results and Discussion
4.1. Effect of Applied Electric Field on Water/Zeolite System
4.1.1. Influence on Infiltration Parameters
4.1.2. Effect on Accessible Pore Volume and Relative Outflow Rate
4.2. Effect of Applied Electric Field on Electrolyte Solution/Zeolite System
4.2.1. Influence on Infiltration Parameters
4.2.2. Effect on the Accessible Pore Volume and Relative Outflow Rate
4.3. Microscopic Model of Liquid Phase Distribution under Electric Field
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borman, V.; Belogorlov, A.; Tronin, I. Fast spontaneous transport of a non-wetting fluid in a disordered nanoporous medium. Transp. Porous. Media 2021, 139, 21–44. [Google Scholar] [CrossRef]
- Giacomello, A.; Casciola, C.; Grosu, Y.; Meloni, S. Liquid intrusion in and extru-sion from non-wettable nanopores for technological applications. Eur. Phys. J. B 2021, 94, 163. [Google Scholar] [CrossRef]
- Ashok, D.; Bahubalendruni, M.; Mertens, A.J. A novel nature inspired 3D open lattice structure for specific energy absorption. Proc. Inst. Mech. Eng. E. J. Process. Mech. Eng. 2022, 263, 2434–2440. [Google Scholar] [CrossRef]
- Lynch, C.; Rao, S.; Sansom, M. Water in nanopores and biological channels: A amolecular simulation perspective. Chem. Rev. 2020, 120, 10298–10335. [Google Scholar] [CrossRef] [PubMed]
- Faucher, S.; Aluru, N.; Bazant, M.; Blankschtein, D.; Brozena, A.; Cumings, J.; Pedro, D.; Elimelech, M.; Epsztein, R.; Fourkas, J.; et al. Critical knowledge gaps in mass transport through single-digit nanopores: A review and perspective. J. Phys. Chem. C 2019, 123, 21309–21326. [Google Scholar] [CrossRef]
- Gusev, V.Y. On thermodynamics of permanent hysteresis in capillary lyophobic systems and interface characterization. Langmuir 1994, 10, 235–240. [Google Scholar] [CrossRef]
- Eroshenko, V.A.; Fadeev, A.Y. Intrusion and extrusion of water in hydrophobized porous silica. Colloid J. 1995, 57, 446–449. [Google Scholar]
- Deng, X.; Wang, X.; Liu, X.; Zhao, W.; Li, X.; Liu, Y.; Chen, X. Correlation between the infiltration behaviors and nanoporous structures of silica gel/liquid energy absorption system. J. Appl. Phys. 2019, 125, 065106. [Google Scholar] [CrossRef]
- Chen, H.; Xu, Y.; Tong, Y.; Hu, J. The investigation of nanofluidic energy absorption system based on high porosity aerogel nano-materials. Microporous Mesoporous Mater. 2019, 277, 217–228. [Google Scholar] [CrossRef]
- Humplik, T.; Raj, R.; Maroo, S.; Laoui, T.; Wang, E. Effect of hydrophilic defects on water transport in MFI zeolites. Langmuir 2014, 30, 6446–6453. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, J.; Luo, R.; Min, S.; Dou, Y. Application characteristics of zeolite-based stuffing for the nanofluidic packer rubber. Energies 2022, 15, 7962. [Google Scholar] [CrossRef]
- Sun, Y.; Rogge, S.; Lamaire, A.; Vandenbrande, S.; Wieme, J.; Siviour, C.; Van, S.; Tan, J. High-rate nanofluidic energy absorption in porous zeolitic frameworks. Nat. Mater. 2021, 20, 1015–1023. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, G.; Nouali, H.; Marichal, C.; Chaplais, G.; Patarin, J. Energetic performances of “ZIF-71–aqueous solution” systems: A perfect shock-absorber with water. J. Phys. Chem. C 2014, 118, 21316–21322. [Google Scholar] [CrossRef]
- Han, A.; Lu, W.; Kim, T.; Chen, X.; Qiao, Y. Influence of anions on liquid infiltration and defiltration in a zeolite Y. Phys. Rev. E 2008, 78, 031408. [Google Scholar] [CrossRef] [Green Version]
- Martin, T.; Lefevre, B.; Brunel, D.; Galarneau, A.; Di, R.; Fajula, F.; Gobin, P.; Quinson, J.; Vigier, G. Dissipative water intrusion in hydrophobic MCM-41 type materials. Chem. Commun. 2002, 24–25. [Google Scholar] [CrossRef] [PubMed]
- Han, A.; Lu, W.; Punyamutula, V.; Kim, T.; Qiao, Y. Temperature variation in liquid infiltration and defiltration in a MCM41. J. Appl. Phys. 2009, 105, 024309. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, N.; Luo, R.; Zhang, Y.; Zhou, Q.; Chen, X. Experimental study on thermal effect on infiltration mechanisms of glycerol into ZSM-5 zeolite under cyclic loadings. J. Phys. D Appl. Phys. 2015, 49, 025303. [Google Scholar] [CrossRef]
- Kong, X.; Qiao, Y. Thermal effects on pressure-induced infltration of a nanoporous system. Philos. Mag. Lett. 2005, 85, 331–337. [Google Scholar] [CrossRef]
- Salman, S.; Zhao, Y.; Zhang, X.; Su, J. Effect of temperature on the coupling transport of water and ions through a carbon nanotube in an electric field. J. Chem. Phys. 2020, 153, 184503. [Google Scholar] [CrossRef]
- Xu, B.; Wang, B.; Park, T.; Qiao, Y.; Zhou, Q.; Chen, X. Temperature dependence of fluid transport in nanopores. J. Chem. Phys. 2012, 136, 184701. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Cao, G. Reusable Energy Absorption Performance Based on Nanofluidic Systems. J. Phys. Chem. C 2016, 120, 5213–5220. [Google Scholar] [CrossRef]
- Cao, G. Working Mechanism of Nanoporous Energy Absorption System under High Speed Loading. J. Phys. Chem. C 2012, 116, 8278–8286. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, Z.; Li, S.; Yu, F.; Tian, C.; Yao, L. A Simulation Methodology for Analyzing the Energy-Absorption Capabilities of Nanofluidic-System-Filled Tube under Split Hopkinson Pressure Bar Experiment. Materials 2022, 15, 7030. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Barbat, S.; Baccouche, R.; Belwafa, J.; Lu, W. Enhanced energy mitigation of thin-walled tube filled with liquid nanofoam under dynamic impact. Compos. B Eng. 2020, 193, 108047. [Google Scholar] [CrossRef]
- Zhang, X.; Su, J. Effect of nanotube diameter on the transport of water molecules in electric fields. J. Mol. Liq. 2021, 328, 115382. [Google Scholar] [CrossRef]
- Debora, N.; Bruno, H.; Mateus, H.; Marcia, C.; Matheus, J.; Ronaldo, J.; Alan, B. Water diffusion in carbon nanotubes under directional electric fields: Coupling between mobility and hydrogen bonding. Chem. Phys. 2020, 537, 110849. [Google Scholar]
- Werkhoven, B.; Van, R. Coupled water, charge and salt transport in heterogeneous nano-fluidic systems. Soft. Matter. 2020, 16, 1527–1537. [Google Scholar] [CrossRef] [Green Version]
- Ritos, K.; Borg, M.; Mottram, N.; Reese, J. Electric fields can control the transport of water in carbon nanotubes. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150025. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Guo, H. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field. ACS Nano 2011, 5, 351–359. [Google Scholar] [CrossRef]
- Panahi, A.; Sadeghi, P.; Akhlaghi, A.; Sabour, M. Investigating the effect of single-walled carbon nanotubes chirality on the electrokinetics transport of water and ions: A molecular dynamics study. Diam. Relat. Mater. 2020, 110, 108105. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, S. Molecular dynamics simulation of water conduction within carbon nanotube. Chin. Sci. Bull. 2013, 58, 59–62. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhao, Y.; Huang, J. Giant pumping of single-file water molecules in a carbon nanotube. J. Phys. Chem. B 2011, 115, 13275–13279. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Qiao, Y. An electrically controllable nanoporous smart system. J. Appl. Phys. 2006, 99, 064313. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Zhan, X.; Huang, Y. Determination of KCl solubility with hygrometer. J. Pharm. Sci. 2017, 32, 195–196. (In Chinese) [Google Scholar]
- Zhang, Y.; Luo, R.; Zhou, Q.; Chen, X.; Dou, Y. Effect of Degassing on the Stability and Reversibility of Glycerol/ZSM-5 Zeolite System. Appl. Sci. 2018, 8, 1065. [Google Scholar] [CrossRef] [Green Version]
- Rowlinson, J.; Widom, B. Molecular Theory of Capillarity; Dover Publications: New York, NY, USA, 2002. [Google Scholar]
- Mattia, D.; Gogotsi, Y. Review: Static and dynamic behavior of liquids inside carbon nanotubes. Microfluid. Nanofluidics 2008, 5, 289–305. [Google Scholar] [CrossRef]
- Lee, J.; Moon, H.; Fowler, J.; Schoellhammer, T.; Kim, C. Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sens. Actuators A Phys. 2002, 95, 259–268. [Google Scholar] [CrossRef]
- Glycerine Producers’ Association (Ed.) Physical Properties of Glycerine and Its Solutions; Glycerine Producers’ Association: New York, NY, USA, 1963. [Google Scholar]
- Winarto Takaiwa, D.; Yamamoto, E.; Yasuoka, K. Structures of water molecules in carbon nanotubes under electric fields. J. Chem. Phys. 2015, 142, 124701. [Google Scholar] [CrossRef]
- He, Y.; Sun, G.; Koga, K.; Xu, L. Electrostatic field-exposed water in nanotube at constant axial pressure. Sci. Rep. 2014, 4, 6596. [Google Scholar] [CrossRef] [Green Version]
- Rai, D.; Kulkarni, A.D.; Gejji, S.P.; Bartolotti, L.; Pathak, R. Exploring electric field induced structural evolution of water clusters, (H2O)(n) n=9-20: Density functional approach. J. Chem. Phys. 2013, 138, 9. [Google Scholar] [CrossRef]
- Li, J.; Qiu, J.; Sun, Y.; Long, Y. Studies on natural STI zeolite: Modification, structure, adsorption and catalysis. Microporous Mesoporous Mater. 2000, 37, 365–378. [Google Scholar] [CrossRef]
- Dong, F. Natural zeolite and its application prospects in the field of environmental protection. China Non-Met. Min. Ind. 2002, 4, 30–32. (In Chinese) [Google Scholar]
- Han, A.; Qiao, Y. Thermal effects on infiltration of a solubility-sensitive volume-memory liquid. Philos. Mag. Lett. 2007, 87, 25–31. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, J.; Luo, R.; Dou, Y. Experimental Study on the Effects of Applied Electric Field on Liquid Infiltration into Hydrophobic Zeolite. Energies 2023, 16, 5065. https://doi.org/10.3390/en16135065
Zhang Y, Zhang J, Luo R, Dou Y. Experimental Study on the Effects of Applied Electric Field on Liquid Infiltration into Hydrophobic Zeolite. Energies. 2023; 16(13):5065. https://doi.org/10.3390/en16135065
Chicago/Turabian StyleZhang, Yafei, Jiahua Zhang, Rui Luo, and Yihua Dou. 2023. "Experimental Study on the Effects of Applied Electric Field on Liquid Infiltration into Hydrophobic Zeolite" Energies 16, no. 13: 5065. https://doi.org/10.3390/en16135065
APA StyleZhang, Y., Zhang, J., Luo, R., & Dou, Y. (2023). Experimental Study on the Effects of Applied Electric Field on Liquid Infiltration into Hydrophobic Zeolite. Energies, 16(13), 5065. https://doi.org/10.3390/en16135065