Advances in CO2-Free Energy Technologies
Author Contributions
Conflicts of Interest
References
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef] [PubMed]
- Muradov, N.Z.; Veziroǧlu, T.N. “Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies. Int. J. Hydrogen Energy 2008, 33, 6804–6839. [Google Scholar] [CrossRef]
- Ang, T.Z.; Salem, M.; Kamarol, M.; Das, H.S.; Nazari, M.A.; Prabaharan, N. A comprehensive study of renewable energy sources: Classifications, challenges and suggestions. Energy Strateg. Rev. 2022, 43, 100939. [Google Scholar] [CrossRef]
- Morlanés, N.; Almaksoud, W.; Rai, R.K.; Ould-Chikh, S.; Ali, M.M.; Vidjayacoumar, B.; Al-Sabban, B.E.; Albahily, K.; Basset, J.M. Development of catalysts for ammonia synthesis based on metal phthalocyanine materials. Catal. Sci. Technol. 2020, 10, 844–852. [Google Scholar] [CrossRef] [Green Version]
- Humphreys, J.; Lan, R.; Tao, S. Development and Recent Progress on Ammonia Synthesis Catalysts for Haber–Bosch Process. Adv. Energy Sustain. Res. 2021, 2, 2000043. [Google Scholar] [CrossRef]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Hefny, M.; Al-Hinai, A.; Al-Muhtaseb, A.H.; Rooney, D.W. Hydrogen Production, Storage, Utilisation and Environmental Impacts: A Review. Environ. Chem. Lett. 2022, 20, 153–188. [Google Scholar] [CrossRef]
- Megia, P.J.; Vizcaino, A.J.; Calles, J.A.; Carrero, A. Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review. Energy Fuels 2021, 35, 16403–16415. [Google Scholar] [CrossRef]
- Agyekum, E.B.; Nutakor, C.; Agwa, A.M.; Kamel, S. A Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-Up and Its Role in Future Energy Generation. Membranes 2022, 12, 173. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.W.; Holbrook, J.H. Use of NH3 fuel to achieve deep greenhouse gas reductions from US transportation. Energy Rep. 2015, 1, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Ojha, D.K.; Kale, M.J.; McCormick, A.V.; Reese, M.; Malmali, M.; Dauenhauer, P.; Cussler, E.L. Integrated Ammonia Synthesis and Separation. ACS Sustain. Chem. Eng. 2019, 7, 18785–18792. [Google Scholar] [CrossRef]
- Javaid, R.; Nanba, T. MgFe2O4-Supported Ru Catalyst for Ammonia Synthesis: Promotive Effect of Chlorine. ChemistrySelect 2020, 5, 4312–4315. [Google Scholar] [CrossRef]
- Yuan, X.-Z.; Song, C.; Wang, H.; Zhang, J. PEM Fuel Cells and their Related Electrochemical Fundamentals. In Electrochemical Impedance Spectroscopy in PEM Fuel Cells; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–37. ISBN 9781848828452. [Google Scholar]
- Winter, M.; Brodd, R.J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sazali, N.; Salleh, W.N.W.; Jamaludin, A.S.; Razali, M.N.M. New perspectives on fuel cell technology. Membranes 2020, 10, 99. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Mubarak, M.; Lee, H.-J. Hybrid Nanostructured Materials as Electrodes in Energy Storage Devices. Inorganics 2023, 11, 183. [Google Scholar] [CrossRef]
- Benoy, S.M.; Pandey, M.; Bhattacharjya, D.; Saikia, B.K. Recent trends in supercapacitor-battery hybrid energy storage devices based on carbon materials. J. Energy Storage 2022, 52, 104938. [Google Scholar] [CrossRef]
- Abbass, M.J.; Lis, R.; Saleem, F. The Maximum Power Point Tracking (MPPT) of a Partially Shaded PV Array for Optimization Using the Antlion Algorithm. Energies 2023, 16, 2380. [Google Scholar] [CrossRef]
- Manakhov, A.; Orlov, M.; Babiker, M.; Al-qasim, A.S. A Perspective on Decarbonizing Mobility: An All-Electrification vs. an All-Hydrogenization Venue. Energies 2022, 15, 5440. [Google Scholar] [CrossRef]
- Qazi, U.Y.; Javaid, R. Graphene Utilization for Efficient Energy Storage and Potential Applications: Challenges and Future Implementations. Energies 2023, 16, 2927. [Google Scholar] [CrossRef]
- Qazi, U.Y. Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities. Energies 2022, 15, 4741. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javaid, R.; Qazi, U.Y. Advances in CO2-Free Energy Technologies. Energies 2023, 16, 5079. https://doi.org/10.3390/en16135079
Javaid R, Qazi UY. Advances in CO2-Free Energy Technologies. Energies. 2023; 16(13):5079. https://doi.org/10.3390/en16135079
Chicago/Turabian StyleJavaid, Rahat, and Umair Yaqub Qazi. 2023. "Advances in CO2-Free Energy Technologies" Energies 16, no. 13: 5079. https://doi.org/10.3390/en16135079
APA StyleJavaid, R., & Qazi, U. Y. (2023). Advances in CO2-Free Energy Technologies. Energies, 16(13), 5079. https://doi.org/10.3390/en16135079