Performance Improvement of a Solar-Assisted Absorption Cooling System Integrated with Latent Heat Thermal Energy Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the System and System Model
2.2. System Model Components
2.2.1. Vacuum Solar Collector
2.2.2. PCM Tank
2.2.3. Circulation Pump
2.2.4. Auxiliary Fluid Heater
2.2.5. Absorption Chiller
2.2.6. Base Load
- Solar heat gain from windows (Type 687): total area 12 m2, solar heat gain coefficient 0.6, vertical surface facing south;
- Occupancy (Type 574): activity level—seated, light work, typing. Schedule defined by (Type 14a): 4 people from 8:00 to 12:00, 2 people from 12:00 to 13:00 and 4 people from 13:00 to 17:00;
- Ventilation air cooling coil (Type 752) with dry air flowrate 300 kg/h and temperature setpoint 18 °C;
- Envelope: window loss coefficient 1.1 W/m2.
2.2.7. Climate Data, Simulated Period and Variables
- P—number of PCM modules (0/52/80/114/154);
- L—fraction of base load (0.5/1/1.5/2);
- S—area (m2) of solar collectors (12/20/28/36/44);
- T—auxiliary fluid heater temperature setpoint (°C).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eurostat. Additional Data—Energy—Eurostat. Available online: https://ec.europa.eu/eurostat/web/energy/database/additional-data (accessed on 31 May 2023).
- Borodinecs, A.; Gaujena, B. The implementation of building envelopes with controlled thermal resistance. In Proceedings of the 10th International Conference on Healthy Buildings 2012, Brisbane, Australia, 8–12 July 2012; International Society of Indoor Air Quality and Climate (ISIAQ): Brisbane, Australia, 2012; pp. 1715–1722. Available online: https://alephfiles.rtu.lv/TUA01/000039268_e.pdf (accessed on 31 May 2023).
- Eurostat. Heating of Buildings Decreasing, Cooling Increasing—Products Eurostat News—Eurostat. Available online: https://ec.europa.eu/eurostat/en/web/products-eurostat-news/-/ddn-20220531-1 (accessed on 31 May 2023).
- Energy Monitor. Cooling Europe: Urgent but Not Yet Low-Carbon. Available online: https://www.energymonitor.ai/sectors/heating-cooling/europe-what-about-cooling/ (accessed on 31 May 2023).
- IEA. The Future of Cooling—Analysis—IEA. Available online: https://www.iea.org/reports/the-future-of-cooling (accessed on 31 May 2023).
- Deshko, V.; Buyak, N.; Bilous, I.; Voloshchuk, V. Reference state and exergy based dynamics analysis of energy performance of the ‘heat source—Human—Building envelope’ system. Energy 2020, 200, 117534. [Google Scholar] [CrossRef]
- Staveckis, A.; Borodinecs, A. Impact of impinging jet ventilation on thermal comfort and indoor air quality in office buildings. Energy Build. 2021, 235, 110738. [Google Scholar] [CrossRef]
- European Environment Agency’s Home Page. Available online: https://www.eea.europa.eu/en (accessed on 31 May 2023).
- Zheng, J.; Castro, J.; Oliva, A.; Oliet, C. Energy and exergy analysis of an absorption system with working pairs LiBr-H2O and Carrol-H2O at applications of cooling and heating. Int. J. Refrig. 2021, 132, 156–171. [Google Scholar] [CrossRef]
- Blanco-Marigorta, A.M.; Marcos, J.D. Key issues on the exergetic analysis of H2O/LiBr absorption cooling systems. Case Stud. Therm. Eng. 2021, 28, 101568. [Google Scholar] [CrossRef]
- Krizmane, M.; Slihte, S.; Borodinecs, A. Key Criteria Across Existing Sustainable Building Rating Tools. Energy Procedia 2016, 96, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Kwasi-Effah, C.C.; Ighodaro, O.; Egware, H.O.; Obanor, A.I. A novel empirical model for predicting the heat accumulation of a thermal energy storage medium for solar thermal applications. J. Energy Storage 2022, 56, 105969. [Google Scholar] [CrossRef]
- Tola, V.; Arena, S.; Cascetta, M.; Cau, G. Numerical investigation on a packed-bed LHTES system integrated into a micro electrical and thermal grid. Energies 2020, 13, 2018. [Google Scholar] [CrossRef] [Green Version]
- Rusovs, D.; Jaundalders, S.; Stanka, P. Pumped thermal electricity storage integration in district heating systems. In Proceedings of the 2020 IEEE 61st Annual International Scientific Conference on Power and Electrical Engineering of Riga Technical University, RTUCON 2020—Proceedings, Riga, Latvia, 5–7 November 2020. [Google Scholar] [CrossRef]
- Raut, D.; Kalamkar, V.R. A review on latent heat energy storage for solar thermal water-lithium bromide vapor absorption refrigeration system. J. Energy Storage 2022, 55, 105828. [Google Scholar] [CrossRef]
- Shi, J.; Qin, M.; Aftab, W.; Zou, R. Flexible phase change materials for thermal energy storage. Energy Storage Mater. 2021, 41, 321–342. [Google Scholar] [CrossRef]
- Szajding, A.; Kuta, M.; Cebo-Rudnicka, A.; Rywotycki, M. Analysis of work of a thermal energy storage with a phase change material (PCM) charged with electric heaters from a photovoltaic installation. Int. Commun. Heat Mass Transf. 2023, 140, 106547. [Google Scholar] [CrossRef]
- Niu, F.; Ni, L.; Yao, Y.; Yu, Y.; Li, H. Performance and thermal charging/discharging features of a phase change material assisted heat pump system in heating mode. Appl. Therm. Eng. 2013, 58, 536–541. [Google Scholar] [CrossRef]
- Anita, A.N.; Ramachandran, S. Design analysis of heat exchanger for the solar water heating systems using phase change materials. Mater. Today Proc. 2021, 47, 4533–4537. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Peng, Z.; Zhang, X.; Zhai, J.; Luo, Y.; Liu, B.; Sun, X.; Al-Saadi, S.N. Thermal performance of a plate-type latent heat thermal energy storage heat exchanger—An experimental investigation and simulation study. J. Energy Storage 2023, 65, 107295. [Google Scholar] [CrossRef]
- Panchal, J.M.; Modi, K.V.; Patel, V.J. Development in multiple-phase change materials cascaded low-grade thermal energy storage applications: A review. Clean Eng. Technol. 2022, 8, 100465. [Google Scholar] [CrossRef]
- Çam, N.Y.; Alptekin, E.; Bilir, L.; Ezan, M.A. Thermal behavior of a solar-assisted latent heat thermal energy storage unit on the heating season under variable weather conditions. J. Energy Storage 2022, 52, 104934. [Google Scholar] [CrossRef]
- Qv, D.; Ni, L.; Yao, Y.; Hu, W. Reliability verification of a solar–air source heat pump system with PCM energy storage in operating strategy transition. Renew. Energy 2015, 84, 46–55. [Google Scholar] [CrossRef]
- Snegirjovs, A.; Shipkovs, P.; Lebedeva, K.; Kashkarova, G.; Migla, L.; Gantenbein, P.; Omlin, L. Performance Evaluation of Photovoltaic Solar Air Conditioning. Latv. J. Phys. Tech. Sci. 2016, 53, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Lebedeva, K.; Migla, L. Latent thermal energy storage for solar driven cooling systems. Eng. Rural Dev. 2020, 19, 1134–1139. [Google Scholar] [CrossRef]
- Migla, L.; Lebedeva, K. A Review for Phase Change Materials in Solar Cooling Systems. In Proceedings of the 2021 10th International Conference on Power Science and Engineering (ICPSE), Istanbul, Turkey, 21–23 October 2021; pp. 110–116. [Google Scholar] [CrossRef]
- Migla, L.; Lebedeva, K. Optimization model of solar cooling system with latent heat storage. Acta Polytech. CTU Proc. 2022, 38, 295–301. [Google Scholar] [CrossRef]
- Klein, S.A. TRNSYS 18: A Transient System Simulation Program. Solar Energy Laboratory; The University of Wisconsin: Madison, WI, USA, 2017; Volume 3. [Google Scholar]
- Moser, C.; Heinz, A.; Schranzhofer, H. TRNSYS Type 840: Simulation Model for PCM/Water Storage Tanks (Version 3.0) (V3.0); Graz University of Technology: Graz, Austria, 2022. [Google Scholar]
- Eicker, U.; Pietruschka, D. Design and performance of solar powered absorption cooling systems in office buildings. Energy Build. 2009, 41, 81–91. [Google Scholar] [CrossRef]
- Ketfi, O.; Merzouk, M.; Merzouk, N.K.; El Metenani, S. Performance of a Single Effect Solar Absorption Cooling System (Libr-H2O). Energy Procedia 2015, 74, 130–138. [Google Scholar] [CrossRef] [Green Version]
- McQuiston, F.C.; Parker, J.D.; Spitler, J.D. Heating, Ventilating, and Air Conditioning Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 91. [Google Scholar]
- Ying, Q.; Wang, H.; Lichtfouse, E. Numerical simulation on thermal behavior of partially filled metal foam composite phase change materials. Appl. Therm. Eng. 2023, 229, 120573. [Google Scholar] [CrossRef]
- Alhusseny, A.; Al-Zurfi, N.; Nasser, A.; Al-Fatlawi, A.; Aljanabi, M. Impact of using a PCM-metal foam composite on charging/discharging process of bundled-tube LHTES units. Int. J. Heat Mass Transf. 2020, 150, 119320. [Google Scholar] [CrossRef]
Types | Description | Parameters |
---|---|---|
Type 1288 | Vacuum solar collector | Area (total) = 28 m2 Efficiency = 0.568 α1 = 1.04 W/m2K α2 = 0.0024 W/m2K2 Heat capacity = 6.5 kJ/m2K |
Type 840 | PCM tank | Volume 1000 L Height 2 m Insulation 100 mm mineral wool Water specific heat capacity 4.2 kJ/kgK Density 970 kg/m3 Effective vertical thermal conductivity 2 W/mK |
Type 741-1 Type 741-2 | Circulation pump | Efficiency 0.6 Motor efficiency 0.9 Pressure drop 50 kPa |
Type 138 | Auxiliary Fluid Heater | Efficiency 100% (electrical heater) |
Type 107 | Absorption Chiller | COP 0.5 to 0.8 |
Type 687 | Windows | Solar heat gain from windows: total area 12 m2, solar heat gain coefficient 0.6, vertical surface facing south |
Type 574 | Occupancy | Activity level—seated, light work, typing |
Type 752 | Air cooling coil | With dry air flowrate 300 kg/h and temperature setpoint 18 °C |
Period | Produced Solar Energy, kWh | Cooling Load, kWh | Auxiliary Fluid Heater el. Consumption, kWh | Storage Tank Heat Loss, kWh | ||||
---|---|---|---|---|---|---|---|---|
P = 0 | P = 154 | P = 0 | P = 154 | P = 0 | P = 154 | P = 0 | P = 154 | |
19.07 | 65.92 | 65.95 | 30.27 | 30.27 | 0.00 | 0.00 | −5.86 | −5.80 |
20.07 | 65.12 | 65.13 | 27.25 | 27.25 | 0.00 | 0.00 | −5.89 | −5.86 |
21.07 | 23.98 | 24.35 | 28.83 | 28.83 | 0.00 | 0.00 | −5.31 | −5.21 |
22.07 | 54.11 | 53.47 | 30.19 | 30.19 | 0.00 | 0.00 | −4.60 | −4.57 |
23.07 | 31.53 | 31.35 | 26.15 | 26.15 | 0.00 | 0.00 | −4.71 | −4.64 |
24.07 | 3.34 | 3.29 | 14.74 | 14.74 | 8.66 | 3.37 | −4.03 | −4.18 |
25.07 | 25.89 | 25.59 | 19.66 | 19.66 | 16.54 | 15.26 | −3.92 | −3.99 |
26.07 | 0.00 | 0.00 | 9.04 | 9.04 | 7.01 | 7.51 | −4.03 | −4.07 |
27.07 | 3.44 | 3.42 | 14.20 | 14.20 | 18.64 | 19.10 | −3.68 | −3.67 |
28.07 | 0.00 | 0.00 | 9.14 | 9.14 | 16.96 | 16.74 | −3.67 | −3.66 |
Total | 273.32 | 272.55 | 209.49 | 209.49 | 67.82 | 61.96 | −45.70 | −45.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migla, L.; Bogdanovics, R.; Lebedeva, K. Performance Improvement of a Solar-Assisted Absorption Cooling System Integrated with Latent Heat Thermal Energy Storage. Energies 2023, 16, 5307. https://doi.org/10.3390/en16145307
Migla L, Bogdanovics R, Lebedeva K. Performance Improvement of a Solar-Assisted Absorption Cooling System Integrated with Latent Heat Thermal Energy Storage. Energies. 2023; 16(14):5307. https://doi.org/10.3390/en16145307
Chicago/Turabian StyleMigla, Lana, Raimonds Bogdanovics, and Kristina Lebedeva. 2023. "Performance Improvement of a Solar-Assisted Absorption Cooling System Integrated with Latent Heat Thermal Energy Storage" Energies 16, no. 14: 5307. https://doi.org/10.3390/en16145307
APA StyleMigla, L., Bogdanovics, R., & Lebedeva, K. (2023). Performance Improvement of a Solar-Assisted Absorption Cooling System Integrated with Latent Heat Thermal Energy Storage. Energies, 16(14), 5307. https://doi.org/10.3390/en16145307