A System-Level Modeling of PEMFC Considering Degradation Aspect towards a Diagnosis Process
Abstract
:1. Introduction
2. PEMFC Faults and Degradation
2.1. Reactant Starvation
2.1.1. Fuel Starvation
2.1.2. Oxidant Starvation
2.1.3. Effect on Performance and Aging
2.2. Water Management
2.2.1. Flooding
2.2.2. Drying
3. PEMFC Model and Fault Modeling
3.1. PEMFC Static and Dynamical Models
3.2. Proposed Model: Faults and Aging Model
3.2.1. Aging Model
3.2.2. Water Flux
3.2.3. Drying
3.2.4. Flooding
4. Results
4.1. Influence of the Dynamics
4.2. Aging
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EMS | Energy Management Strategy |
BEV | Battery Electric Vehicle (BEV) |
FCHEV | Fuel Cell Hybrid Electric Vehicle |
FC | Fuel Cell |
PEMFC | Proton Exchange Membrane Fuel Cell |
MEA | Membrane Electrode Assembly |
CFD | Computational Fluid Dynamics |
GDL | Gas Diffusion layer |
SVM | Support Vector Machine |
OCV | Open-Circuit Voltage |
References
- Ceschia, A.; Azib, T.; Bethoux, O.; Alves, F. Multi-Criteria Optimal Design for FUEL Cell Hybrid Power Sources. Energies 2022, 15, 3364. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Zhang, C.; Zhou, J.; Hu, D.; Yi, F.; Fan, Z.; Zeng, T. Genetic algorithm-based fuzzy optimization of energy management strategy for fuel cell vehicles considering driving cycles recognition. Energy 2023, 263, 126112. [Google Scholar] [CrossRef]
- Nigmatullin, R.R.; Martemianov, S.; Evdokimov, Y.K.; Denisov, E.; Thomas, A.; Adiutantov, N. New approach for PEMFC diagnostics based on quantitative description of quasi-periodic oscillations. Int. J. Hydrog. Energy 2016, 41, 12582–12590. [Google Scholar] [CrossRef]
- Available online: https://www.fch.europa.eu/page/call-2020/ (accessed on 2 June 2022).
- Abdollahzadeh, M.; Ribeirinha, P.; Boaventura, M.; Mendes, A. Three-dimensional modeling of PEMFC with contaminated anode fuel. Energy 2018, 152, 939–959. [Google Scholar] [CrossRef]
- Hwang, J.-J.; Dlamini, M.M.; Weng, F.-B.; Chang, T.; Lin, C.-H.; Weng, S.-C. Simulation of fine mesh implementation on the cathode for proton exchange membrane fuel cell (PEMFC). Energy 2022, 244, 122714. [Google Scholar] [CrossRef]
- Rostami, L.; Haghshenasfard, M.; Sadeghi, M.; Zhiani, M. A 3D CFD model of novel flow channel designs based on the serpentine and the parallel design for performance enhancement of PEMFC. Energy 2022, 258, 124726. [Google Scholar] [CrossRef]
- Carton, J.G.; Lawlor, V.; Olabi, A.G.; Hochenauer, C.; Zauner, G. Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels. Energy 2012, 39, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.-D.; Zhu, X.-J.; Cao, G.-Y.; Shi, J.-H. A hybrid multi-variable experimental model for a PEMFC. J. Power Sources 2007, 164, 746–751. [Google Scholar] [CrossRef]
- Legala, A.; Zhao, J.; Li, X. Machine learning modeling for proton exchange membrane fuel cell performance. Energy AI 2022, 10, 100183. [Google Scholar] [CrossRef]
- Wang, Y.; Basu, S.; Wang, C.-Y. Modeling two-phase flow in PEM fuel cell channels. J. Power Sources 2008, 179, 603–617. [Google Scholar] [CrossRef]
- Shen, J.; Xu, L.; Chang, H.; Tu, Z.; Chan, S.H. Partial flooding and its effect on the performance of a proton exchange membrane fuel cell. Energy Convers. Manag. 2020, 207, 112537. [Google Scholar] [CrossRef]
- Bressel, M.; Hilairet, M.; Hissel, D.; Bouamama, B.O. Remaining Useful Life Prediction and Uncertainty Quantification of Proton Exchange Membrane Fuel Cell Under Variable Load. IEEE Trans. Ind. Electron. 2016, 63, 2569–2577. [Google Scholar] [CrossRef]
- Jouin, M.; Gouriveau, R.; Hissel, D.; Péra, M.-C.; Zerhouni, N. Degradations analysis and aging modeling for health assessment and prognostics of PEMFC. Reliab. Eng. Syst. Saf. 2016, 148, 78–95. [Google Scholar] [CrossRef]
- Pei, P.; Chang, Q.; Tang, T. A quick evaluating method for automotive fuel cell lifetime. Int. J. Hydrog. Energy 2008, 33, 3829–3836. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Han, J.; Vu, H.N.; Yu, S. Investigation of Multiple Degradation Mechanisms of a Proton Exchange Membrane Fuel Cell under Dynamic Operation. Energies 2022, 15, 9574. [Google Scholar] [CrossRef]
- Benmouna, A.; Becherif, M.; Depernet, D.; Gustin, F.; Ramadan, H.S.; Fukuhara, S. Fault diagnosis methods for Proton Exchange Membrane Fuel Cell system. Int. J. Hydrog. Energy 2017, 42, 1534–1543. [Google Scholar] [CrossRef]
- Talke, A.; Misz, U.; Konrad, G.; Heinzel, A. Influence of Nitrogen Compounds on PEMFC: A Comparative Study. J. Electrochem. Soc. 2018, 165, F3111–F3117. [Google Scholar] [CrossRef] [Green Version]
- Chu, T.; Tang, Q.; Wang, Q.; Wang, Y.; Du, H.; Guo, Y.; Li, B.; Yang, D.; Ming, P.; Zhang, C. Experimental study on the effect of flow channel parameters on the durability of PEMFC stack and analysis of hydrogen crossover mechanism. Energy 2023, 264, 126286. [Google Scholar] [CrossRef]
- Yousfi-Steiner, N.; Moçotéguy, P.; Candusso, D.; Hissel, D. A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, consequences and diagnostic for mitigation. J. Power Sources 2009, 194, 130–145. [Google Scholar] [CrossRef]
- Yousfi Steiner, N.; Hissel, D.; Moçotéguy, P.; Candusso, D. Diagnosis of polymer electrolyte fuel cells failure modes (flooding and drying out) by neural networks modeling. Int. J. Hydrog. Energy 2011, 36, 3067–3075. [Google Scholar] [CrossRef]
- Barbir, F.; Gorgun, H.; Wang, X. Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells. J. Power Sources 2005, 141, 96–101. [Google Scholar] [CrossRef]
- Li, H.; Tang, Y.; Wang, Z.; Shi, Z.; Wu, S.; Song, D.; Zhang, J.; Fatih, K.; Zhang, J.; Wang, H.; et al. A review of water flooding issues in the proton exchange membrane fuel cell. J. Power Sources 2008, 178, 103–117. [Google Scholar] [CrossRef]
- Baumgartner, W.R.; Parz, P.; Fraser, S.D.; Wallnöfer, E.; Hacker, V. Polarization study of a PEMFC with four reference electrodes at hydrogen starvation conditions. J. Power Sources 2008, 182, 413–421. [Google Scholar] [CrossRef]
- Xia, Z.; Chen, H.; Shan, W.; Zhang, R.; Zhang, T.; Pei, P. Behavior of current distribution evolution under reactant starvation conditions based on a single polymer electrolyte membrane fuel cell (PEMFC) with triple-serpentine flow field: An experimental study. Int. J. Hydrog. Energy 2023, S48, 13650–13668. [Google Scholar] [CrossRef]
- Taniguchi, A.; Akita, T.; Yasuda, K.; Miyazaki, Y. Analysis of degradation in PEMFC caused by cell reversal during air starvation. Int. J. Hydrog. Energy 2008, 33, 2323–2329. [Google Scholar] [CrossRef]
- Manokaran, A.; Pushpavanam, S.; Sridhar, P. Dynamics of anode–cathode interaction in a polymer electrolyte fuel cell revealed by simultaneous current and potential distribution measurements under local reactant-starvation conditions. J. Appl. Electrochem. 2015, 45, 353–363. [Google Scholar] [CrossRef]
- Narayanan, H.; Basu, S. Regeneration of CO poisoned Pt black anode catalyst in PEMFC using break-in procedure and KMnO4 solution. Int. J. Hydrog. Energy 2017, 42, 23814–23820. [Google Scholar] [CrossRef]
- Silva, R.E.; Harel, F.; Jemeï, S.; Gouriveau, R.; Hissel, D.; Boulon, L.; Agbossou, K. Proton Exchange Membrane Fuel Cell Operation and Degradation in Short-Circuit. Fuel Cells 2014, 14, 894–905. [Google Scholar] [CrossRef] [Green Version]
- Tang, A.; Yang, L.; Zeng, T.; Yu, Q. Cascade Control Method of Sliding Mode and PID for PEMFC Air Supply System. Energies 2022, 16, 228. [Google Scholar] [CrossRef]
- Bai, X.; Jian, Q.; Huang, B.; Luo, L.; Chen, Y. Hydrogen starvation mitigation strategies during the start-up of proton exchange membrane fuel cell stack. J. Power Sources 2022, 520, 230809. [Google Scholar] [CrossRef]
- Chu, T.; Wang, Q.; Xie, M.; Wang, B.; Yang, D.; Li, B.; Ming, P.; Zhang, C. Investigation of the reversible performance degradation mechanism of the PEMFC stack during long-term durability test. Energy 2022, 258, 124747. [Google Scholar] [CrossRef]
- Tang, H.; Qi, Z.; Ramani, M.; Elter, J.F. PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. J. Power Sources 2006, 158, 1306–1312. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Z.; Ye, X.; Yi, L.; Xu, S.; Zhang, T. Air flow and pressure optimization for air supply in proton exchange membrane fuel cell system. Energy 2022, 238, 121949. [Google Scholar] [CrossRef]
- Durst, J.; Lamibrac, A.; Charlot, F.; Dillet, J.; Castanheira, L.F.; Maranzana, G.; Dubau, L.; Maillard, F.; Chatenet, M.; Lottin, O. Degradation heterogeneities induced by repetitive start/stop events in proton exchange membrane fuel cell: Inlet vs. outlet and channel vs. land. Appl. Catal. Environ. 2013, 138–139, 416–426. [Google Scholar] [CrossRef]
- Bharath, K.V.S.; Blaabjerg, F.; Haque, A.; Khan, M.A. Model-Based Data Driven Approach for Fault Identification in Proton Exchange Membrane Fuel Cell. Energies 2020, 13, 3144. [Google Scholar] [CrossRef]
- Zhang, L.; Bi, X.T.; Wilkinson, D.P.; Anderson, R.; Stumper, J.; Wang, H. Gas–liquid two-phase flow behavior in minichannels bounded with a permeable wall. Chem. Eng. Sci. 2011, 66, 3377–3385. [Google Scholar] [CrossRef]
- Mortazavi, M.; Tajiri, K. Two-phase flow pressure drop in flow channels of proton exchange membrane fuel cells: Review of experimental approaches. Renew. Sustain. Energy Rev. 2015, 45, 296–317. [Google Scholar] [CrossRef]
- Ijaodola, O.S.; El-Hassan, Z.; Ogungbemi, E.; Khatib, F.N.; Wilberforce, T.; Thompson, J.; Olabi, A.G. Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC). Energy 2019, 179, 246–267. [Google Scholar] [CrossRef]
- Hussaini, I.S.; Wang, C.-Y. Visualization and quantification of cathode channel flooding in PEM fuel cells. J. Power Sources 2009, 187, 444–451. [Google Scholar] [CrossRef]
- Grimm, M.; See, E.J.; Kandlikar, S.G. Modeling gas flow in PEMFC channels: Part I—Flow pattern transitions and pressure drop in a simulated ex situ channel with uniform water injection through the GDL. Int. J. Hydrog. Energy 2012, 37, 12489–12503. [Google Scholar] [CrossRef]
- Yousfi-Steiner, N.; Moçotéguy, P.; Candusso, D.; Hissel, D.; Hernandez, A.; Aslanides, A. A review on PEM voltage degradation associated with water management: Impacts, influent factors and characterization. J. Power Sources 2008, 183, 260–274. [Google Scholar] [CrossRef]
- Springer, T.E.; Zawodzinski, T.A.; Gottesfeld, S. Polymer Electrolyte Fuel Cell Model. J. Electrochem. Soc. 1991, 138, 2334–2342. [Google Scholar] [CrossRef]
- Dicks, A.; Rand, D.A.J. Fuel Cell Systems Explained, 3rd ed.; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- Belhaj, F.Z.; El Fadil, H.; El Idrissi, Z.; Intidam, A.; Koundi, M.; Giri, F. New Equivalent Electrical Model of a Fuel Cell and Comparative Study of Several Existing Models with Experimental Data from the PEMFC Nexa 1200 W. Micromachines 2021, 12, 1047. [Google Scholar] [CrossRef] [PubMed]
- Talj, R.; Azib, T.; Béthoux, O.; Remy, G.; Marchand, C.; Berthelot, E. Parameter analysis of PEM fuel cell hysteresis effects for transient load use. Eur. Phys. J. Appl. Phys. 2011, 54, 23410. [Google Scholar] [CrossRef]
- Dhirde, A.M.; Dale, N.V.; Salehfar, H.; Mann, M.D.; Han, T.-H. Equivalent Electric Circuit Modeling and Performance Analysis of a PEM Fuel Cell Stack Using Impedance Spectroscopy. IEEE Trans. Energy Convers. 2010, 25, 778–786. [Google Scholar] [CrossRef]
- Zuo, J.; Lv, H.; Zhou, D.; Xue, Q.; Jin, L.; Zhou, W.; Yang, D.; Zhang, C. Long-term dynamic durability test datasets for single proton exchange membrane fuel cell. Data Brief 2021, 35, 106775. [Google Scholar] [CrossRef]
- Ceschia, A. Méthodologie de Conception Optimale de Chaines de Conversion d’énergie Embarquées 186. Ph.D. Thesis, Université Paris-Saclay, Paris, France, 2020. [Google Scholar]
- Dataset: IEEE PHM Data Challenge 2014. Available online: http://dx.doi.org/doi:10.25666/DATAUBFC-2021-07-19 (accessed on 2 June 2022).
- Karnik, A.Y.; Stefanopoulou, A.G.; Sun, J. Water equilibria and management using a two-volume model of a polymer electrolyte fuel cell. J. Power Sources 2007, 164, 590–605. [Google Scholar] [CrossRef]
- Lockhart, R.W. Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes. Chem. Eng. Prog. 1949, 45, 39–48. [Google Scholar]
- Available online: https://www.heliocentrisacademia.com/asset/160/Datasheet_Nexa1200_EN.pdf/ (accessed on 2 June 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bäumler, A.; Meng, J.; Benterki, A.; Azib, T.; Boukhnifer, M. A System-Level Modeling of PEMFC Considering Degradation Aspect towards a Diagnosis Process. Energies 2023, 16, 5310. https://doi.org/10.3390/en16145310
Bäumler A, Meng J, Benterki A, Azib T, Boukhnifer M. A System-Level Modeling of PEMFC Considering Degradation Aspect towards a Diagnosis Process. Energies. 2023; 16(14):5310. https://doi.org/10.3390/en16145310
Chicago/Turabian StyleBäumler, Antoine, Jianwen Meng, Abdelmoudjib Benterki, Toufik Azib, and Moussa Boukhnifer. 2023. "A System-Level Modeling of PEMFC Considering Degradation Aspect towards a Diagnosis Process" Energies 16, no. 14: 5310. https://doi.org/10.3390/en16145310
APA StyleBäumler, A., Meng, J., Benterki, A., Azib, T., & Boukhnifer, M. (2023). A System-Level Modeling of PEMFC Considering Degradation Aspect towards a Diagnosis Process. Energies, 16(14), 5310. https://doi.org/10.3390/en16145310