Expectations for Bioenergy Considering Carbon Neutrality Targets in the EU
Abstract
:1. Introduction
2. Method and Data Collection
- Definition of energy consumption. Gross inland consumption (GIC) is the first aggregate of the national energy balance. Gross final energy consumption (GFEC) is calculated after subtraction of transformation losses and transformation and internal consumption in the energy sector.
- Period of inventory. The period of study 2013–2022 was chosen as the main starting point. As member states still require progress in bioenergy development to reach local targets for 2020, this brief period may be subject to inconsistent data compilation.
- Market changes. The forecast in this study does not include possible changes in global energy markets, such as changes in fossil fuel prices and significant economic changes in particular member states or in the EU in general. When fossil fuel prices rise, for example, as a result of carbon taxes, EU Member States might invest heavily in “carbon tax-free” RES, to guarantee the long-term supply of fuels.
- In order to analyze the biomass development perspective, it is important to understand that biomass usage is very broad. As was mentioned before, REDIII also focuses on the different biomass usage ways and zero fossil fuels consumption. To reach zero fossil fuel consumption, it is important to take into consideration biomass demand by different industries and the possibilities of using biomass instead of fossil fuel. Thus, this paper includes biomass possibilities in the electricity and transport sectors, where its share is not large, and one section of this study covers the role of biomass usage in the industry sector as non-energy demand. Non-energy demand for biomass refers to its use as a raw material for manufacturing a variety of products, such as bio-based polymers, bioplastics, biofuels, biochemicals, etc. The industrial sector, for example, requires energy indirectly but is not considered as an energy consumer itself. Thus, there is a possibility of double counting. For example, in the case of pulp and paper, the industry uses biomass for the production of pulp and paper as well as producing energy from biomass and using this energy within its own production (e.g., in Sweden and Finland). One of the attempts to evaluate biomass usage, including torrefied biomass in different industries, was presented in [13,14].
3. Current Progress in Bioenergy in the EU
3.1. Leading Countries
3.2. Intermediate Countries
3.3. Lagging Countries
4. Biomass Perspective
4.1. Biomass Resources Potential
4.2. Role of Biomass Trade
4.3. Environmental Limitations
4.4. Biomass Usage in Electricity Production
4.5. Biomass Usage in Industrial Sector (Non-Energy Demand)
4.6. Biomass Usage in the Transport Sector
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. 2030 Climate Target Plan. 2023. Available online: https://climate.ec.europa.eu/eu-action/european-green-deal/2030-climate-target-plan_en (accessed on 20 April 2023).
- European Commission. REPowerEU: A Plan to Rapidly Reduce Dependence on Russian Fossil Fuels and Fast forward the Green Transition. 2022. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_22_3131 (accessed on 20 April 2022).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0562 (accessed on 22 November 2022).
- Eurostat. Databased. 2022. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 24 November 2022).
- European Environmatal Bureau. RED III EEB Policy Brief. 2022. Available online: https://eeb.org/wp-content/uploads/2022/02/Policy-Brief-REDIII-and-PAC-Scenario_FINAL-1.pdf (accessed on 5 May 2023).
- Proskurina, S.; Junginger, M.; Heinimö, J.; Tekinel, B.; Vakkilainen, E. Global biomass trade for energy— Part 2: Production and trade streams of wood pellets, liquid biofuels, charcoal, industrial roundwood and emerging energy biomass. Biofuels Bioprod. Biorefining 2018, 13, 68–76. [Google Scholar] [CrossRef]
- Sikkema, R.; Proskurina, S.; Banja, M.; Vakkilainen, E. How can solid biomass contribute to the EU’s renewable energy targets in 2020, 2030 and what are the GHG drivers and safeguards in energy-and forestry sectors? Renew. Energy 2021, 165, 758–772. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.-F.; Monforti-Ferrario, F.; Banja, M.; Motola, V. Renewable energy policy framework and bioenergy contribution in the European Union—An overview from National Renewable Energy Action Plans and Progress Reports. Renew. Sustain. Energy Rev. 2015, 51, 969–985. [Google Scholar] [CrossRef]
- European Commission. Biomass. 2022. Available online: https://energy.ec.europa.eu/topics/renewable-energy/bioenergy/biomass_en (accessed on 5 July 2022).
- Proskurina, S.; Sikkema, R.; Heinimö, J.; Vakkilainen, E. Five years left–How are the EU member states contributing to the 20% target for EU’s renewable energy consumption; the role of woody biomass. Biomass Bioenergy 2016, 95, 64–77. [Google Scholar] [CrossRef]
- Proskurina, S.; Stolarski, M.; Vakkilainen, E. Bioenergy Perspectives in the EU Regions: Carbon Neutrality Pathway. J. Sustain. Bioenergy Syst. 2023, 13, 16–39. [Google Scholar] [CrossRef]
- Banja, M.; Sikkema, R.; Jégard, M.; Motola, V.; Dallemand, J.-F. Biomass for energy in the EU—The support framework. Energy Policy 2019, 131, 215–228. [Google Scholar] [CrossRef]
- Proskurina, S.; Heinimö, J.; Schipfer, F.; Vakkilainen, E. Biomass for industrial applications: The role of torrefaction. Renew. Energy 2017, 111, 265–274. [Google Scholar] [CrossRef]
- Wild, M.; Deutmeyer, M.; Bradley, D.; Hektor, B.; Hess, J.R.; Nikolaisen, L. Possible Effects of Torrefaction on Biomass Trade. 2015. Available online: https://task40.ieabioenergy.com/wp-content/uploads/sites/29/2013/09/t40-torrefaction-2016.pdf (accessed on 18 May 2023).
- Ranta, T.; Laihanen, M.; Karhunen, A. Development of the Bioenergy as a Part of Renewable Energy in the Nordic Countries: A Comparative Analysis. J. Sustain. Bioenergy Syst. 2020, 10, 92–112. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M.; Olba–Zięty, E.; Akincza, M. Bioenergy technologies and biomass potential vary in Northern European countrie. Renew. Sustain. Energy Rev. 2020, 133, 110238. [Google Scholar] [CrossRef]
- Stoyanova, A.; Kirechev, D.; Marinova, V. Strategy for Sustainable Consumption of Solid Fuels from Wooden Biomass in Bulgaria. In Proceedings of the 15th International Scientific Conference WoodEMA 2022 Crisis Management and Safety Foresight in Forest-Based Sector and Smes Operating in the Global Environment, Trnava, Slovakia, 8–10 June 2022. [Google Scholar]
- Republic of Bulgaria, Ministry of Energy, Ministry of the Environment and Water. 2020. Available online: https://energy.ec.europa.eu/system/files/2020-06/bg_final_necp_main_en_0.pdf (accessed on 9 January 2023).
- Wieruszewski, M.; Górna, A.; Stanula, Z.; Adamowicz, K. Energy use of woody biomass in Poland: Its resources and harvesting form. Energies 2022, 15, 6812. [Google Scholar] [CrossRef]
- The Slovak Energy Yearbook, 2019. Energy . 2019. Available online: https://slovak.statistics.sk/PortalTraffic/fileServlet?Dokument=851669c3-9e21-4264-a384-372959d866ee (accessed on 26 January 2023).
- Navrátilová, L.; Výbošťok, J.; Dobšinská, Z.; Šálka, J.; Pichlerová, M.; Pichler, V. Assessing the potential of bioeconomy in Slovakia based on public perception of renewable materials in contrast to non-renewable materials. Ambio 2020, 49, 1912–1924. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Country Report, Implementation of Bioenergy in The Netherlands—2021 Update. 2021. Available online: https://www.ieabioenergy.com/wp-content/uploads/2021/11/CountryReport2021_Netherlands_final.pdf (accessed on 23 March 2023).
- Flach. Dutch Government Lays Out New Biomass Policy. 2022. Available online: https://www.fas.usda.gov/data/netherlands-dutch-government-lays-out-new-biomass-policy (accessed on 26 January 2023).
- Netherlands Enterprise Agency. Biofuels for Transport in The Netherlands. 2021. Available online: https://english.rvo.nl/topics/sustainable-transport/biofuels-for-transport-in-the-netherlands (accessed on 12 December 2022).
- Popp, J.; Kovács, S.; Oláh, J.; Divéki, Z.; Balázs, E. Bioeconomy: Biomass and biomass-based energy supply and demand. New Biotechnol. 2021, 60, 76–84. [Google Scholar] [CrossRef]
- Mandova, H.; Leduc, S.; Wang, C.; Wetterlund, E.; Patrizio, P.; Gale, W.; Kraxner, F. Possibilities for CO2 emission reduction using biomass in European integrated steel plants. Biomass Bioenergy 2018, 115, 231–243. [Google Scholar] [CrossRef]
- Mandley, S.J.; Daioglou, V.; Junginger, H.M.; van Vuuren, D.P.; Wicke, B. EU bioenergy development to 2050. Renew. Sustain. Energy Rev. 2020, 127, 109858. [Google Scholar] [CrossRef]
- Junginger, M.; Mai-Moulin, T.; Daioglou, V.; Fritsche, U.; Guisson, R.; Hennig, C.; Thrän, D.; Heinimö, J.; Hess, R.; Lamers, P.; et al. The future of biomass and bioenergy deployment and trade: A synthesis of 15 years IEA Bioenergy Task 40 on sustainable bioenergy trade. Biofuels Bioprod. Biorefining 2019, 13, 247–266. [Google Scholar] [CrossRef]
- Hamelin, L.; Borzęcka, M.; Kozak, M.; Pudełko, R. A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27. Renew. Sustain. Energy Rev. 2019, 100, 127–142. [Google Scholar] [CrossRef]
- Di Gruttola, F.; Borello, D. Analysis of the EU Secondary Biomass Availability and Conversion Processes to Produce Advanced Biofuels: Use of Existing Databases for Assessing a Metric Evaluation for the 2025 Perspective. Sustainability 2021, 13, 7882. [Google Scholar] [CrossRef]
- Proskurina, S.; Heinimö, J.; Vakkilainen, E. Policy forum: Challenges of forest governance: Biomass export from Leningrad oblast, North-West of Russia. For. Policy Econ. 2018, 95, 13–17. [Google Scholar] [CrossRef]
- Beluhova-Uzunova, R.; Shishkova, M.; Ivanova, B. The role of agricultural biomass in the future bioeconomy. Trakia J. Sci. 2021, 19, 181–186. [Google Scholar] [CrossRef]
- Statista. Leading Producers of Primary Energy from Solid Biomass in the European Union (EU-27) in 2021. 2023. Available online: https://www.statista.com/statistics/799353/solid-biomass-energy-production-european-union-eu/ (accessed on 28 March 2023).
- Šafařík, D.; Hlaváčková, P.; Michal, J. Potential of Forest Biomass Resources for Renewable Energy Production in the Czech Republic. Energies 2022, 15, 47. [Google Scholar] [CrossRef]
- The European Technology Innovation Platform (ETIP) Bioenergy, 2020. Bioenergy in Germany. Available online: https://www.etipbioenergy.eu/images/ETIP_B_Fact%20sheet_Bioenergy%20Germany_feb2020.pdf (accessed on 28 March 2023).
- Proskurina, S.; Junginger, M.; Heinimö, J.; Vakkilainen, E. Global biomass trade for energy–Part 1: Statistical and methodological considerations. Biofuels Bioprod. Biorefining 2019, 13, 358–370. [Google Scholar] [CrossRef]
- Pelkmans, L.; Dael, M.V.; Junginger, M.; Fritsche, U.R.; Diaz-Chavez, R.; Nabuurs, G.-N.; Del Campo Colmenar, I.; Gonzalez, D.S.; Rutz, D.; Janssen, R. Long-term strategies for sustainable biomass imports in European bioenergy markets. Biofuels Bioprod. Biorefining 2018, 13, 388–404. [Google Scholar] [CrossRef]
- European Commission, 2022! Renewable Energy—Recast to 2030 (RED II). Available online: https://joint-research-centre.ec.europa.eu/welcome-jec-website/reference-regulatory-framework/renewable-energy-recast-2030-red-ii_en (accessed on 18 May 2023).
- Manochio, C.; Andrade, B.R.; Rodriguez, R.P.; Moraes, B.S. Ethanol from biomass: A comparative overview. Renew. Sustain. Energy Rev. 2017, 80, 743–755. [Google Scholar] [CrossRef]
- Suttles, S.A.; Tyner, W.E.; Shively, G.; Sands, R.D.; Sohngen, B. Economic effects of bioenergy policy in the United States and Europe: A general equilibrium approach focusing on forest biomass. Renew. Energy 2014, 69, 428–436. [Google Scholar] [CrossRef]
- Menges, R.; Pfaffenberger, W. Promotion of Renewable Energy Sources in the European Union. Int. J. Renew. Energy Dev. 2015, 4, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Lopes, F.; Algarvio, H. Demand response in electricity market: An overview and a study of the price-effect on the Iberian daily market. In Electricity Markets with Increasing Levels of Renewable Generation: Structure, Operation, Agent-Based Simulation, and Emerging Designs; Springer: Berlin/Heidelberg, Germany, 2018; pp. 265–303. [Google Scholar]
- Ranta, T.; Karhunen, A.; Laihanen, M. Schedule for Reducing the Use of Peat and the Possibilities of Replacing It with Forest Chips in Energy Production in Finland. J. Sustain. Bioenergy Syst. 2022, 12, 99–115. [Google Scholar] [CrossRef]
- Euroelectric. Latter on RED III Biomass for Electricty. 2022. Available online: https://www.eurelectric.org/publications/letter-on-red-iii-biomass-for-electricity/ (accessed on 18 May 2023).
- IEA Bioenergy 2021. Implementation of Bioenergy in the European Union—2021 Update. Available online: https://www.ieabioenergy.com/wp-content/uploads/2021/11/CountryReport2021_EU28_final.pdf (accessed on 18 May 2023).
- EEA. Industrial Pollutant Releases to Air in Europe. 2023. Available online: https://www.eea.europa.eu/ims/industrial-pollutant-releases-to-air (accessed on 18 May 2023).
- Eurostat. Final Energy Consumption by Sector. 2023. Available online: https://ec.europa.eu/eurostat/databrowser/view/TEN00124/default/table?lang=en (accessed on 18 May 2023).
- Malico, I.; Pereira, R.N.; Gonçalves, A.; Sousa, A.M.O. Current status and future perspectives for energy production from solid biomass in the European industry. Renew. Sustain. Energy Rev. 2019, 112, 960–977. [Google Scholar] [CrossRef]
- Lipiäinen, S.; Sermyagina, E.; Kuparinen, K.; Vakkilainen, E. Future of forest industry in carbon-neutral reality: Finnish and Swedish visions. Energy Rep. 2022, 8, 2588–2600. [Google Scholar] [CrossRef]
- Lipiäinen, S.; Vakkilainen, E. Role of Finnish forest industry in mitigating global change: Energy use and greenhouse gas emissions towards 2035. Mitig. Adapt. Strateg. Glob. Chang. 2021, 26, 9. [Google Scholar] [CrossRef]
- Kuparinen, K.; Lipiäinen, S.; Vakkilainen, E.; Laukkanen, T. Effect of biomass-based carbon capture on the sustainability and economics of pulp and paper production in the Nordic mills. Env. Dev. Sustain. 2023, 25, 648–668. [Google Scholar] [CrossRef]
- Proskurina, S.; Alakangas, E.; Heinimö, J.; Mikkilä, M.; Vakkilainen, E. A survey analysis of the wood pellet industry in Finland: Future perspectives. Energy 2017, 118, 692–704. [Google Scholar] [CrossRef]
- Ovaere, M.; Proost, S. Cost-effective reduction of fossil energy use in the European transport sector: An assessment of the Fit for 55 Package. Energy Policy 2022, 168, 113085. [Google Scholar] [CrossRef]
- Demirbas, A. Fuel properties of hydrogen, liquefied petroleum gas (LPG), and compressed natural gas (CNG) for transportation. Energy Sources 2002, 24, 601–610. [Google Scholar] [CrossRef]
- Millinger, M.; Reichenberg, L.; Hedenus, F.; Berndes, G.; Zeyen, E.; Brown, T. Are biofuel mandates cost-effective?-An analysis of transport fuels and biomass usage to achieve emissions targets in the European energy system. Appl. Energy 2022, 326, 120016. [Google Scholar] [CrossRef]
- Eurostat. Share of Renewables in Transport Decreased in 2021. 2023. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20230123-2 (accessed on 28 March 2023).
- European Commission. Biofuels. 2021. Available online: https://energy.ec.europa.eu/topics/renewable-energy/bioenergy/biofuels_en (accessed on 27 January 2023).
- Statistical Report 2020: Biofuels for Transport. The EU Transport Sector Continues to Rely Heavily on Oil. But a Viable Alternative Already Exists and Needs to Be Supported. Available online: https://bioenergyeurope.org/article.html/253 (accessed on 27 January 2023).
- Amiandamhen, S.O.; Kumar, A.; Adamopoulos, S.; Jones, D.; Nilsson, B. Bioenergy Production and Utilization in Different Sectors in Sweden: A State of the Art Review. BioResources 2020, 15, 9834–9857. [Google Scholar] [CrossRef]
- Gustafsson, M.; Anderberg, S. Great expectations—Future scenarios for production and use of biogas and digestate in Sweden. Biofuels 2023, 14, 93–107. [Google Scholar] [CrossRef]
- Arnau, A.S. Biomethane for Decarbonising Transport: The Swedish Example. 2022. Available online: https://energypost.eu/biomethane-for-decarbonising-transport-the-swedish-example/ (accessed on 5 February 2023).
- Prussi, M.; Padella, M.; Conton, M.; Postma, E.D.; Lonza, L. Review of technologies for biomethane production and assessment of Eu transport share in 2030. J. Clean. Prod. 2019, 222, 565–572. [Google Scholar] [CrossRef]
- Chiaramonti, D.; Talluri, G.; Scarlat, N.; Prussi, M. The challenge of forecasting the role of biofuel in EU transport decarbonisation at 2050: A meta-analysis review of published scenarios. Renew. Sustain. Energy Rev. 2021, 139, 110715. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, J.; Ahn, J. Innovation towards sustainable technologies: A socio-technical perspective on accelerating transition to aviation biofuel. Technol. Forecast. Soc. Chang. 2019, 145, 317–329. [Google Scholar] [CrossRef]
- O’Connell, A.; Kousoulidou, M.; Lonza, L.; Weindorf, W. Considerations on GHG emissions and energy balances of promising aviation biofuel pathways. Renew. Sustain. Energy Rev. 2019, 101, 504–515. [Google Scholar] [CrossRef]
- Larsson, J.; Elofsson, A.; Sterner, T.; Åkerman, J. International and national climate policies for aviation: A review. Clim. Policy 2019, 19, 787–799. [Google Scholar] [CrossRef] [Green Version]
- Efthymiou, M.; Papatheodorou, A. EU Emissions Trading scheme in aviation: Policy analysis and suggestions. J. Clean. Prod. 2019, 237, 117734. [Google Scholar] [CrossRef]
Share of Enrgy from RE in GFEC 1 (in %) | Total GIC 2 (in PJ) | Bioenergy in GIC (in PJ) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2013 | 2020 Target | 2020 | Changes | 2013 | 2020 | Changes | 2013 | 2020 | Changes | |
Over 25% leading countries (Group 1) | ||||||||||
Sweden | 52.1 | 49 | 60.1 | 8.0 | 2066 | 1893 | −173 | 451 | 528 | 77 |
Finland | 36.8 | 38 | 43.8 | 7.0 | 1438 | 1345 | −93 | 373 | 402 | 29 |
Latvia | 37.1 | 40 | 42.1 | 5.0 | 186 | 183 | −3 | 57 | 66 | 9 |
Austria | 32.6 | 34 | 36.5 | 3.9 | 1378 | 1349 | −29 | 247 | 231 | −16 |
Portugal | 25.7 | 31 | 34.0 | 8.3 | 938 | 895 | −43 | 117 | 130 | 13 |
Denmark | 27.2 | 30 | 31.7 | 4.5 | 764 | 665 | −99 | 137 | 190 | 53 |
Croatia | 15.1 | 20 | 31.0 | 15.9 | 358 | 348 | −10 | 54 | 62 | 8 |
Estonia | 25.6 | 25 | 30.1 | 4.5 | 246 | 188 | −58 | 33 | 55 | 22 |
Lithuania | 23 | 23 | 26.8 | 3.8 | 296 | 320 | 24 | 48 | 64 | 16 |
25–20% Intermediate countries (Group 2) | ||||||||||
Slovenia | 21.5 | 25 | 25.0 | 3.5 | 274 | 265 | −9 | 32 | 27 | −5 |
Romania | 23.9 | 24 | 24.5 | 0.6 | 1322 | 1349 | 27 | 160 | 163 | 3 |
Bulgaria | 19 | 16 | 23.3 | 4.3 | 715 | 747 | 32 | 49 | 78 | 29 |
Greece | 15 | 18 | 21.7 | 6.7 | 1008 | 856 | −152 | 50 | 50 | 0 |
Spain | 15.4 | 20 | 21.2 | 5.8 | 5055 | 4681 | −374 | 291 | 294 | 3 |
Italy | ||||||||||
Up to 20% Lagging countries (Group 3) | ||||||||||
Germany | 12.4 | 18 | 19.3 | 6.9 | 13,849 | 11,921 | −1928 | 1121 | 1138 | 17 |
France | 14.2 | 23 | 19.1 | 4.9 | 11,133 | 9367 | −1766 | 629 | 641 | 12 |
Slovakia | 9.8 | 14 | 17.3 | 7.5 | 660 | 689 | 29 | 39 | 68 | 29 |
Czechia | 12.4 | 13 | 17.3 | 4.9 | 1819 | 1683 | −136 | 147 | 183 | 36 |
Cyprus | 8.1 | 13 | 16.9 | 8.8 | 92 | 96 | 4 | 2 | 4 | 2 |
Ireland | 7.8 | 16 | 16.2 | 8.4 | 562 | 574 | 12 | 18 | 26 | 8 |
Poland | 11.3 | 15 | 16.1 | 4.8 | 4124 | 4311 | 187 | 326 | 456 | 130 |
Netherlands | 4.5 | 14 | 14.0 | 9.5 | 3140 | 3012 | −128 | 119 | 179 | 60 |
Hungary | 9.8 | 13 | 13.9 | 4.1 | 997 | 1095 | 98 | 124 | 107 | −17 |
Belgium | 7.9 | 13 | 13.0 | 5.1 | 2365 | 2154 | −211 | 127 | 134 | 7 |
Luxembourg | 3.6 | 11 | 11.7 | 8.1 | 177 | 166 | −11 | 6 | 18 | 12 |
Malta | 3.8 | 10 | 10.7 | 6.9 | 37 | 32 | −5 | 0.2 | 0.7 | 0.5 |
EU | 15 | 20 | 22.1 | 5.0 | 60,919 | 56,109 | −4810 | 5334 | 5875 | 541 |
Final Consumption Energy Carriers | Toe/Capita (2019) * | % of Total * | Mtoe/Total (2021) ** | % of Total ** | Solid Fossil Fuel Consumption (2021) ** (in Mtoe) |
---|---|---|---|---|---|
Industry (energy use) | 0.58 | 23 | 240,300 | 35.6 | 11,000 |
Industry (non-energy use) | 0.22 | 9 | 93,400 | 1500 | |
Transport | 0.74 | 29 | 274,800 | 29.3 | 245,00 1 |
Residential | 0.62 | 24 | 261,800 | 27.9 | 6400 |
Commercial and public services | 0.31 | 12 | 129,400 | 13.7 | 800 |
Other | 0.08 | 3 | 3.5 | ||
Total | 2.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Proskurina, S.; Mendoza-Martinez, C. Expectations for Bioenergy Considering Carbon Neutrality Targets in the EU. Energies 2023, 16, 5314. https://doi.org/10.3390/en16145314
Proskurina S, Mendoza-Martinez C. Expectations for Bioenergy Considering Carbon Neutrality Targets in the EU. Energies. 2023; 16(14):5314. https://doi.org/10.3390/en16145314
Chicago/Turabian StyleProskurina, Svetlana, and Clara Mendoza-Martinez. 2023. "Expectations for Bioenergy Considering Carbon Neutrality Targets in the EU" Energies 16, no. 14: 5314. https://doi.org/10.3390/en16145314
APA StyleProskurina, S., & Mendoza-Martinez, C. (2023). Expectations for Bioenergy Considering Carbon Neutrality Targets in the EU. Energies, 16(14), 5314. https://doi.org/10.3390/en16145314