Multiscale Fine Characterization of a Coal Pore–Fracture System Based on SEM, CT, and NMR in the Jingbian Block, Ordos Basin
Abstract
:1. Introduction
2. Geological Setting and Analytical Procedures
2.1. Geological Setting
2.2. Analytical Procedures
2.2.1. Material Composition
2.2.2. Pore–Fracture Structure
3. Results and Discussion
3.1. Qualitative Characterization of Pores and Fractures
3.1.1. Material Composition
3.1.2. Pore Type Identification
3.2. Visual Characterization of Pores and Fractures
3.3. Quantitative Characterization of Pores and Fractures
3.3.1. Pore–Fracture Distribution
3.3.2. Porosity
3.3.3. Pore Connectivity
4. Conclusions
- (1)
- The average Ro of the coal samples in the Jingbian Block is 2.10%, meaning that they belong to the middle-rank coal. The pores or fractures are filled with minerals due to the mineral development in the coal samples. The pores are mainly observed as gas pores, cell pores, intercrystalline pores, and moldic pores, and the fractures are mostly filled with kaolinite minerals.
- (2)
- CT 3D reconstruction shows that the pores and fractures in the coal samples generally exhibit horizontal spreading, with a small inclination. Oblique fractures communicate with different layers. The coal samples are filled with minerals along the layers, and the mineral spreading shows obvious characteristics of subsequent layer development.
- (3)
- CT 3D reconstruction and NMR T2 spectra can be used calculate the pore distribution and porosity. The total porosity of samples G11-5-1, G11-5-6, G11-5-9, and G11-5-11 was calculated to be 8.93%, 9.11%, 10.45%, and 11.63%, respectively.
- (4)
- The difference in sample connectivity is mainly determined by the degree of throat development and the number of connected pores and fractures. The mineral content and filling mode of the sample affect the number and size of pores and throats, ultimately affecting the connected and unconnected pores.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Men, X.; Tao, S.; Liu, Z.; Tian, W.; Chen, S. Experimental study on gas mass transfer process in a heterogeneous coal reservoir. Fuel Process Technol. 2021, 216, 106779. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, J.; Liang, X.; Wang, S.; Ma, Z. Ecological risk assessment of soil and water loss by thermal enhanced methane recovery: Numerical study using two-phase flow simulation. J. Clean. Prod. 2022, 334, 130183. [Google Scholar] [CrossRef]
- Li, Q. The view of technological innovation in coal industry under the vision of carbon neutralization. Int. J. Coal Sci. Technol. 2021, 8, 1197–1207. [Google Scholar] [CrossRef]
- Tao, S.; Wang, Y.; Tang, D.; Xu, H.; Lv, Y.; He, W.; Li, Y. Dynamic variation effects of coal permeability during the coalbed methane development process in the Qinshui Basin, China. Int. J. Coal Geol. 2012, 93, 16–22. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, D.; Pan, Z.; Yao, Y.; Li, J.; Qiu, Y. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China. Fuel 2013, 103, 258–268. [Google Scholar] [CrossRef]
- Huang, Q.; Li, J.; Liu, S.; Wang, G. Experimental study on the adverse effect of gel fracturing fluid on gas sorption behavior for Illinois coal. Int. J. Coal Sci. Technol. 2021, 8, 1250–1261. [Google Scholar] [CrossRef]
- Tao, S.; Chen, S.; Tang, D.; Zhao, X.; Xu, H.; Li, S. Material composition, pore structure and adsorption capacity of low-rank coals around the first coalification jump: A case of eastern Junggar Basin, China. Fuel 2018, 211, 804–815. [Google Scholar] [CrossRef]
- Wang, G.; Chen, X.; Wang, S.; Chen, H. Influence of fracture connectivity and shape on water seepage of low-rank coal based on CT 3D reconstruction. J. Nat. Gas Sci. Eng. 2022, 102, 104584. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, G.; Wang, Y.; Zhang, X.; Li, K.; Guo, W.; Du, F. A numerical investigation of hydraulic fracturing on coal seam permeability based on PFC-COMSOL coupling method. Int. J. Coal Sci. Technol. 2022, 9, 10. [Google Scholar] [CrossRef]
- Nie, B.; Liu, X.; Yang, L.; Meng, J.; Li, X. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy. Fuel 2015, 158, 908–917. [Google Scholar] [CrossRef]
- Qu, Z.; Wang, G.G.; Jiang, B.; Rudolph, V.; Dou, X.; Li, M. Experimental study on the porous structure and compressibility of tectonized coals. Energy Fuels 2010, 24, 2964–2973. [Google Scholar] [CrossRef]
- Tao, S.; Zhao, X.; Tang, D.; Deng, C.; Meng, Q.; Cui, Y. A model for characterizing the continuous distribution of gas storing space in low-rank coals. Fuel 2018, 233, 552–557. [Google Scholar] [CrossRef]
- Marsden, H.; Basu, S.; Striolo, A.; MacGregor, M. Advances of nanotechnologies for hydraulic fracturing of coal seam gas reservoirs: Potential applications and some limitations in Australia. Int. J. Coal Sci. Technol. 2022, 9, 27. [Google Scholar] [CrossRef]
- Yu, S.; Bo, J.; Ming, L.; Ho, C.; Xu, S. A review on pore-fractures in tectonically deformed coals. Fuel 2020, 278, 118248. [Google Scholar] [CrossRef]
- Ye, J.; Tao, S.; Li, S.; Tang, D.; Wang, J.; Xu, H. Abnormal adsorption and desorption of nitrogen at 77 K on coals: Study of causes and improved experimental method. J. Nat. Gas Sci. Eng. 2019, 70, 102940. [Google Scholar] [CrossRef]
- Tao, S.; Tang, D.; Xu, H.; Li, S.; Geng, Y.; Zhao, J.; Wu, S.; Meng, Q.; Kou, X.; Yang, S. Fluid velocity sensitivity of coal reservoir and its effect on coalbed methane well productivity: A case of Baode Block, northeastern Ordos Basin, China. J. Pet. Sci. Eng. 2017, 152, 229–237. [Google Scholar] [CrossRef]
- Li, S.; Tang, D.; Pan, Z.; Xu, H.; Tao, S.; Liu, Y.; Ren, P. Geological conditions of deep coalbed methane in the eastern margin of the Ordos Basin, China: Implications for coalbed methane development. J. Nat. Gas Sci. Eng. 2018, 53, 394–402. [Google Scholar] [CrossRef]
- Ye, J.; Tao, S.; Zhao, S.; Li, S.; Chen, S.; Cui, Y. Characteristics of methane adsorption/desorption heat and energy with respect to coal rank. J. Nat. Gas Sci. Eng. 2022, 99, 104445. [Google Scholar] [CrossRef]
- Li, Y.; Song, D.; Liu, S.; Ji, X.; Hao, H. Evaluation of pore properties in coal through compressibility correction based on mercury intrusion porosimetry: A practical approach. Fuel 2021, 291, 120130. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, X.; Li, X.; Qi, L.; Zhang, G. Experimental analysis of the effect of temperature on coal pore structure transformation. Fuel 2021, 305, 121613. [Google Scholar] [CrossRef]
- Liu, S.; Ma, J.; Sang, S.; Wang, T.; Du, Y.; Fang, H. The effects of supercritical CO2 on mesopore and macropore structure in bituminous and anthracite coal. Fuel 2018, 223, 32–43. [Google Scholar] [CrossRef]
- Okolo, G.N.; Everson, R.C.; Neomagus, H.W.; Roberts, M.J.; Sakurovs, R. Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques. Fuel 2015, 141, 293–304. [Google Scholar] [CrossRef]
- Jing, D.; Meng, X.; Ge, S.; Zhang, T.; Ma, M.; Tong, L. Reconstruction and seepage simulation of a coal pore-fracture network based on CT technology. PLoS ONE 2021, 16, e0252277. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Liu, D.; Xie, S. Quantitative characterization of methane adsorption on coal using a low-field NMR relaxation method. Int. J. Coal Geol. 2014, 131, 32–40. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, C.; Huang, L.; Zhang, D.; Wang, D.; Wang, D. Paleogeography reconstruction of a multi-stage modified intra-cratonic basin—A case study from the Jurassic Ordos Basin, Western North China Craton. J. Asian Earth Sci. 2020, 190, 104191. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Miao, P.; Chen, L.; Zhao, H.; Wang, C.; Yang, J. Relationship between the tectono-thermal events and sandstone-type uranium mineralization in the southwestern Ordos Basin, Northern China: Insights from apatite and zircon fission track analyses. Ore Geol. Rev. 2022, 143, 104792. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Luo, X.; Hu, G. Paleokarst reservoirs and gas accumulation in the Jingbian field, Ordos Basin. Mar. Pet. Geol. 2008, 25, 401–415. [Google Scholar] [CrossRef]
- Dai, J.; Li, J.; Luo, X.; Zhang, W.; Hu, G.; Ma, C.; Guo, J.; Ge, S. Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos Basin, China. Org. Geochem. 2005, 36, 1617–1635. [Google Scholar] [CrossRef]
- Liu, Q.; Jin, Z.; Meng, Q.; Wu, X.; Jia, H. Genetic types of natural gas and filling patterns in Daniudi gas field, Ordos Basin, China. J. Asian Earth Sci. 2015, 107, 1–11. [Google Scholar] [CrossRef]
- Chen, H.; Tian, W.; Chen, Z.; Zhang, Q.; Tao, S. Genesis of Coalbed Methane and Its Storage and Seepage Space in Baode Block, Eastern Ordos Basin. Energies 2021, 15, 81. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, D.; Che, Y.; Tang, D.; Tang, S.; Huang, W. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR). Fuel 2010, 89, 1371–1380. [Google Scholar] [CrossRef]
- Jin, P.; Hu, Y.; Shao, J.; Liu, Z.; Feng, G.; Song, S. Influence of temperature on the structure of pore–fracture of sandstone. Rock Mech. Rock Eng. 2020, 53, 1–12. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, Y.; Duan, M.; Guo, X.; Chen, Y.; Yang, Y. Experimental study on the evolution of pore-fracture structures and mechanism of permeability enhancement in coal under cyclic thermal shock. Fuel 2021, 304, 121455. [Google Scholar] [CrossRef]
- Clarkson, C.; Bustin, R. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study. 1. Isotherms and pore volume distributions. Fuel 1999, 78, 1333–1344. [Google Scholar] [CrossRef]
- Qi, L.; Tang, X.; Wang, Z.; Peng, X. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. Int. J. Min. Sci. Technol. 2017, 27, 371–377. [Google Scholar] [CrossRef]
- Liu, S.-Q.; Sang, S.-X.; Liu, H.-H.; Zhu, Q.-P. Growth characteristics and genetic types of pores and fractures in a high-rank coal reservoir of the southern Qinshui basin. Ore Geol. Rev. 2015, 64, 140–151. [Google Scholar] [CrossRef]
- Wang, G.; Shen, J.; Liu, S.; Jiang, C.; Qin, X. Three-dimensional modeling and analysis of macro-pore structure of coal using combined X-ray CT imaging and fractal theory. Int. J. Rock Mech. Min. Sci. 2019, 123, 104082. [Google Scholar] [CrossRef]
- Wang, G.; Qin, X.; Han, D.; Liu, Z. Study on seepage and deformation characteristics of coal microstructure by 3D reconstruction of CT images at high temperatures. Int. J. Min. Sci. Technol. 2021, 31, 175–185. [Google Scholar] [CrossRef]
- Liu, W.; Wang, G.; Han, D.; Xu, H.; Chu, X. Accurate characterization of coal pore and fissure structure based on CT 3D reconstruction and NMR. J. Nat. Gas Sci. Eng. 2021, 96, 104242. [Google Scholar] [CrossRef]
- Lai, F.; Li, Z.; Dong, H.; Jiang, Z.; Mao, G. Micropore structure characteristics and water distribution in a coalbed methane reservoir. Aust. J. Earth Sci. 2019, 66, 741–750. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, S.; Tang, S.; Li, Z.; Wang, K.; Yi, Y.; Dang, F.; Hu, Q. Prediction Model of Coal Reservoir Pressure and its Implication for the Law of Coal Reservoir Depressurization. Acta Geol. Sin. Engl. Ed. 2019, 93, 692–703. [Google Scholar] [CrossRef]
- Wang, G.; Qin, X.; Shen, J.; Zhang, Z.; Han, D.; Jiang, C. Quantitative analysis of microscopic structure and gas seepage characteristics of low-rank coal based on CT three-dimensional reconstruction of CT images and fractal theory. Fuel 2019, 256, 115900. [Google Scholar] [CrossRef]
Sample No. | Formation | Coal Composition (%) | Ro (%) | Proximate Analysis (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Vitrinite | Inertinite | Liptinite | Mineral | Mad | Aad | Vad | FCad | |||
G11-5-1 | Shanxi Formation | 68.27 | 25.00 | 4.49 | 2.56 | 2.04 | 1.71 | 6.57 | 6.61 | 85.11 |
G11-5-6 | 80.24 | 15.42 | 1.19 | 3.16 | 2.12 | 1.56 | 6.74 | 6.08 | 85.62 | |
G11-5-9 | 75.38 | 20.45 | 3.03 | 1.14 | 2.07 | 1.43 | 27.51 | 8.12 | 62.94 | |
G11-5-11 | 60.67 | 24.34 | 5.24 | 9.74 | 2.16 | 1.54 | 18.28 | 6.90 | 73.28 |
Sample No. | NMR | X-ray CT | ||||
---|---|---|---|---|---|---|
φ1 (%) | Sir (%) | Sw (%) | φ2 (%) | φ3 (%) | Direction | |
G11-5-1 | 4.50 | 93.86 | 6.14 | 4.43 | 1.90 | X, Y |
G11-5-6 | 4.93 | 93.57 | 6.43 | 4.18 | 2.15 | X, Y |
G11-5-9 | 5.28 | 95.90 | 4.10 | 5.17 | 1.98 | X, Y |
G11-5-11 | 6.20 | 94.72 | 5.28 | 5.43 | 4.07 | X, Y |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Ding, R.; Tian, W.; Ye, J. Multiscale Fine Characterization of a Coal Pore–Fracture System Based on SEM, CT, and NMR in the Jingbian Block, Ordos Basin. Energies 2023, 16, 5315. https://doi.org/10.3390/en16145315
Zhao S, Ding R, Tian W, Ye J. Multiscale Fine Characterization of a Coal Pore–Fracture System Based on SEM, CT, and NMR in the Jingbian Block, Ordos Basin. Energies. 2023; 16(14):5315. https://doi.org/10.3390/en16145315
Chicago/Turabian StyleZhao, Suping, Rong Ding, Wenguang Tian, and Jincheng Ye. 2023. "Multiscale Fine Characterization of a Coal Pore–Fracture System Based on SEM, CT, and NMR in the Jingbian Block, Ordos Basin" Energies 16, no. 14: 5315. https://doi.org/10.3390/en16145315
APA StyleZhao, S., Ding, R., Tian, W., & Ye, J. (2023). Multiscale Fine Characterization of a Coal Pore–Fracture System Based on SEM, CT, and NMR in the Jingbian Block, Ordos Basin. Energies, 16(14), 5315. https://doi.org/10.3390/en16145315