Triple-Objective Optimization of SCO2 Brayton Cycles for Next-Generation Solar Power Tower
Abstract
:1. Introduction
2. Methods
2.1. Thermodynamic Simulation Model
- (1)
- The cycles always maintained stable operation [38].
- (2)
- The potential energy and kinetic energy of each cycle was maintained unaltered [39].
- (3)
- Heat dissipations and pressure reductions in the cycle were insignificant [40].
- (4)
- The effectiveness model was suitable while modeling the regenerator [41].
- (5)
- The cycle performance was not influenced by the mass flow rate of SCO2 [42].
2.1.1. Modeling of the Two SCO2 Brayton Cycles
2.1.2. Model Validation
2.2. Cycle Performance Indexes
2.3. Optimization Approach
3. Results and Discussion
3.1. Variable Analysis
3.1.1. Influences of the Maximum Cycle Pressure
3.1.2. Influences of the Minimum Cycle Pressure
3.1.3. Influences of the Regenerator Effectiveness
3.1.4. Influences of the SCO2 Split Ratio
3.2. Results of the Triple-Objective Optimization
3.2.1. Pareto Solutions for the Two SCO2 Brayton Cycles
3.2.2. Optimizing the Relations between Variables and Objectives
4. Conclusions
- (1)
- Variable analysis reveals that the minimum and maximum cycle pressures, the SCO2 split ratio, and the effectiveness of the regenerators have complex influences on the three performance indexes—thermal efficiency (ηth), specific work (w), and heat storage temperature difference (ΔT). The variation trends of the three performance indexes are different and not always monotonous. A set of certain values of the above variables cannot make the three performance indexes reach their maximum values at the same time.
- (2)
- By comparing the two Pareto solutions obtained by the triple-objective optimization, the variation relationships among the three performance indexes are obtained. It is found that the ηth of the recompression cycle exhibits a conflicting relationship with its ΔT and w. Meanwhile, there is also a conflicting relationship between ηth and ΔT in the regenerative cycle, while the changes between ηth and w do not affect each other. For the three performance indexes, the recompression cycle can produce a higher optimal ηth, while the regenerative cycle can produce a wider optimal ΔT and larger optimal w. Meanwhile, the recompression cycle could obtain the highest ηth of 55.95%, while the widest ΔT and the largest w of 396.4 °C and 180.6 kW·kg−1 can be obtained by the regenerative cycle, respectively.
- (3)
- When analyzing the distributions of the six optimized variables, it is found that the minimum and maximum cycle pressures in the two cycles have their fixed optimized values. Meanwhile, the solution of the regenerator effectiveness covers the entire optimization range, and the solution of the optimized SCO2 split ratio is concentrated in the range of 0.7–1.0. Moreover, the largest optimal w generated by the two cycles is almost the same when the optimized SCO2 split ratio is close to 1.0.
- (4)
- In realistic applications, different SCO2 cycles and corresponding optimized variables could be considered when running the SCO2 cycles with different specific performance demands. If the ηth is required to be as high as possible, the recompression cycle should be adopted, and its regenerator effectiveness should be increased, while the split ratio should be reduced. If the requirement for the ΔT or the w need to be considered as the key index, the regenerative cycle should be applied, and the optimized regenerator effectiveness should be reduced.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Notations
HTR | high temperature regenerator | SR | split ratio of SCO2 |
HTF | heat transfer fluid | s | specific entropy/kJ·kg−1 °C−1 |
IC | intercooler | Tmin | temperature at the main compressor inlet/°C |
LTR | low temperature regenerator | TA | HTF temperature in the hot tank or at the heater inlet/°C |
MC | main compressor | TB | HTF temperature in the cold tank or at the heater outlet/°C |
RC | re-compressor | T0 | ambient temperature/°C |
SPT | solar power tower | T1 | maximum temperature in the cycle/°C |
SCO2 | supercritical carbon dioxide | w | SCO2 specific work/kW·kg−1 |
A | point with the maximum cycle thermal efficiency | WMC | power consumption of the main compressor/kW |
B | point with the largest SCO2 specific work | WRC | power consumption of the re-compressor/kW |
C | point with the widest heat storage temperature difference | Wnet | net work of the cycle/kW |
h | specific enthalpy/kJ·kg−1 | WT | power generated in the turbine/kW |
i | sequence number | Xi | chromosome of the ith individual |
mSCO2 | mass flow rate of SCO2/kg·s−1 | ΔT | heat storage temperature difference/ °C |
pmax | maximum cycle pressure/MPa | ηth | thermal efficiency of the cycle/% |
pmin | minimum cycle pressure/MPa | ηMC, ηRC | isentropic efficiency of the compressor/% |
p0 | ambient pressure/MPa | ηT | isentropic efficiency of the turbine/% |
Q | heat obtained from the heater/kW | effectiveness of the regenerator |
References
- Iyer, G.; Ou, Y.; Edmonds, J.; Fawcett, A.A.; Hultman, N.; McFarland, J.; Fuhrman, J.; Waldhoff, S.; McJeon, H. Ratcheting of climate pledges needed to limit peak global warming. Nat. Clim. Chang. 2022, 12, 1129–1135. [Google Scholar] [CrossRef]
- Xiao, Y.; Bao, Y.; Yu, L.; Zheng, X.; Qin, G.; Chen, M.; He, M. Ultra-stable carbon quantum dot nanofluids as excellent spectral beam splitters in PV/T applications. Energy 2023, 273, 127159. [Google Scholar] [CrossRef]
- Zhang, P.; Qiu, Y.; Ye, C.; Li, Q. Anisotropically conductive phase change composites enabled by aligned continuous carbon fibers for full-spectrum solar thermal energy harvesting. Chem. Eng. J. 2023, 461, 141940. [Google Scholar] [CrossRef]
- PraveenKumar, S.; Agyekum, E.B.; Kumar, A.; Velkin, V.I. Performance evaluation with low-cost aluminum reflectors and phase change material integrated to solar PV modules using natural air convection: An experimental investigation. Energy 2023, 266, 126415. [Google Scholar] [CrossRef]
- Shi, X.; Zhao, X.; Wang, F.; Cheng, Z.; Dong, Y.; Xu, J. Improving overall heat transfer performance of parabolic trough solar receiver by helically convex absorber tube. Appl. Therm. Eng. 2022, 213, 118690. [Google Scholar] [CrossRef]
- Praveenkumar, S.; Agyekum, E.B.; Kumar, A.; Ampah, J.D.; Afrane, S.; Amjad, F.; Velkin, V.I. Techno-economics and the identification of environmental barriers to the development of concentrated solar thermal power plants in India. Appl. Sci. 2022, 12, 10400. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiu, Y.; Li, Q.; Henry, A. Optical-thermal-mechanical characteristics of an ultra-high-temperature graphite receiver designed for concentrating solar power. Appl. Energy 2022, 307, 118228. [Google Scholar] [CrossRef]
- Ye, K.; Li, Q.; Zhang, Y.; Qiu, Y.; Liu, B. An efficient receiver tube enhanced by a solar transparent aerogel for solar power tower. Energy 2022, 261, 125313. [Google Scholar] [CrossRef]
- Lanchi, M.; Al-Zaili, J.; Russo, V.; Falchetta, M.; Montecchi, M.; Aichmayer, L. A Quasi-Steady State Model of a Solar Parabolic Dish Micro Gas Turbine Demonstration Plant. Energies 2022, 15, 1059. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, Y.; Li, Q.; Xu, M.; Wei, X. Design and experimental study of a 30 kWe adjustable solar simulator delivering high and uniform flux. Appl. Therm. Eng. 2021, 195, 117215. [Google Scholar] [CrossRef]
- Montenon, A.C.; Meligy, R. Control Strategies Applied to a Heat Transfer Loop of a Linear Fresnel Collector. Energies 2022, 15, 3338. [Google Scholar] [CrossRef]
- Qiu, Y.; He, Y.; Wu, M.; Zheng, Z. A comprehensive model for optical and thermal characterization of a linear Fresnel solar reflector with a trapezoidal cavity receiver. Renew. Energy 2016, 97, 129–144. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Wen, Z.; Qiu, Y. An evacuated receiver partially insulated by a solar transparent aerogel for parabolic trough collector. Energy Convers. Manag. 2020, 214, 112911. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, Y.; Li, Q.; Xu, Y.; Wen, Z. A novel parabolic trough receiver enhanced by integrating a transparent aerogel and wing-like mirrors. Appl. Energy 2020, 279, 115810. [Google Scholar] [CrossRef]
- Qiu, Y.; Xu, M.; Li, Q.; Xu, Y.; Wang, J. A novel evacuated receiver improved by a spectral-selective glass cover and rabbit-ear mirrors for parabolic trough collector. Energy Convers. Manag. 2021, 227, 113589. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Z.; Duan, Y. A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle. Energy 2022, 246, 123348. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Zhang, W.; Qiu, Y.; Li, Q. Design and evaluation of a lab-scale tungsten receiver for ultra-high-temperature solar energy harvesting. Appl. Energy 2022, 327, 120135. [Google Scholar] [CrossRef]
- He, Y.L.; Qiu, Y.; Wang, K.; Yuan, F.; Wang, W.Q.; Li, M.J.; Guo, J.Q. Perspective of concentrating solar power. Energy 2020, 198, 117373. [Google Scholar] [CrossRef]
- Li, Q.; Erqi, E.; Qiu, Y. Triple-objective optimization of He Brayton cycles for ultra-high-temperature solar power tower. Energy Convers. Manag. 2022, 270, 116210. [Google Scholar] [CrossRef]
- Khatoon, S.; Kim, M.-H. Preliminary design and assessment of concentrated solar power plant using supercritical carbon dioxide Brayton cycles. Energy Convers. Manag. 2022, 252, 115066. [Google Scholar] [CrossRef]
- Yin, J.M.; Zheng, Q.Y.; Peng, Z.R.; Zhang, X.R. Review of supercritical CO2 power cycles integrated with CSP. Int. J. Energy Res. 2020, 44, 1337–1369. [Google Scholar] [CrossRef]
- Xu, J.; Liu, C.; Sun, E.; Xie, J.; Li, M.; Yang, Y.; Liu, J. Perspective of S−CO2 power cycles. Energy 2019, 186, 115831. [Google Scholar] [CrossRef]
- Yang, H.; Li, J.; Wang, Q.; Wu, L.; Rodríguez-Sanchez, M.R.; Santana, D.; Pei, G. Performance investigation of solar tower system using cascade supercritical carbon dioxide Brayton-steam Rankine cycle. Energy Convers. Manag. 2020, 225, 113430. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Y.; Zhang, X.; Xu, J. The energy-saving mechanism of coal-fired power plant with S–CO2 cycle compared to steam-Rankine cycle. Energy 2020, 195, 116965. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Huang, D. Supercritical CO2 Brayton cycle: A state-of-the-art review. Energy 2019, 189, 115900. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.-J.; Zhang, Z.-D.; Min, C.-H.; Li, P. Evaluation of alternative eutectic salt as heat transfer fluid for solar power tower coupling a supercritical CO2 Brayton cycle from the viewpoint of system-level analysis. J. Clean. Prod. 2021, 279, 123472. [Google Scholar] [CrossRef]
- Li, Q.; Erqi, E.; Qiu, Y.; Wang, J.; Zhang, Y. Conceptual design of novel He-SCO2 Brayton cycles for ultra-high-temperature concentrating solar power. Energy Convers. Manag. 2022, 260, 115618. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.J.; Guo, J.Q.; Li, P.W.; Liu, Z.B. A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants. Appl. Energy 2018, 212, 109–121. [Google Scholar] [CrossRef]
- Ehsan, M.M.; Guan, Z.; Gurgenci, H.; Klimenko, A. Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: Review and a case study. Renew. Sustain. Energy Rev. 2020, 132, 110055. [Google Scholar] [CrossRef]
- Maher, S.D.; Sarvghad, M.; Olivares, R.; Ong, T.-C.; Will, G.; Steinberg, T.A. Critical components in supercritical CO2 Brayton cycle power blocks for solar power systems: Degradation mechanisms and failure consequences. Sol. Energy Mater. Sol. Cells 2022, 242, 111768. [Google Scholar] [CrossRef]
- Guo, J.Q.; Li, M.J.; He, Y.L.; Jiang, T.; Ma, T.; Xu, J.L.; Cao, F. A systematic review of supercritical carbon dioxide (S-CO2) power cycle for energy industries: Technologies, key issues, and potential prospects. Energy Convers. Manag. 2022, 258, 115437. [Google Scholar] [CrossRef]
- Guo, J.Q.; Li, M.J.; He, Y.L.; Xu, J.L. A study of new method and comprehensive evaluation on the improved performance of solar power tower plant with the CO2-based mixture cycles. Appl. Energy 2019, 256, 113837. [Google Scholar] [CrossRef]
- Al-Sulaiman, F.A.; Atif, M. Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower. Energy 2015, 82, 61–71. [Google Scholar] [CrossRef]
- Chen, R.; Romero, M.; González-Aguilar, J.; Rovense, F.; Rao, Z.; Liao, S. Design and off-design performance comparison of supercritical carbon dioxide Brayton cycles for particle-based high temperature concentrating solar power plants. Energy Convers. Manag. 2021, 232, 113870. [Google Scholar] [CrossRef]
- Wang, K.; He, Y.L. Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 Brayton cycle based on integrated modeling. Energy Convers. Manag. 2017, 135, 336–350. [Google Scholar] [CrossRef]
- Xu, X.K.; Dehghani, G.; Ning, J.X.; Li, P.W. Basic properties of eutectic chloride salts NaCl-KCl-ZnCl2 and NaCl-KCl-MgCl2 as HTFs and thermal storage media measured using simultaneous DSC-TGA. Sol. Energy 2018, 162, 431–441. [Google Scholar] [CrossRef]
- Huber, M.L.; Lemmon, E.W.; Bell, I.H.; McLinden, M.O. The NIST REFPROP database for highly accurate properties of industrially important fluids. Ind. Eng. Chem. Res. 2022, 61, 15449–15472. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Li, Q.; Liu, L.; Liu, C. Performance of a solar thermal power plant with direct air-cooled supercritical carbon dioxide Brayton cycle under off-design conditions. Appl. Energy 2020, 261, 114359. [Google Scholar] [CrossRef]
- Habibi, H.; Zoghi, M.; Chitsaz, A.; Javaherdeh, K.; Ayazpour, M.; Bellos, E. Working fluid selection for regenerative supercritical Brayton cycle combined with bottoming ORC driven by molten salt solar power tower using energy–exergy analysis. Sustain. Energy Technol. Assess. 2020, 39, 100699. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, Z.; Li, X.; Zhao, M.; Zhao, Y. Thermodynamic design space data-mining and multi-objective optimization of SCO2 Brayton cycles. Energy Convers. Manag. 2021, 249, 114844. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, M.; Liso, V.; Samsatli, S.; Samsatli, N.J.; Jing, R.; Chen, J.; Li, N.; Zhao, Y. Parametric analysis and optimization for exergoeconomic performance of a combined system based on solid oxide fuel cell-gas turbine and supercritical carbon dioxide Brayton cycle. Energy Convers. Manag. 2019, 186, 66–81. [Google Scholar] [CrossRef]
- Khanmohammadi, S.; Kizilkan, O.; Ahmed, F.W. Tri-objective optimization of a hybrid solar-assisted power-refrigeration system working with supercritical carbon dioxide. Renew. Energy 2020, 156, 1348–1360. [Google Scholar] [CrossRef]
- Benoit, H.; López, I.P.; Gauthier, D.; Sans, J.-L.; Flamant, G. On-sun demonstration of a 750 C heat transfer fluid for concentrating solar systems: Dense particle suspension in tube. Sol. Energy 2015, 118, 622–633. [Google Scholar] [CrossRef]
- Ho, C.K. A review of high-temperature particle receivers for concentrating solar power. Appl. Therm. Eng. 2016, 109, 958–969. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Yang, X.Y.; Ye, P.; Wang, J.; Peng, W. Comparative Study of Helium Turbine Brayton Cycle and Supercritical CO2 Brayton Cycle for HTGR. In Proceedings of the International Conference on Nuclear Engineering, London, UK, 22–26 July 2018; p. V001T013A011. [Google Scholar]
- Garg, P.; Kumar, P.; Srinivasan, K. Supercritical carbon dioxide Brayton cycle for concentrated solar power. J. Supercrit. Fluids 2013, 76, 54–60. [Google Scholar] [CrossRef]
- Turchi, C.S.; Ma, Z.; Neises, T.W.; Wagner, M.J. Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems. J. Sol. Energy Eng. 2013, 135, 041007. [Google Scholar] [CrossRef]
- Neises, T.; Turchi, C. A comparison of supercritical carbon dioxide power cycle configurations with an emphasis on CSP applications. Energy Procedia 2014, 49, 1187–1196. [Google Scholar] [CrossRef] [Green Version]
- Crespi, F.; Sánchez, D.; Rodríguez, J.M.; Gavagnin, G. A thermo-economic methodology to select sCO2 power cycles for CSP applications. Renew. Energy 2020, 147, 2905–2912. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE T Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Entezari, A.; Bahari, M.; Aslani, A.; Ghahremani, S.; Pourfayaz, F. Systematic analysis and multi-objective optimization of integrated power generation cycle for a thermal power plant using Genetic algorithm. Energy Convers. Manag. 2021, 241, 114309. [Google Scholar] [CrossRef]
- Qiu, Y.; Li, M.-J.; Wang, K.; Liu, Z.-B.; Xue, X.-D. Aiming strategy optimization for uniform flux distribution in the receiver of a linear Fresnel solar reflector using a multi-objective genetic algorithm. Appl. Energy 2017, 205, 1394–1407. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; He, Y.L.; Zhu, H.H. Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts. Appl. Energy 2017, 195, 819–836. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Chen, L.; Chen, H. Characterization of dynamic fluctuations of CO2 fluid parameters at critical regions near the pseudo-critical line. Phys. Fluids 2022, 34, 062003. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Ambient pressure, p0 | 101.325 kPa |
Ambient temperature, T0 | 15 °C [19] |
HTF high temperature, TA | 760 °C [43,44] |
Maximum cycle temperature, T1 | 750 °C |
Turbine isentropic efficiency, ηT | 93% [45] |
Cycle minimum temperature, t4 for regenerative cycle, t5 for recompression cycle | 35 °C [19] |
Compressor isentropic efficiency, ηMC, ηRC | 89% [35] |
Mass flow rate of the SCO2, | 1 kg·s−1 [42] |
Process or Component | Energy Equilibrium Equations |
---|---|
Turbine | WT = ·(h1 − h2) = ·(h1 − h2S)·ηT |
Main compressor | WMC = SR··(h6 − h5) = SR··(h6S − h5)/ηMC |
Re-compressor | WRC = (1 − SR)··(h8 − h4) = (1 − SR)··(h8S − h4)/ηRC |
LTR | ɛLTR= (h3 − h4)/(h3 − hp4,T6) when T3 − T4 ≥ T7 − T6 ɛLTR = (h7 − h6)/(hp7, T3 − h6) when T3 − T4 < T7 − T6 h3 − h4 = SR·(h7 − h6) |
HTR | ɛHTR= (h2 − h3)/(h2 − hp3,T9) when T2 − T3 ≥ T10 − Tt9 ɛHTR = (h10 − h9)/(hp10,T2 − h9) when T2 − T3 < T10 − T09 h2 − h3 = h10 − h9 |
SCO2 merging | h9 =SR·h7 + (1 − SR)·h8 |
Heater | Q =·(h1 − h10) TB = (T1·T10·TA)/[T1·TA − T10·(TA − T1)] |
Net work | Wnet = WT − WMC − WRC |
Variables of SCO2 Recompression Cycle | Values |
---|---|
Minimum cycle temperature, T5 | 32 °C |
Minimum cycle pressure, pmin | 7.38 MPa |
Maximum cycle pressure, pmax | 25 MPa |
Effectiveness of the SCO2 LTR, εLTR | 95% |
Effectiveness of the SCO2 HTR, εHTR | 95% |
Efficiency of the SCO2 turbine, ηT | 93% |
Efficiency of the SCO2 compressor, ηMC, ηRC | 89% |
SCO2 split ratio, SR | optimized |
Variable | pmax | pmin | εR | εHTR | εLTR | SR |
---|---|---|---|---|---|---|
Range | 15~30 MPa | 7.4~10 MPa | 0.75~0.95 | 0.75~0.95 | 0.75~0.95 | 0.3~1 |
Variables | Settings |
---|---|
Maximum pressure, pmax | 25 MPa |
Minimum pressures, pmin | 7.4 MPa |
Regenerator effectiveness, εR | 0.95 |
HTR effectiveness, εHTR | 0.95 |
LTR effectiveness, εLTR | 0.95 |
SCO2 split ratio, SR | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.; E, E.; Li, Q. Triple-Objective Optimization of SCO2 Brayton Cycles for Next-Generation Solar Power Tower. Energies 2023, 16, 5316. https://doi.org/10.3390/en16145316
Qiu Y, E E, Li Q. Triple-Objective Optimization of SCO2 Brayton Cycles for Next-Generation Solar Power Tower. Energies. 2023; 16(14):5316. https://doi.org/10.3390/en16145316
Chicago/Turabian StyleQiu, Yu, Erqi E, and Qing Li. 2023. "Triple-Objective Optimization of SCO2 Brayton Cycles for Next-Generation Solar Power Tower" Energies 16, no. 14: 5316. https://doi.org/10.3390/en16145316
APA StyleQiu, Y., E, E., & Li, Q. (2023). Triple-Objective Optimization of SCO2 Brayton Cycles for Next-Generation Solar Power Tower. Energies, 16(14), 5316. https://doi.org/10.3390/en16145316