Degradation of Oil and Petroleum Products in Water by Bioorganic Compositions Based on Humic Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Determination of Surface-Active Properties of Humic Acids
2.3. Cultivation of Microorganisms
2.4. Preparation of Bioorganic Compositions
2.5. Investigation of the Influence of Humic Acids and Oil-Degrading Microorganisms on the Solubilization of Oil Hydrocarbons
2.5.1. Determination of the Emulsifying Ability of Humic Acids and Bioorganic Compositions In Vitro
2.5.2. Determination of the Emulsion Index of Humic Acids and Bioorganic Compositions
2.5.3. Scanning Electron Microscopy (SEM)
2.5.4. Investigation of the Stabilization of Oil Hydrocarbon Emulsions in the Presence of Humic Acids and Oil Degrading Microorganisms
2.5.5. Determination of the Physicochemical Properties of Model Toxicants
3. Results and Discussion
3.1. Determination of the Critical Concentration of Micelle Formation of Humic Acids
3.2. Study of the Effect of Humic Acids and Bioorganic Compositions on the State of Oil Hydrocarbon Films
3.3. Determination of the Emulsification Index of Humic Acids and Bioorganic Compositions
3.4. Investigation of the Stabilization of Oil Hydrocarbon Emulsions in the Presence of Bioorganic Compositions Based on Humic Acids and Oil-Degrading Microorganisms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Leung, M.Y.; Boriskina, S.; Tao, X. Advancing life cycle sustainability of textiles through technological innovations. Nat. Sustain. 2023, 6, 243–253. [Google Scholar] [CrossRef]
- Asif, Z.; Chen, Z.; An, C.; Dong, J. Environmental impacts and challenges associated with oil spills on shorelines. J. Mar. Sci. 2022, 10, 762. [Google Scholar] [CrossRef]
- Lusweti, E.; Kanda, E.K.; Obando, J.; Makokha, M. Effects of oil exploration on surface water quality—A review. Water Pract. Technol. 2022, 17, 2171–2185. [Google Scholar] [CrossRef]
- Meshalkin, V.P.; Kozlovskiy, R.A.; Kozlovskiy, M.R.; Ibatov, Y.A.; Voronov, M.S.; Kozlovskiy, I.A.; Chistyakova, T.B.; Nzioka, A.M. Experimental and Mathematical Analysis of the Kinetics of the Low-Waste Process of Butyl Lactate Synthesis. Energies 2023, 16, 1746. [Google Scholar] [CrossRef]
- Chistyakova, T.; Novozhilova, I.; Kozlov, V.; Shevchik, A. Resource and Energy Saving Control of the Steelmaking Converter Process, Taking into Account Waste Recycling. Energies 2023, 16, 1302. [Google Scholar] [CrossRef]
- Rashevskiy, N.; Sadovnikova, N.; Ereshchenko, T.; Parygin, D.; Ignatyev, A. Atmospheric Ecology Modeling for the Sustainable Development of the Urban Environment. Energies 2023, 16, 1766. [Google Scholar] [CrossRef]
- Ngene, S.; Tota-Maharaj, K. The influence of production chemicals on the quality of oilfield produced water. J. Sustain. Dev. Energy Water Environ. Syst. 2021, 9, 1080319. [Google Scholar] [CrossRef]
- Wu, Z.; Yin, K.; Wu, J.; Zhu, Z.; Duan, J.-A.; He, J. Recent advances in femtosecond laser-structured Janus membranes with asymmetric surface wettability. Nanoscale 2021, 13, 2209–2226. [Google Scholar] [CrossRef]
- Carpenter, A. Oil pollution in the North Sea: The impact of governance measures on oil pollution over several decades. Hydrobiologia 2019, 845, 109–127. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Lei, T.; Zhu, G.; Xu, F.; Yang, Z.; Meng, X.; Fang, X.; Liu, X. Efficient Degradation of polycyclic aromatic hydrocarbons over OMS-2 nanorods via PMS activation. Inorg. Chem. Commun. 2023, 149, 110420. [Google Scholar] [CrossRef]
- Yao, N.; Wang, X.; Yang, Z.; Zhao, P.; Meng, X. Characterization of solid and liquid carbonization products of polyvinyl chloride (PVC) and investigation of the PVC-derived adsorbent for the removal of organic compounds from water. J. Hazard. Mater. 2023, 456, 131687. [Google Scholar] [CrossRef]
- Yao, N.; Zhao, H.; Liu, X.; Ertürk, A.S.; Elmaci, G.; Zhao, P.; Meng, X. Synergistic adsorption and oxidative degradation of polyvinyl alcohol by acidified OMS-2: Catalytic mechanism, degradation pathway and toxicity evaluation. Sep. Purif. Technol. 2022, 302, 122047. [Google Scholar] [CrossRef]
- Michael-Igolima, U.; Abbey, S.J.; Ifelebuegu, A.O. A Systematic Review on the Effectiveness of Remediation Methods for Oil Contaminated Soils. Environ. Adv. 2022, 9, 100319. [Google Scholar] [CrossRef]
- Chi, Y.; Sun, J.; Li, T.; Ma, X. Spatial simulations of soil content, storage, and quality indices in an archipelago off the Yangtze River Estuary, China. Ecol. Indic. 2023, 146, 109774. [Google Scholar] [CrossRef]
- Dave, D.; Ghaly, A.E. Remediation technologies for marine oil spills: A critical review and comparative analysis. Am. J. Environ. Sci. 2011, 7, 423. [Google Scholar] [CrossRef] [Green Version]
- Davoodi, S.M.; Miri, S.; Taheran, M.; Brar, S.K.; Galvez-Cloutier, R.; Martel, R. Bioremediation of unconventional oil contaminated ecosystems under natural and assisted conditions: A review. Environ. Sci. Technol. 2020, 54, 2054–2067. [Google Scholar] [CrossRef] [PubMed]
- Stepanova, A.Y.; Gladkov, E.A.; Osipova, E.S.; Gladkova, O.V.; Tereshonok, D.V. Bioremediation of soil from petroleum contamination. Processes 2022, 10, 1224. [Google Scholar] [CrossRef]
- Pete, A.J.; Bharti, B.; Benton, M.G. Nano-enhanced bioremediation for oil spills: A review. ACS ES T Eng. 2021, 1, 928–946. [Google Scholar] [CrossRef]
- Rangabhashiyam, S.; Lins, P.V.d.S.; Oliveira, L.M.d.M.; Sepulveda, P.; Ighalo, J.O.; Rajapaksha, A.U.; Meili, L. Sewage sludge-derived biochar for the adsorptive removal of wastewater pollutants: A critical review. Environ. Pollut. 2022, 293, 118581. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.A.; Ibrahim, O.A.; Pei, P.; Kjeang, E. “Bleaching” glycerol in a microfluidic fuel cell to produce high power density at minimal cost. Chem. Commun. 2018, 54, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Bacosa, H.P.; Erdner, D.L.; Rosenheim, B.E.; Shetty, P.; Seitz, K.W.; Baker, B.J.; Liu, Z. Hydrocarbon degradation and response of seafloor sediment bacterial community in the northern Gulf of Mexico to light Louisiana sweet crude oil. ISME J. 2018, 12, 2532–2543. [Google Scholar] [CrossRef] [Green Version]
- Doan, C.D.; To, C.M.; De Vrieze, M.; Lynen, F.; Danthine, S.; Brown, A.; Dewettinck, K.; Patel, A.R. Chemical profiling of the major components in natural waxes to elucidate their role in liquid oil structuring. Food Chem. 2017, 214, 717–725. [Google Scholar] [CrossRef]
- Varjani, S.J. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 2017, 223, 277–286. [Google Scholar] [CrossRef]
- Eljack, M.D.; Hussam, A. Extraction and solubilization of crude oil and volatile petroleum hydrocarbons by purified humic and fulvic acids and sodium dodecylbenzenesulfonate. J. Environ. Sci. Health Part A 2014, 49, 1623–1630. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Liu, J.; Li, L.; Zhen, G.; Lu, X.; Zhang, J.; Liu, H.; Zhou, Z.; Wu, Z.; Zhang, X. Prospects for humic acids treatment and recovery in wastewater: A review. Chemosphere 2022, 312, 137193127. [Google Scholar] [CrossRef] [PubMed]
- Pensini, E.; Tchoukov, P.; Yang, F.; Xu, Z. Effect of humic acids on bitumen films at the oil-water interface and on emulsion stability: Potential implications for groundwater remediation. Colloids Surf. A Physicochem. Eng. Asp. 2018, 544, 53–59. [Google Scholar] [CrossRef]
- Molson, J.; Frind, E.; Van Stempvoort, D.; Lesage, S. Humic acid enhanced remediation of an emplaced diesel source in groundwater: 2. Numerical model development and application. J. Contam. Hydrol. 2002, 54, 277–305. [Google Scholar] [CrossRef] [PubMed]
- Lipczynska-Kochany, E. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review. Chemosphere 2018, 202, 420–437. [Google Scholar] [CrossRef]
- Lee, J.G.; Yoon, H.Y.; Cha, J.-Y.; Kim, W.-Y.; Kim, P.J.; Jeon, J.-R. Artificial humification of lignin architecture: Top-down and bottom-up approaches. Biotechnol. Adv. 2019, 37, 107416. [Google Scholar] [CrossRef]
- Robles-Mora, G.; Barrera-Cortés, J.; Valdez-Castro, L.; Solorza-Feria, O.; García-Díaz, C. Polycyclic Aromatic Hydrocarbon Sorption by Functionalized Humic Acids Immobilized in Micro-and Nano-Zeolites. Sustainability 2021, 13, 10391. [Google Scholar] [CrossRef]
- Gertsen, M.M.; Dmitrieva, E.D. Binding capacity of humic substances of peats in the relation to petroleum products in the presence of microorganisms of the genus Rhodococcus in aqueous media. Theor. Appl. Ecol. 2021, 2, 142–148. [Google Scholar] [CrossRef]
- Pham, H.T.; Chaudhary, D.K.; Jeong, S.-W.; Kim, J. Oil-degrading properties of a psychrotolerant bacterial strain, Rhodococcus sp. Y2-2, in liquid and soil media. World J. Microbiol. Biotechnol. 2018, 34, 33. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Xu, J.; Xie, W.; Yao, Z.; Yang, H.; Sun, C.; Li, X. Pseudomonas aeruginosa L10: A hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium isolated from a reed (Phragmites australis). Front. Microbiol. 2018, 9, 1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gertsen, M.M.; Dmitrieva, E.D. Utilization of hexadecane by biocomposition based on humic acids of peats and oil-degrading microorganisms of the genus Rhodococcus in aqueous media. Mor. J. Chem. 2020, 8, 392–399. [Google Scholar] [CrossRef]
- Filonov, A.E.; Kosheleva, I.A.; Samojlenko, V.A.; Shkidchenko, A.N.; Nechaeva, I.A.; Puntus, I.F.; Gafarov, A.B.; Yakshina, T.V. Biological Product for Cleaning Soils from Oil and Oil Products Pollution, Method of Its Preparation and Application. Patent 2378060 RF, 1 October 2012. [Google Scholar]
- Dmitrieva, E.D.; Leontyeva, M.M.; Siundiukova, K.V. Molekulyarno-massovoe raspredelenie guminovyh veshchestv i gimatomelanovyh kislot torfov razlichnogo genezisa Tul’skoj oblasti. Him. Rastit. Syr’ya 2017, 4, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Akatova, E.V.; Dmitrieva, E.D.; Siundiukova, K.V.; Leontyeva, M.M.; Muzafarov, E.N. Detoksiciruyushchaya sposobnost’ guminovyh veshchestv torfov razlichnogo proiskhozhdeniya po otnosheniyu k ionam tyazhelyh metallov. Him. Rastit. Syr’ya 2017, 1, 119–127. [Google Scholar]
- Dmitrieva, E.; Efimova, E.; Siundiukova, K.; Perelomov, L. Surface properties of humic acids from peat and sapropel of increasing transformation. Environ. Chem. Lett. 2015, 13, 197–202. [Google Scholar] [CrossRef]
- Cooper, D.G.; Goldenberg, B.G. Surface-active agents from two Bacillus species. Appl. Environ. Microbiol. 1987, 53, 224–229. [Google Scholar] [CrossRef] [Green Version]
- Kachala, V.V.; Khemchyan, L.L. Target-oriented analysis of gaseous, liquid and solid chemical systems by mass spectrometry, nuclear magnetic resonance spectroscopy and electron microscopy. Russ. Chem. Rev. 2013, 82, 648–685. [Google Scholar] [CrossRef]
- Kashin, A.S.; Ananikov, V.P. A SEM study of nanosized metal films and metal nanoparticles obtained by magnetron sputtering. Russ. Chem. Bull. 2011, 60, 2602–2607. [Google Scholar] [CrossRef]
- Gertsen, M.M.; Dmitrieva, E.D. Emulsifying ability of biocomposition based on humic substances and microorganisms of the genus Rhodococcus in the relation to oil. Acta Chem. IASI 2020, 28, 113–128. [Google Scholar] [CrossRef]
- Grechishcheva, N.Y.; Korolev, A.M.; Zavorotny, V.L.; Starodubtseva, K.A.; Ali, M.S. Stabilization of oil emulsions in water by highly dispersed particles: The role of oil in self-purification processes and prospects for practical application. Ros. Khim. Zhurn 2015, 59, 34–50. [Google Scholar] [CrossRef]
- ISO 3104:2020; All-Union Standard. Petroleum and Petroleum Products. Transparent and Opaque Liquids. Determination of Kinematic and Dynamic Viscosity. ISO: Geneva, Switzerland, 2020.
- Piccolo, A.; Nardi, S. Macromolecular changes of humic substances induced by interaction with organic acids. Eur. J. Soil Sci. 1996, 47, 319–328. [Google Scholar] [CrossRef]
- de Melo, B.A.G.; Motta, F.L. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater. Sci. Eng. 2016, 62, 967–974. [Google Scholar] [CrossRef]
- Nikishina, M.; Perelomov, L.; Atroshchenko, Y.; Ivanova, E.; Mukhtorov, L.; Tolstoy, P. Sorption of Fulvic Acids and Their Compounds with Heavy Metal Ions on Clay Minerals. Soil Syst. 2022, 6, 2. [Google Scholar] [CrossRef]
- Perminova, I.V.; Frimmel, F.H.; Kovalevskii, D.V.; Abbt-Braun, G.; Kudryavtsev, A.V.; Hesse, S. Development of a predictive model for calculation of molecular weight of humic substances. Water Res. 1998, 32, 872–881. [Google Scholar] [CrossRef]
- Yudina, N.V.; Savel’eva, A.V.; Lomovskij, O.I. Poverhnostno-aktivnye svojstva i biologicheskaya aktivnost’ mekhanoaktivirovannyh guminovyh kislot, vydelennyh iz torfa. Him. Interes. Ustojchivogo Razvit. 2019, 27, 437–442. [Google Scholar]
- Yue, R.; An, C. A pH-responsive phosphoprotein washing fluid for the removal of phenanthrene from contaminated peat moss in the cold region. Chemosphere 2023, 313, 137389. [Google Scholar] [CrossRef]
- Klaviņš, M.; Purmalis, O. Surface activity of humic acids depending on their origin and humification degree. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2008, 67, 493–499. [Google Scholar] [CrossRef]
- Kiss, G.; Tombácz, E.; Hansson, H.-C. Surface tension effects of humic-like substances in the aqueous extract of tropospheric fine aerosol. J. Atmos. Chem. 2005, 50, 279–294. [Google Scholar] [CrossRef]
- Rodrigues, A.; Pereira, M.; Janknecht, P.; Brito, A.; Nogueira, R. Biofilms formed on humic substances: Response to flow conditions and carbon concentrations. Bioresour. Technol. 2010, 101, 6888–6894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derjaguin, B.V.; Landau, L.D. Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes. Acta Physicochim. URSS 1941, 14, 633–662. [Google Scholar] [CrossRef]
- Verwey, E.J. Theory of the stability of lyophobic colloids. J. Phys. Colloid Chem. 1947, 51, 631–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, A.L.; Brito, A.G.; Janknecht, P.; Silva, J.; Machado, A.V.; Nogueira, R. Characterization of biofilm formation on a humic material. J. Ind. Microbiol. Biotechnol. 2008, 35, 1269–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nechaeva, I.A.; Lyong, T.M.; Satina, V.E.; Ponamoreva, O.N. Vliyanie fiziologicheskih osobennostej bakterij roda Rhodococcus na degradaciyu n-geksadekana. Izv. TulGU Estestv. Nauk. 2016, 1, 90–98. [Google Scholar]
- Grechishcheva, N.; Meshcheryakov, S. Technology for the Restoration of Soils Contaminated with Oil and Oil Products; Nature: London, UK, 2003; 258p. [Google Scholar]
Parameter | Density at 15 °C, kg/m3 | Kinematic Viscosity, mm2/c | |
---|---|---|---|
Toxicant | |||
Crude oil | 880.2 | 41.4 | |
Waste engine oil | 890.4 | 54.2 |
Variant | Crude Oil | Engine Motor Oil |
---|---|---|
HAs | 37 ± 1 | 41 ± 1 |
R.erythropolys X5 | 75 ± 1 | 64 ± 2 |
R.erythropolys S67 | 78 ± 2 | 69 ± 1 |
Pseudomonas fluorescens 142 NF | 50 ± 1 | 50 ± 2 |
«HAs + R.erythropolys X5» | 81 ± 2 | 80 ± 3 |
«HAs + R.erythropolys S67» | 83 ± 2 | 85 ± 3 |
«HAs + R.erythropolys X5 + R.erythropolys S67» | 87 ± 2 | 87 ± 1 |
«HAs + Ps. fluorescens 142 NF» | 71 ± 2 | 73 ± 2 |
«HAs + R.erythropolys X5 + R.erythropolys S67 + Ps. fluorescens 142 NF» | 94 ± 2 | 79 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gertsen, M.M.; Perelomov, L.V.; Arlyapov, V.A.; Atroshchenko, Y.M.; Meshalkin, V.P.; Chistyakova, T.B.; Reverberi, A.P. Degradation of Oil and Petroleum Products in Water by Bioorganic Compositions Based on Humic Acids. Energies 2023, 16, 5320. https://doi.org/10.3390/en16145320
Gertsen MM, Perelomov LV, Arlyapov VA, Atroshchenko YM, Meshalkin VP, Chistyakova TB, Reverberi AP. Degradation of Oil and Petroleum Products in Water by Bioorganic Compositions Based on Humic Acids. Energies. 2023; 16(14):5320. https://doi.org/10.3390/en16145320
Chicago/Turabian StyleGertsen, Maria M., Leonid V. Perelomov, Viacheslav A. Arlyapov, Yurii M. Atroshchenko, Valery P. Meshalkin, Tamara B. Chistyakova, and Andrea Pietro Reverberi. 2023. "Degradation of Oil and Petroleum Products in Water by Bioorganic Compositions Based on Humic Acids" Energies 16, no. 14: 5320. https://doi.org/10.3390/en16145320
APA StyleGertsen, M. M., Perelomov, L. V., Arlyapov, V. A., Atroshchenko, Y. M., Meshalkin, V. P., Chistyakova, T. B., & Reverberi, A. P. (2023). Degradation of Oil and Petroleum Products in Water by Bioorganic Compositions Based on Humic Acids. Energies, 16(14), 5320. https://doi.org/10.3390/en16145320