Improved Battery Balancing Control Strategy for Reconfigurable Converter Systems
Abstract
:1. Introduction
2. Structure and Working Principle of Integrated Reconfigurable Converter
2.1. Power Supply Mode
2.2. Balance Mode
3. Balancing Strategy and Control System Design
3.1. Balancing Strategy
3.2. Control System Design
3.2.1. Controller Design for the Balancing Operation When No Load Is Used
3.2.2. Controller Design for the Balancing Operation When Load Is Used
- Design of internal current control loop: In order to design the PI controller, the small-signal modeling as shown in Figure 13 is first derived.
- 2.
- Design of the outer voltage control loop: Due to the high bandwidth and fast current control characteristics of the inner loop, the transfer function of the inner current control loop can be neglected in the design of the voltage controller. Therefore, the duty cycle D can be assumed constant, and its transfer function is
4. Simulation Results
4.1. Balanced Simulation When No Load Is Used
4.2. Balanced Simulation When Using Load
- The newly proposed equalization strategy results in a significant enhancement of balancing speed, regardless of the presence or absence of load.
- Without utilizing load balancing, the equalizing current remains at 1 A. With the implementation of the new strategy, the current ripple is reduced, indicating an improvement in system stability.
- When using load, where the output voltage on the load is set to 15 V, the new balancing strategy demonstrates diminished voltage ripple, which implies an augmentation in overall system stability.
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Daowd, M.; Antoine, M.; Omar, N.; Van den Bossche, P.; Van Mierlo, J. Single Switched Capacitor Battery Balancing System Enhancements. Energies 2013, 6, 2149–2174. [Google Scholar] [CrossRef] [Green Version]
- Zun, C.-Y.; Park, S.-U.; Mok, H.-S. New Cell Balancing Charging System Research for Lithium-ion Batteries. Energies 2020, 13, 1393. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Li, S.; Mi, C.; Chen, Z.; Cao, B. SOC Based Battery Cell Balancing with a Novel Topology and Reduced Component Count. Energies 2013, 6, 2726–2740. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.-H.; Zhu, G.-R.; He, S.-J.; Qiu, S.; Ma, Y.; Wu, Q.-M.; Chen, W. Balancing Control Strategy for Li-Ion Batteries String Based on Dynamic Balanced Point. Energies 2015, 8, 1830–1847. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, Z.; Chen, Z. Smart-Leader-Based Distributed Charging Control of Battery Energy Storage Systems Considering SoC Balance. Batteries 2023, 9, 18. [Google Scholar] [CrossRef]
- Daowd, M.; Antoine, M.; Omar, N.; Lataire, P.; Van Den Bossche, P.; Van Mierlo, J. Battery Management System—Balancing Modularization Based on a Single Switched Capacitor and Bi-Directional DC/DC Converter with the Auxiliary Battery. Energies 2014, 7, 2897–2937. [Google Scholar] [CrossRef] [Green Version]
- Van, C.N.; Vinh, T.N.; Ngo, M.-D.; Ahn, S.-J. Optimal SoC Balancing Control for Lithium-Ion Battery Cells Connected in Series. Energies 2021, 14, 2875. [Google Scholar] [CrossRef]
- Cui, X.; Shen, W.; Zhang, Y.; Hu, C. A Novel Active Online State of Charge Based Balancing Approach for Lithium-Ion Battery Packs during Fast Charging Process in Electric Vehicles. Energies 2017, 10, 1766. [Google Scholar] [CrossRef] [Green Version]
- Nishijima, K.; Sakamoto, H.; Harada, K. A PWM controlled simple and high performance battery balancing system. In Proceedings of the 2000 IEEE 31st Annual Power Electronics Specialists Conference. Conference Proceedings (Cat. No. 00CH37018), Galway, Ireland, 23 June 2000; IEEE: Piscataway, NJ, USA, 2000; pp. 517–520. [Google Scholar]
- Li, S.; Mi, C.C.; Zhang, M. A high-efficiency active battery-balancing circuit using multiwinding transformer. IEEE Trans. Ind. Appl. 2012, 49, 198–207. [Google Scholar] [CrossRef]
- Cao, Y.; Qahouq, J.A.A. Hierarchical SOC balancing controller for battery energy storage system. IEEE Trans. Ind. Electron. 2020, 68, 9386–9397. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Zhong, H.; Li, J.; Zhang, W. Adaptive estimation-based hierarchical model predictive control methodology for battery active equalization topologies: Part I–Balancing strategy. J. Energy Storage 2022, 45, 103235. [Google Scholar] [CrossRef]
- Yun, Z.; Qin, W.; Shi, W.; Wu, C. Research on active state of charge balance of battery pack based on two controllable flyback converters. J. Energy Storage 2023, 57, 106183. [Google Scholar] [CrossRef]
- Li, Y.; Yin, P.; Chen, J. Active Equalization of Lithium-Ion Battery Based on Reconfigurable Topology. Appl. Sci. 2023, 13, 1154. [Google Scholar] [CrossRef]
- Engelhardt, J.; Zepter, J.M.; Gabderakhmanova, T.; Rohde, G.; Marinelli, M. Double-String Battery System with Reconfigurable Cell Topology Operated as a Fast Charging Station for Electric Vehicles. Energies 2021, 14, 2414. [Google Scholar] [CrossRef]
- Haller, S.; Alam, M.F.; Bertilsson, K. Reconfigurable Battery for Charging 48 V EVs in High-Voltage Infrastructure. Electronics 2022, 11, 353. [Google Scholar] [CrossRef]
- Karunathilake, D.; Vilathgamuwa, M.; Mishra, Y.; Corry, P.; Farrell, T.; Choi, S.S. Degradation-Conscious Multiobjective Optimal Control of Reconfigurable Li-Ion Battery Energy Storage Systems. Batteries 2023, 9, 217. [Google Scholar] [CrossRef]
- Tashakor, N.; Dusengimana, J.; Bayati, M.; Kersten, A.; Schotten, H.; Götz, S. General Decoupling and Sampling Technique for Reduced-Sensor Battery Management Systems in Modular Reconfigurable Batteries. Batteries 2023, 9, 99. [Google Scholar] [CrossRef]
- Wang, S.; Liu, D.; Zhou, J.; Zhang, B.; Peng, Y. A Run-Time Dynamic Reconfigurable Computing System for Lithium-Ion Battery Prognosis. Energies 2016, 9, 572. [Google Scholar] [CrossRef] [Green Version]
- Ci, S.; Lin, N.; Wu, D. Reconfigurable battery techniques and systems: A survey. IEEE Access 2016, 4, 1175–1189. [Google Scholar] [CrossRef]
- Xu, J.; Cao, B.; Wang, J. A Novel Method to Balance and Reconfigure Series-Connected Battery Strings. Energies 2016, 9, 766. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Zou, C.; Zhou, C.; Zhang, L. Estimation of cell SOC evolution and system performance in module-based battery charge equalization systems. IEEE Trans. Smart Grid 2018, 10, 4717–4728. [Google Scholar] [CrossRef]
- Momayyezan, M.; Hredzak, B.; Agelidis, V.G. Integrated reconfigurable converter topology for high-voltage battery systems. IEEE Trans. Power Electron. 2015, 31, 1968–1979. [Google Scholar] [CrossRef] [Green Version]
- Momayyezan, M.; Hredzak, B.; Agelidis, V.G. A load-sharing strategy for the state of charge balancing between the battery modules of integrated reconfigurable converter. IEEE Trans. Power Electron. 2016, 32, 4056–4063. [Google Scholar] [CrossRef]
- Morstyn, T.; Momayyezan, M.; Hredzak, B.; Agelidis, V.G. Distributed control for state-of-charge balancing between the modules of a reconfigurable battery energy storage system. IEEE Trans. Power Electron. 2015, 31, 7986–7995. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, S.; Fan, B. State of Charge Balancing Control for Battery System Based on the Reconfigurable Converter. In Proceedings of the 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2), Taiyuan, China, 22–24 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 4215–4220. [Google Scholar]
Selected Module | S1 | S2 | S3 | S4 | S5 | S6 |
---|---|---|---|---|---|---|
B1 | 1 | 0 | 0 | 1 | 0 | 0 |
B2 | 0 | 1 | 0 | 0 | 1 | 0 |
B3 | 0 | 0 | 1 | 0 | 0 | 1 |
B1, B2 | 1 | 0 | 0 | 0 | 1 | 0 |
B2, B3 | 0 | 1 | 0 | 0 | 0 | 1 |
B1, B2, B3 | 1 | 0 | 0 | 0 | 0 | 1 |
Mode | PI Controller Parameters |
---|---|
Balancing mode when not using load | Kpb = 0.35, Kib = 320 |
Balancing mode when using load | Kpc = 0.15, Kic = 132 Kpv = 0.063, Kiv = 8.6 |
Parameters | Size |
---|---|
VB1~VB5 | 3.7 V |
CB1~CB5 | 2 Ah |
SOC1 | 59.5% |
SOC2 | 59% |
SOC3 | 60% |
SOC4 | 58% |
SOC5 | 58.5% |
L | 2 mH |
C | 220 μF |
R | 100 Ω |
f | 20 kHz |
Balancing Strategy | Battery Equalization Time | ISE |
---|---|---|
New | 219 s | 0.267 |
Old | 415 s | 1.849 |
Balancing Strategy | Battery Equalization Time | ISE |
---|---|---|
New | 242 s | 1.686 |
Old | 416 s | 2.517 |
Balancing Strategy | Battery Equalization Time | ISE |
---|---|---|
New | 218 s | 0.268 |
Old | 411 s | 1.845 |
Balancing Strategy | Battery Equalization Time | ISE |
---|---|---|
New | 244 s | 1.683 |
Old | 413 s | 2.514 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, G.; Zhang, Q.; Li, M.; Li, S.; Fu, Z.; Liu, J.; Li, G. Improved Battery Balancing Control Strategy for Reconfigurable Converter Systems. Energies 2023, 16, 5619. https://doi.org/10.3390/en16155619
Wan G, Zhang Q, Li M, Li S, Fu Z, Liu J, Li G. Improved Battery Balancing Control Strategy for Reconfigurable Converter Systems. Energies. 2023; 16(15):5619. https://doi.org/10.3390/en16155619
Chicago/Turabian StyleWan, Guangwei, Qiang Zhang, Menghan Li, Siyuan Li, Zehao Fu, Junjie Liu, and Gang Li. 2023. "Improved Battery Balancing Control Strategy for Reconfigurable Converter Systems" Energies 16, no. 15: 5619. https://doi.org/10.3390/en16155619
APA StyleWan, G., Zhang, Q., Li, M., Li, S., Fu, Z., Liu, J., & Li, G. (2023). Improved Battery Balancing Control Strategy for Reconfigurable Converter Systems. Energies, 16(15), 5619. https://doi.org/10.3390/en16155619