Design of Zonal E/E Architectures in Vehicles Using a Coupled Approach of k-Means Clustering and Dijkstra’s Algorithm
Abstract
:1. Introduction
2. Power Supply in Zonal E/E Architectures: Basic Concepts and Research Gap
2.1. Basic Concepts: Shift in E/E Architecture
2.2. Related Work: Optimization of Vehicle Powernet in Conventional and Domain-Based Architectures
2.3. Research Gap and Contributions
3. Coupled Approach of k-Means Clustering and Dijkstra’s Algorithm for Zonal E/E Architecture Optimization
3.1. Architecture Definition
3.2. Zone Optimization
- I |xi| < |xmax|, the cluster is in the receiver group,
- if |xi| > |xmax|, the cluster is in the deliverer group,
- if |xi| = |xmax|, the cluster is in the neutral group, which is not considered in the balancing process.
3.3. Battery Optimization
3.4. Electric System Design
3.5. Cable Routing Optimization:
3.6. Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
B | Battery cell | nB,tot | Total number of battery cells |
CC,El | Cable cost, € | p1–p4 | Parameter for ZCU cost function |
cE | Cost factor for energy tra. cables | Pi | Power of a zone, W |
cI | Cost factor for information tra. cables | PC12V | Safety-critical power of a zone on 12 V, W |
CC,ZCU | Cable cost ring line ZCU, € | PC12V | Safety-critical power of a zone on 48 V, W |
CZCU | Zone control unit cost, €/Unit | Pel,SOF | Remaining electric power, W |
D | Total Euclidean distance, m | Pel,tot | Total electric power, W |
d(x) | Diameter of cable x | PVeh | Power consumption of the vehicle, W |
E | Cable for energy transmission | Si | Cluster |
EBat | Energy of the 12 V battery, J | SOFEE | State of Function of E/E architecture |
EC | Energy of a battery cell, Wh | SSB | Between-cluster variance |
ESC | Energy of the 48 V SCAP, J | SSW | Within-cluster variance |
Eel,SOF | Remaining electric energy, J | tEH | Emergency halt maneuver time, s |
Eel,tot | Total electric energy, J | xj | Data points of electric components |
EVeh | Necessary energy for the vehicle range, J | xm | Mean of all data points x |
fa | Cost factor acceleration | xmax | Max. number of data points per cluster |
fc | Cost factor material cost | |x| | Number of data points in a cluster |
fE | Cost factor for ground line | x | Vehicle length, m |
fm | Cost factor mass | y | Vehicle width, m |
fR | Cost factor Range | z | Vehicle height, m |
fV | Cost factor volume | γ | Target node |
fZCU | Cost factor ECU, € | λp,i | Physical interdependence |
g | Fitness value | λp,d | Physical dynamic |
I | Cable for information transmission | λp,m | Physical multiplicity |
k | Zone number | λv,i | Virtual interdependence |
n | Number of data points | λv,d | Virtual dynamic |
nC | Lower boundary cell number | λv,m | Virtual multiplicity |
nB,i | Number of battery cells per zone | µi | Centroid |
Appendix A
Symbol | Description | Value | Units |
---|---|---|---|
EC | Energy of a battery cell | 11.5 | Wh |
FZCU | Cost ZCU | 150 | € |
p1 | p1 of ZCU Cost Function | −0.003571 | - |
p2 | p2 of ZCU Cost Function | 0.06667 | - |
p3 | p3 of ZCU Cost Function | −0.425 | - |
p4 | p4 of ZCU Cost Function | 1.362 | - |
tEH | Emergency halt maneuver time | 30 | s |
xVeh | Vehicle length | 4.97 | m |
yVeh | Vehicle width | 2.05 | m |
zVeh | Vehicle height | 2.44 | m |
Component | Maximum el. Power Pmax [W] | Usage Time tU [%] | Average el. Power Pavg [W] | Number [-] | Reference |
---|---|---|---|---|---|
Camera | 2 | 100 | 2 | 7 | [64] |
CPU for | 96 | 100 | 96 | 2 | [64] |
DSRC (dedicated short-range communication) | 2 | 100 | 2 | 1 | [64] |
Lidar sensor | 60 | 100 | 60 | 4 | [64] |
Radar sensor | 8 | 100 | 8 | 8 | [64,65] |
Sonar/Ultrasound sensor | 0.15 | 100 | 0.15 | 2 | [64] |
Air conditioner front | - | 100 | 600 | 1 | [66] |
Anti-fog light | 35 | 0 | 0 | 3 | [67] |
Blind zone radar | 5 | 100 | 5 | 1 | [67] |
Braking light | 21 | 50 | 10.5 | 3 | [67] |
Cabin lights | 20 | 100 | 20 | 1 | [67] |
Door module | - | 100 | 360 | 2 | [66] |
Electric roof | 300 | 5 | 15 | 1 | [67] |
Front window heater | 1500 | - | 120 | 1 | [68] |
Headlamps | 60 | 100 | 60 | 2 | [67] |
Rear window heating | - | - | 120 | 1 | [69] |
Reversing light | 21 | 10 | 2.1 | 2 | [67] |
Body Control Modul | 360 | 100 | 360 | 1 | [70] |
Seats electronics | 300 | 5 | 15 | 2 | [67] |
Turning light | 21 | 20 | 4.2 | 6 | [67] |
5G Router | 68.4 | 100 | 68.4 | 1 | [71] |
GNSS | 0.55 | 100 | 0.55 | 1 | [72] |
Audio system | 25 | 100 | 25 | 1 | [67] |
Multimedia screens | 30 | 100 | 30 | 2 | [67] |
Navigation | 15 | 100 | 15 | 1 | [67] |
ABS | - | 100 | 600 | 1 | [73] |
Brake-by-wire | 1300 | - | 150 | 1 | [74] |
Cooling pump | 1200 | 100 | 500 | 1 | [68] |
Cooling radiator | 500 | 50 | 100 | 1 | [69] |
Engine ECU | - | 100 | 700 | 1 | [74] |
ESP | 7800 | - | 3000 | 1 | [66] |
Steer-by-wire | 1400 | - | 28 | 1 | [74] |
Suspension pump | 1000 | 20 | 200 | 1 | [67] |
Vehicle control unit (Control and Fusion) | 1000 | - | 750 | 1 | [74] |
Drive Modul | 13,000 | 25 | 3250 | 4 | [75] |
BMS | 24 | 100 | 24 | 1 | * |
Backup ADAS ECU | 500 | 100 | 500 | 1 | [76] |
References
- Bernhart, W.; Riederle, S.; Hotz, T.; Olschewski, I.; Busse, A. E-Mobility Index 2021. Available online: https://www.rolandberger.com/publications/publication_pdf/roland_berger_e_mobility_index_2021_en.pdf (accessed on 28 August 2023).
- Kampker, A.; Offermanns, C.; Heimes, H.; Bi, P. Meta-analysis on the Market Development of Electrified Vehicles. ATZ Worldw. 2021, 123, 58–63. [Google Scholar] [CrossRef]
- He, H.; Sun, F.; Wang, Z.; Lin, C.; Zhang, C.; Xiong, R.; Deng, J.; Zhu, X.; Xie, P.; Zhang, S.; et al. China’s battery electric vehicles lead the world: Achievements in technology system architecture and technological breakthroughs. Green Energy Intell. Transp. 2022, 1, 100020. [Google Scholar] [CrossRef]
- Katis, C.; Karlis, A. Evolution of Equipment in Electromobility and Autonomous Driving Regarding Safety Issues. Energies 2023, 16, 1271. [Google Scholar] [CrossRef]
- Lutsey, N.; Cui, H.; Rujie, Y. Evaluating Electric Vehicle Costs and Benefits in China in the 2020–2035 Time Frame; White Paper; International Council for Clean Transportation: Washington, DC, USA, 2021. [Google Scholar]
- Park, C.; Park, S. Performance Evaluation of Zone-Based In-Vehicle Network Architecture for Autonomous Vehicles. Sensors 2023, 23, 669. [Google Scholar] [CrossRef] [PubMed]
- Maul, M.; Becker, G.; Bernhard, U. Service-oriented EE zone architecture key elements for new market segments. ATZ Elektron. Worldw. 2018, 13, 36–41. [Google Scholar] [CrossRef]
- Klaus-Wagenbrenner, J. Zonal EE Architecture: Towards a Fully Automotive Ethernet–Based Vehicle Infrastructure. In Proceedings of the Automotive E/E Architecture Technology Innovation Conference, Shanghai, China, 7–8 November 2019. [Google Scholar]
- Otten, S.; Glock, T.; Hohl, C.P.; Sax, E. Model-based Variant Management in Automotive Systems Engineering. In Proceedings of the 5th IEEE International Symposium on Systems Engineering, Edinburgh, UK, 1–3 October 2019. [Google Scholar] [CrossRef]
- Mischo, S.; Kornhaas, R.; Krauter, I.; Kersken, U.; Schöttle, R. E/E architectures at the crossroads. ATZ Elektron. Worldw. 2008, 3, 10–13. [Google Scholar] [CrossRef]
- Bandur, V.; Selim, G.; Pantelic, V.; Lawford, M. Making the Case for Centralized Automotive E/E Architectures. IEEE Trans. Veh. Technol. 2021, 70, 1230–1245. [Google Scholar] [CrossRef]
- Buttle, D.; Gold, S. MCUs and Virtualization in Zone E/E Architectures. ATZ Elektron. Worldw. 2022, 17, 18–24. [Google Scholar] [CrossRef]
- Schäfer, C.; Denkelmann, R. Sustainable E/E Architecture Power Supply and Data Transmission for Autonomous Driving. ATZ Elektron. Worldw. 2018, 13, 16–21. [Google Scholar] [CrossRef]
- Robert Bosch GmbH. Vehicle Control Unit: Die Vehicle Control Unit als zentrale E/E-Architekturkomponente für Alle Powertrain Topologien. Available online: https://www.bosch-mobility.com/de/loesungen/steuergeraete/vehicle-control-unit/ (accessed on 28 August 2023).
- Vitesco Technologies GmbH. Vitesco Technologies Entwickelt Master Controller für Eine Neue Ära in der Antriebssteuerung. Available online: https://www.vitesco-technologies.com/de-de/press-events/press/tech-day-master-controller (accessed on 28 August 2023).
- Stroh, C.A. E/E-Architekturen Frischzellenkur. Available online: https://www.automotiveit.eu/exklusiv/frischzellenkur-210.html (accessed on 28 August 2023).
- Askaripoor, H.; Hashemi Farzaneh, M.; Knoll, A. E/E Architecture Synthesis: Challenges and Technologies. Electronics 2022, 11, 518. [Google Scholar] [CrossRef]
- Brunner, S.; Roder, J.; Kucera, M.; Waas, T. Automotive E/E-architecture enhancements by usage of ethernet TSN. In Proceedings of the 2017 13th Workshop on Intelligent Solutions in Embedded Systems (WISES), Hamburg, Germany, 12–13 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 9–13, ISBN 9781538611579. [Google Scholar]
- Zhu, H.; Zhou, W.; Li, Z.; Li, L.; Huang, T. Requirements-Driven Automotive Electrical/Electronic Architecture: A Survey and Prospective Trends. IEEE Access 2021, 9, 100096–100112. [Google Scholar] [CrossRef]
- Frigerio, A.; Vermeulen, B.; Goossens, K.G.W. Automotive Architecture Topologies: Analysis for Safety-Critical Autonomous Vehicle Applications. IEEE Access 2021, 9, 62837–62846. [Google Scholar] [CrossRef]
- Tomar, A.S. Modern Electrical/Electronic Infrastructure for Commercial Trucks: Generic Input/Output nodes for sensors and actuators in Commercial Trucks. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2017. [Google Scholar]
- Robert Bosch GmbH. E/E-Architecture in a Connected World; Robert Bosch GmbH: Gerlingen, Germany, 8 March 2017. [Google Scholar]
- Niklas-Höret, M. Impact of the Zone Architecture on the in Vehicle SW Distribution. Available online: https://ahkfinnland.de/filehub/deliverFile/e9a3077f-b2ce-425f-8835-a61b2e62513b/1229026/Continental_Keynote_1229026.pdf (accessed on 28 August 2023).
- Avery, G.; Dawson, J.; Dornbusch, G. Zonal Architecture: Making the Car of the future Possible; White paper; Molex: Lisle, IL, USA, 2023. [Google Scholar]
- Infineon Technologies AG. Dependable Solutions for Future Mobility and Zonal E/E Architectures; Infineon Technologies AG: Neubiberg, Germany, 2021. [Google Scholar]
- Aberl, P.; Haas, S.; Vemuri, A. How a Zone Architecture Paves the Way to a Fully Software-Defined Vehicle; White Paper. Available online: https://www.ti.com/lit/wp/spry345a/spry345a.pdf?ts=1681378174830&ref_url=https%253A%252F%252Fwww.google.com%252F (accessed on 28 August 2023).
- Cui, C.; Park, C.; Park, S. Physical Length and Weight Reduction of Humanoid In-Robot Network with Zonal Architecture. Sensors 2023, 23, 2627. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.; Kim, D.; Choi, J.; Kim, S. A Novel E/E Architecture for Low Altitude UAVs. In Proceedings of the 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 27 May–1 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 346–350, ISBN 9781665484855. [Google Scholar]
- Zaheri, D.; Niedballa, D.; Leuffen, M.; Bilkei-Gorzo, G. Practical Implementation of a Zonal E/E Architecture for Autonomous Vehicles in UNICARagil. ATZ Electron. Worldw. 2023, 18, 8–12. [Google Scholar] [CrossRef]
- Woopen, T.; Lampe, B.; Böddeker, T.; Lutz, E.; Kampmann, A.; Alrifaee, B.; Kowalewski, S.; Moormann, D.; Torben, S.; Jatzkowski, I.; et al. UNICARagil—Disruptive Modular Architectures for Agile, Automated Vehicle Concepts. In Proceedings of the 27th Aachen Colloquium Automobile and Engine Technology, Aachen, Germany, 8–10 October 2018. [Google Scholar]
- Goth, M.; Keilhoff, D.; Reuss, H.-C. Fault tolerant electric energy supply system design for automated electric shuttle bus: Band 2. In 20. Internationales Stuttgarter Symposium; Springer: Berlin/Heidelberg, Germany, 2020; pp. 441–455. [Google Scholar] [CrossRef]
- Gehringer, D.; Kuthada, T.; Wagner, A. Thermal Management System of the UNICARagil Vehicles—A Comprehensive Overview. World Electr. Veh. J. 2023, 14, 6. [Google Scholar] [CrossRef]
- Moran, R.; Sindaco, F.; Birnie, A.; Vermeulen, B. Der Plattform-Ansatz als Revolution der Fahrzeugarchitektur: Von Domänen zu Zonen: Architektur für Autonome Autos Neu Gedacht. Available online: https://www.all-electronics.de/automotive-transportation/von-domaenen-zu-zonen-architektur-fuer-autonome-autos-neu-gedacht-197.html (accessed on 28 September 2023).
- Fuchs, S. Verfahren zur Parameterbasierten Gewichtsabschätzung neuer Fahrzeugkonzepte. Ph.D. Thesis, Technische Universität München, Munich, Germany, 2014. [Google Scholar]
- Sethuraman, G. Vehicle Component Configuration Design and Packaging in Virtual Environment for Autonomous Electric Buses. Ph.D. Thesis, Tokyo University of Agriculture and Technology, Tokyo, Japan, 2019. [Google Scholar]
- Fay, T.-A. Methodischer Technologieverleich von Systemkonzepten für die Elektrifizierung von Stadtbussen. Ph.D. Thesis, Technical University of Berlin, Berlin, Germany, 2019. [Google Scholar]
- Berthold, K. Techno-Ökonomische Auslegungsmethodik für die Elektrifizierung Urbaner Busnetze; Karlsruhe Institute of Technology: Karlsruhe, Germany, 2019. [Google Scholar]
- Lübke, A. Systematischer Bordnetzentwurf: Optimierung der Bordnetzarchitektur mit Hilfe von Genetischen Algorithmen; Technische Universität Dresden: Dresden, Germany, 1999; ISBN 3896535609. [Google Scholar]
- Diebig, M. Entwicklung einer Methodik zur Simulationsbasierten Dimensionierung von Kfz-Bordnetzen. Ph.D. Thesis, Technical University of Dortmund, Dortmund, Germany, 2016. [Google Scholar]
- Wang, J. Simulationsumgebung zur Bewertung von Bornetz-Architekturen mit Hochleistungsverbrauchern. Ph.D. Thesis, University of Kassel, Kassel, Germany, 2016. [Google Scholar]
- Zhu, Z.; La Rocca, G.; van Tooren, M.J.L. A methodology to enable automatic 3D routing of aircraft Electrical Wiring Interconnection System. CEAS Aeronaut. J. 2017, 8, 287–302. [Google Scholar] [CrossRef]
- Braun, L. Modellbasierte Design-Space-Exploration Nicht-Funktionaler Auslegungskriterien des Fahrzeugenergiebordnetzes. Ph.D. Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2018. [Google Scholar]
- Becker, J.N. Dimensioning and Optimization of Hybrid Li-Ion Battery Systems with different Optimization Goals; RWTH Aachen University: Aachen, Germany, 2017. [Google Scholar]
- Frank, F. Optimierter Hochvoltbatterieentwurf Hinsichtlich Mechanischer, Thermischer und Elektrischer Randbedingungen unter Berücksichtigung der Produktionskosten. Ph.D. Thesis, University of Duisburg-Essen, Duisburg, Germany, 2019. [Google Scholar]
- Meyer, G. Schlüsselrolle der EE-Architektur und der Bordnetze für das Automobil der Zukunft; White Paper. Available online: https://www.strategiekreis-automobile-zukunft.de/files/enova-position-bordnetze-und-fahrzeugarchitektur.pdf (accessed on 28 September 2023).
- Müller, M. Zonen-Basierte E/E-Architektur im Fokus: Automatisiertes und Vernetztes Fahren; HANSER Automotive: Ulm, Germany, 2021; pp. 26–28. [Google Scholar]
- Zoox Inc. Introducing Zoox: Built for Riders, Not Drivers. Available online: https://zoox.com/vehicle/ (accessed on 28 August 2023).
- LOHR Group. Le Cristal: Mobilitätslösung 100% Elektrisch, Flexibel und Vernetzt. Available online: https://www.lohr.fr/uploads/2023/05/d18647c-2023-03-plaquette-cristal-de.pdf (accessed on 28 August 2023).
- Maier, J.; Reuss, H.-C. A Framework for Optimizing the Wiring Harness of Automated Electric Vehicles. In Proceedings of the 6th Shanghai-Stuttgart-Symposium, Shanghai, China, 1–2 December 2022. [Google Scholar]
- Bornemann, M. Zone Controllers Build Bridge to Tomorrow’s Technology; White Paper. Available online: https://www.aptiv.com/docs/default-source/white-papers/2021_aptiv_whitepaper_zonecontroller.pdf?sfvrsn=c1f9163d_23 (accessed on 28 August 2023).
- Liebetrau, T. E/E Architecture Transformation How it impacts value chain and networking technologies. In Proceedings of the AmE 2022: Automotive Meets Electronics: 13th GMM-Symposium, Dortmund, Germany, 29–30 September 2022; Wahl, M., Stockem, A., Eds.; VDE Verlag Gmbh: Offenbach, Germany, 2022. ISBN 9783800759552. [Google Scholar]
- Surjekar, N.N.; Patwardhan, Y.; Konduju, V. A Case Study on Migrating towards Functionally Safe Zonal Architecture using MBSE. In Proceedings of the 33rd Annual INCOSE International Symposium, Honolulu, HI, USA, 15–20 July 2023; Wiley: Hoboken, NJ, USA, 2023; Volume 33, pp. 1403–1417. [Google Scholar] [CrossRef]
- Maier, J.; Reuss, H.-C. Handling System Complexity in Zonal E/E Architectures. Transp. Eng. 2023, 13, 100195. [Google Scholar] [CrossRef]
- Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inform. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. k-means++: The advantages of careful seeding. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–9 January 2007; pp. 1027–1035. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Computat. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- SAE International. Taxonomy and Definition for Terms Related to Driving Automation Systems for On-Road Motor Vehicles; Revision April 2021 (J3016); SAE International: Warrendale, PA, USA, 2021. [Google Scholar]
- Asp, L.E.; Bouton, K.; Carlstedt, D.; Duan, S.; Harnden, R.; Johannisson, W.; Johansen, M.; Johansson, M.K.G.; Lindbergh, G.; Liu, F.; et al. A Structural Battery and its Multifunctional Performance. Adv. Energy Sustain. Res. 2021, 2, 2000093. [Google Scholar] [CrossRef]
- Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. In Edsger Wybe Dijkstra: His Life, Work, and Legacy; ACM Books: New York, NY, USA, 2022; pp. 287–290. [Google Scholar] [CrossRef]
- Neckenich, J. 3D-Master-Leitungssatz—Konzept zur Entwicklung von Leitungssätzen als 3D-Masterin Einem Realistischen, Vollständigen DMU-Modell. Ph.D. Thesis, Saarland University, Saarbrücken, Germany, 2017. [Google Scholar]
- Riesener, M.; Dölle, C.; Keuper, A.; Fruntke, M.; Schuh, G. Quantification of complexity in cyber-physical systems based on key figures. Procedia CIRP 2021, 100, 445–450. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Xiong, H.; Gao, X.; Wu, J. Understanding of Internal Clustering Validation Measures. In Proceedings of the 2010 IEEE International Conference on Data Mining, Sydney, Australia, 13–17 December 2010; IEEE: Piscataway, NJ, USA, 2010. ISBN 9781424491315. [Google Scholar]
- Calinski, T.; Harabasz, J. A dendrite method for cluster analysis. Comm. Stats.-Theory Methods 1974, 3, 1–27. [Google Scholar] [CrossRef]
- Gawron, J.H.; Keoleian, G.A.; de Kleine, R.D.; Wallington, T.J.; Kim, H.C. Life Cycle Assessment of Connected and Automated Vehicles: Sensing and Computing Subsystem and Vehicle Level Effects. Environ. Sci. Technol. 2018, 52, 3249–3256. [Google Scholar] [CrossRef] [PubMed]
- Kutila, M.; Virtanen, A.; Tarkiainen, M.; Peussa, P. Sensor System Power Adaptation for Automated Vehicles. In Proceedings of the 2019 IEEE 15th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 5–7 September 2019; Nedevschi, S., Potolea, R., Slavescu, R.R., Eds.; IEEE: Piscataway, NJ, USA, 2019. ISBN 9781728149141. [Google Scholar]
- Kohler, T.P. Prädiktives Leistungsmanagement in Fahrzeugbordnetzen; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2014; ISBN 9783658050115. [Google Scholar]
- Kavalchuk, I.; Arisoy, H.; Stojcevski, A.; Maun Than Oo, A. Advanced Simulation of Power Consumption of Electric Vehicles. Int. J. Electr. Comput. Electron. Commun. Eng. 2015, 9, 53–59. [Google Scholar]
- Wallentowitz, H.; Reif, K. Handbuch Kraftfahrzeugelektronik: Grundlagen, Komponenten, Systeme, Anwendungen; Wallentowitz, H., Ed.; Vieweg: Wiesbaden, Germany, 2006; ISBN 352803971X. [Google Scholar]
- Bosch Automotive Electrics and Automotive Electronics; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2014; ISBN 9783-658017835.
- Bosch Engineering. Body Computer Module (BCM); Data Sheet. Available online: https://www.bosch-engineering.cn/media/de/pdfs/einsatzgebiete_1/produktdatenblaetter/110621_BEG-BCM_EN.pdf (accessed on 5 September 2023).
- Sierra Wireless, S.A. AirLink® XR90—Router Specifications; Data Sheet. Available online: https://www.sierrawireless.com/router-solutions/xr90#specs (accessed on 5 September 2023).
- TerrisGPS. Harxon HX-AULT006 High-Precision GNSS Vehicle Antenna; Data Sheet. Available online: https://www.terrisgps.com/product/harxon-hx-ault006/ (accessed on 5 September 2023).
- Heinemann, D. Strukturen von Batterie- und Energiemanagementsystemen mit Bleibatterien und Ultracaps. Ph.D. Thesis, Technical University of Berlin, Berlin, Germany, 2007. [Google Scholar]
- Schumi, S.; Graf, A. Energy and Supply Concepts for Automated Drving. In Proceedings of the AmE 2018—Automotive Meets Electronics, 9th GMM-Symposium, Dortmund, Germany, 7–8 March 2018; VDE: Berlin, Germany, 2018; pp. 95–99, ISBN 3800745240. [Google Scholar]
- Harkort, C.; Kesselgruber, D.; Kraus, M.; Moseberg, J.; Wuebbolt-Gorbatenko, B. Mobil in der stadt von morgen: Die Verschmelzung von Antrieb und Chassis. In Mobility for Tomorrow; Schaeffler Technologies AG & Co., KG: Herzogenaurach, Germany, 2018; p. 397. [Google Scholar]
- Grubmüller, S.; Stettinger, G.; Nešić, D.; Watzenig, D. Concepts for improved availability and computational power in automated driving. Elektrotech. Inftech. 2018, 135, 316–321. [Google Scholar] [CrossRef]
Reference | Traction Battery | Wiring Harness | DC/DC-Converter | LV-Battery | Electric Loads | Packaging | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E | M | V | E | M | R | V | E | M | V | E | M | V | E | M | V | ||
[34] | x | x | x | x | x | x | x | x | x | x | |||||||
[35] | x | x | x | x | x | x | x | ||||||||||
[36] | x | x | x | x | |||||||||||||
[37] | x | x | x | x | |||||||||||||
[38] | x | x | |||||||||||||||
[39] | x | ||||||||||||||||
[40] | x | x | x | x | |||||||||||||
[41] | x | x | x | ||||||||||||||
[42] | x | x | x | x | x | x | x | x | x | x | |||||||
[43] | x | x | x | ||||||||||||||
[44] | x | x |
Zone Number k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
ΛEE | 0.029 | 0.392 | 0.518 | 0.527 | 0.555 | 0.595 | 0.631 | 0.629 |
SOFEE | - | 0.437 | 0.558 | 0.624 | 0.669 | 0.717 | 0.701 | 0.767 |
Balance | - | 0.937 | 0.82 | 0.871 | 0.847 | 0.866 | 0.76 | 0.773 |
Flexibility | - | 100.5 | 62.01 | 32.7 | 45.2 | 29.0 | 28.9 | 24.6 |
Zone Number k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
mWH in kg | 58.48 | 23.6 | 22.92 | 16.93 | 16.4 | 15.74 | 14.49 | 14.77 |
mWH,I in kg | 7.08 | 6.12 | 6.45 | 6.68 | 6.23 | 6.24 | 6.38 | 6.60 |
mWH,E in kg | 51.40 | 17.48 | 16.47 | 10.25 | 10.17 | 9.50 | 8.11 | 8.17 |
LWH in m | 529.0 | 467.8 | 499.0 | 514.8 | 492.2 | 503.0 | 523.2 | 546.6 |
LWH,I in m | 236.0 | 204.0 | 215.2 | 222.8 | 207.8 | 208.2 | 212.8 | 220.2 |
LWH,E in m | 293.0 | 263.8 | 283.8 | 292.0 | 284.4 | 294.8 | 310.4 | 326.4 |
Zone Number k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
CEE in EUR | 13,160 | 11,535 | 11,520 | 11,242 | 11,265 | 11,285 | 11,271 | 11,308 |
CWH,I in EUR | 177.0 | 153.0 | 161.4 | 167.1 | 155.85 | 156.15 | 159.6 | 165.15 |
CWH,E in EUR | 2570.0 | 874.3 | 823.6 | 512.7 | 508.5 | 475.3 | 405.8 | 408.5 |
CZCU | 150.0 | 225.0 | 265.7 | 300.1 | 343.0 | 396.7 | 450.4 | 480.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maier, J.; Reuss, H.-C. Design of Zonal E/E Architectures in Vehicles Using a Coupled Approach of k-Means Clustering and Dijkstra’s Algorithm. Energies 2023, 16, 6884. https://doi.org/10.3390/en16196884
Maier J, Reuss H-C. Design of Zonal E/E Architectures in Vehicles Using a Coupled Approach of k-Means Clustering and Dijkstra’s Algorithm. Energies. 2023; 16(19):6884. https://doi.org/10.3390/en16196884
Chicago/Turabian StyleMaier, Jonas, and Hans-Christian Reuss. 2023. "Design of Zonal E/E Architectures in Vehicles Using a Coupled Approach of k-Means Clustering and Dijkstra’s Algorithm" Energies 16, no. 19: 6884. https://doi.org/10.3390/en16196884
APA StyleMaier, J., & Reuss, H. -C. (2023). Design of Zonal E/E Architectures in Vehicles Using a Coupled Approach of k-Means Clustering and Dijkstra’s Algorithm. Energies, 16(19), 6884. https://doi.org/10.3390/en16196884