Study on Regional Differences of Carbon Emission Efficiency: Evidence from Chinese Construction Industry
Abstract
:1. Introduction
2. Literature Review
2.1. Static Study on Carbon Emission Efficiency in Building Field
2.2. Dynamic Study on Carbon Emission Efficiency in Building Field
3. Methods
3.1. Models
3.1.1. SBM Model of Carbon Emission in Construction Industry
3.1.2. Malmquist Index Model
3.2. Data Resources
3.3. Variables
4. Results
4.1. Static Analysis of Carbon Emission Efficiency in the Construction Industry
4.2. Dynamic Analysis of Carbon Emission Efficiency in the Construction Industry
5. Discussion
- North China: Technology-Driven Developments, but Room for Growth in Economies of Scale.
- 2.
- Northeast China: Fluctuating Indices with a Call for a Stable Developmental Directive.
- 3.
- East China: High Technical Efficiency with Scope for Technological Enhancement.
- 4.
- Central China: Reliant on Technical Efficiency with a Necessity for Scale and Technological Advancement.
- 5.
- South China: Predicated on Technological Advancements with Room for Enhanced Technical Efficiency.
- 6.
- Southwest China: Technical Efficiency-Centric with a Need for Technological Upgrades.
- 7.
- Northwest China: Scale-Efficiency-Driven with Imperative Technological and Managerial Advancements.
6. Conclusions
6.1. Reflection on Methodology
- (1)
- Leveraging the existing body of research, this paper employs the SBM (Slacks-Based Measure) model method. This approach effectively addresses the limitations of the traditional DEA (Data Envelopment Analysis) model, which fails to accommodate unexpected outputs, offering a more robust mechanism for gauging input-output slack. Coupled with the Malmquist index, it facilitates a nuanced analysis of the temporal dynamics of carbon emission efficiency, rendering a lucid appraisal of efficiency shifts across Chinese provinces over time.
- (2)
- This research analyzes carbon emission data spanning 2010 to 2019 from 30 Chinese provinces. Drawing upon established research and integrating insights from the input-output practices prevalent in the construction industry, we devised a cogent model index system. This encompasses input factors, desired outputs, and undesirable outputs, paving the way for a comprehensive examination of regional variances in carbon emission efficiency over time, pivotal driving factors, and avenues for enhancement.
6.2. Limitations and Future Research Directions
- (1)
- Given the lack of comprehensive national data on cumulative carbon emissions in the construction sector, this study narrows its examination to direct carbon emissions, excluding indirect emissions from auxiliary sectors such as electricity, heat, and gas. It is advocated that future research extend the geographical scope of the analysis to provide a more encompassing insight into the industry’s carbon emission efficiency.
- (2)
- Going forward, a profound investigation into the factors affecting carbon emission efficiency is imperative. This initiative seeks to illuminate regional disparities, thereby aiding in the crafting of nuanced policy measures to enhance efficiency across the construction sector.
- (3)
- This study sheds light on the regional subtleties of carbon emission efficiency within China’s construction sector. It suggests that ensuing research employ case studies of leading construction firms as a tactic to extrapolate findings to a micro-level, thus deepening the understanding from a corporate standpoint.
- (4)
- During the COVID-19 era, China’s containment policies contributed to the subdued development of the construction industry, which may, in turn, have led to a reduction in carbon dioxide emissions to some extent. Incorporating data from 2020 to 2022 in subsequent studies could reveal the impact of COVID-19 on the carbon emissions of the construction industry.
6.3. Implications
- (1)
- Championing Technological Advancements in the Construction Sector
- (2)
- Refining the Framework of Energy Supply and Consumption
- (3)
- Enhancing Carbon Emission Efficiency during Building Operations
- (1)
- Tailoring Carbon Emission Strategies to Local Contexts
- (2)
- Incentivizing High-Efficiency Regions to Pioneer Pilot Projects
- (3)
- Fostering Cross-Regional Collaboration Leveraging Urban Cluster Linkages
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Global Alliance for Buildings and Construction, International Energy Agency and the United Nations Environment Programme. 2019 Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector. 2019. Available online: https://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019 (accessed on 17 December 2022).
- Yang, L.; Yang, Y.; Zhang, X.; Tang, K. Whether China’s industrial sectors make efforts to reduce CO2 emissions from production?—A decomposed decoupling analysis. Energy 2018, 160, 796–809. [Google Scholar] [CrossRef]
- Sun, J.W. The decrease of CO2 emission intensity is decarbonization at national and global levels. Energy Policy 2005, 33, 975–978. [Google Scholar] [CrossRef]
- Mielnik, O.; Goldemberg, J. Communication The evolution of the “carbonization index” in developing countries. Energy Policy 1999, 27, 307–308. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiansheng, Q.U.; Zeng, J. A quantitative comparison and analysis on the assessment indicators of greenhouse gases emission. Acta Geogr. Sin. 2008, 18, 387–399. [Google Scholar] [CrossRef]
- Ramanathan, R. An analysis of energy consumption and carbon dioxide emissions in countries of the Middle East and North Africa. Energy 2005, 30, 2831–2842. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Z.; Zhou, P.; Zhou, D. Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach. Econ. Model. 2013, 35, 283–289. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W. The non-Archimedean CCR ratio for efficiency analysis: A rejoinder to Boyd and Färe. Eur. J. Oper. Res. 1984, 15, 333–334. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Huang, Z.M.; Sun, D.B. Polyhedral cone-ratio DEA models with an illustrative application to large commercial banks. J. Econom. 1990, 46, 73–91. [Google Scholar] [CrossRef]
- Kocher, M.G.; Luptacik, M.; Sutter, M. Measuring productivity of research in economics: A cross-country study using DEA. Socio-Econ. Plan. Sci. 2006, 40, 314–332. [Google Scholar] [CrossRef]
- Al-Eraqi, A.S.; Mustafa, A.; Khader, A.T.; Barros, C.P. Efficiency of Middle Eastern and East African seaports: Application of DEA using window analysis. Eur. J. Sci. Res. 2008, 23, 597–612. [Google Scholar]
- Tone, K.; Tsutsui, M. Dynamic DEA: A slacks-based measure approach. Omega 2010, 38, 145–156. [Google Scholar] [CrossRef]
- Tone, K. Slacks-based measure of efficiency. Handbook on Data Envelopment Analysis. 2011, 195–209. [Google Scholar]
- Chang, Y.T.; Zhang, N.; Danao, D.; Zhang, N. Environmental efficiency analysis of transportation system in China: A non-radial DEA approach. Energy Policy 2013, 58, 277–283. [Google Scholar] [CrossRef]
- Zhou, G.; Chung, W.; Zhang, X. A study of carbon dioxide emissions performance of China’s transport sector. Energy 2013, 50, 302–314. [Google Scholar] [CrossRef]
- Zhang, N.; Wei, X. Dynamic total factor carbon emissions performance changes in the Chinese transportation industry. Appl. Energy 2015, 146, 409–420. [Google Scholar] [CrossRef]
- Duan, N.; Guo, J.P.; Xie, B.C. Is there a difference between the energy and CO2 emission performance for China’s thermal power industry? A bootstrapped directional distance function approach. Appl. Energy 2016, 162, 1552–1563. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y. A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea. Energy Policy 2013, 62, 324–332. [Google Scholar] [CrossRef]
- Wang, K.; Wei, Y.M. China’s regional industrial energy efficiency and carbon emissions abatement costs. Appl. Energy 2014, 130, 617–631. [Google Scholar] [CrossRef]
- Pérez, K.; González-Araya, M.C.; Iriarte, A. Energy and GHG emission efficiency in the Chilean manufacturing industry: Sectoral and regional analysis by DEA and Malmquist indexes. Energy Econ. 2017, 66, 290–302. [Google Scholar] [CrossRef]
- Du, Q.; Deng, Y.; Zhou, J.; Wu, J.; Pang, Q. Spatial spillover effect of carbon emission efficiency in the construction industry of China. Environ. Sci. Pollut. Res. 2022, 29, 2466–2479. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, W.; Lv, X.; Chen, X.; Shen, M. Investigating interior driving factors and cross-industrial linkages of carbon emission efficiency in China’s construction industry: Based on Super-SBM DEA and GVAR model. J. Clean. Prod. 2019, 241, 118321–118322. [Google Scholar] [CrossRef]
- Zhang, A.; Qi, Y. Research on energy efficiency evaluation and emission reduction strategy of construction industry based on DEA and improved FAA. IOP Conf. Ser. Earth Environ. Sci. 2018, 199, 022065. [Google Scholar]
- Zhou, W.; Yu, W. Regional variation in the carbon dioxide emission efficiency of construction industry in China: Based on the three-stage DEA model. Discret. Dyn. Nat. Soc. 2021, 2021, 4021947. [Google Scholar] [CrossRef]
- Xue, X.; Wu, H.; Zhang, X.; Dai, J.; Su, C. Measuring energy consumption efficiency of the construction industry: The case of China. J. Clean. Prod. 2015, 107, 509–515. [Google Scholar] [CrossRef]
- Huo, T.; Tang, M.; Cai, W.; Ren, H.; Liu, B.; Hu, X. Provincial total-factor energy efficiency considering floor space under construction: An empirical analysis of China’s construction industry. J. Clean. Prod. 2020, 244, 118749. [Google Scholar] [CrossRef]
- Huang, L.; Krigsvoll, G.; Johansen, F.; Liu, Y.; Zhang, X. Carbon emission of global construction sector. Renew. Sustain. Energy Rev. 2018, 81, 1906–1916. [Google Scholar] [CrossRef]
- Zhang, M.; Li, L.; Cheng, Z. Research on carbon emission efficiency in the Chinese construction industry based on a three-stage DEA-Tobit model. Environ. Sci. Pollut. Res. 2021, 28, 51120–51136. [Google Scholar] [CrossRef]
- Liao, B.; Li, L. How can green building development promote carbon emission reduction efficiency of the construction industry?—Based on the dual perspective of industry and space. Environ. Sci. Pollut. Res. 2022, 29, 9852–9866. [Google Scholar] [CrossRef]
- Li, W.; Wang, W.; Gao, H.; Zhu, B.; Gong, W.; Liu, Y.; Qin, Y. Evaluation of regional metafrontier total factor carbon emission performance in China’s construction industry: Analysis based on modified non-radial directional distance function. J. Clean. Prod. 2020, 256, 120425. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Y.; Zhao, N.; Wang, T.; Zhang, Z. Spatial correlation network and driving effect of carbon emission intensity in China’s construction industry. Buildings 2022, 12, 201. [Google Scholar] [CrossRef]
- Erdogan, S. Dynamic nexus between technological innovation and building sector carbon emissions in the BRICS countries. J. Environ. Manag. 2021, 293, 112780. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Lu, X.; Li, Y.; Wu, M.; Bai, L.; Yu, M. Carbon emissions in China’s construction industry: Calculations, factors and regions. Int. J. Environ. Res. Public Health 2018, 15, 1220. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Ang, B.W.; Han, J.Y. Total factor carbon emission performance: A Malmquist index analysis. Energy Econ. 2010, 32, 194–201. [Google Scholar] [CrossRef]
Source | Research Object | Method | Inputs | Outputs | |
---|---|---|---|---|---|
Desirable Outputs | Undesirable Outputs | ||||
Du et al. (2022) [21] | Carbon Emission Efficiency (CEE) of the Construction Industry in 30 Provinces of China from 2005 to 2016 | SBM | Capital, labor, energy consumption, machines | GDP | Carbon emission |
Zhou et al. (2019) [22] | Total factor carbon emission efficiency (CEE) of China’s construction industry from 2003 to 2016 | SBM | Labor, capital, energy consumption | GDP | Carbon emission |
Zhang et al. (2018) [23] | Energy Efficiency (EE) of China’s Construction Industry from 2007 to 2016 | BBC | Capital stock, labor force, mechanical equipment, building energy consumption | GDP and environmental impact | |
Zhou and Yu (2021) [24] | Carbon Emission Efficiency (CEE) of China’s Construction Industry from 2003 to 2016 | Three-stage DEA | Labor, capital, technical equipment | Floor space under construction | Carbon emission |
Xue et al. (2015) [25] | Energy Efficiency (EE) of China’s Construction Industry from 2004 to 2009 | DEA-Malmquist | Coal consumption, electricity consumption | Construction value added | |
Huo et al. (2020) [26] | Total Factor Energy Efficiency (TFEE) of China’s Construction Industry from 2006 to 2015 | DEA | Labor, capital, technological level | GDP and floor space under construction |
Elements | Variable | Indicators | Data Sources |
---|---|---|---|
Inputs | Capital stock | Total asset value of construction enterprises | China Construction Industry Statistical Yearbook |
Labor force | Number of employees in construction enterprises | China Statistical Yearbook | |
Energy consumption | 11 types of energy converted into standard coal quantity | China Energy Statistical Yearbook | |
Mechanical equipment | Total power of self-owned construction machinery and equipment at the end of the year | China Construction Industry Statistical Yearbook | |
Building materials | Total value of materials used in the construction industry | China Construction Industry Statistical Yearbook | |
Desirable output | Gross output of building industry | Gross Domestic Product of the Construction Industry | China Construction Industry Statistical Yearbook |
Undesirable output | Carbon emissions from the construction industry | Carbon emissions from the construction industry | China Construction Industry Statistical Yearbook |
Province | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 1.5616 | 2.8992 | 2.7116 | 3.6822 | 2.2562 | 2.6618 | 2.0714 | 2.1188 | 2.5970 | 2.5661 | 2.5126 |
Tianjin | 1.4050 | 1.6534 | 1.5222 | 1.7582 | 1.5345 | 1.3607 | 1.5214 | 1.2760 | 0.7369 | 1.3929 | 1.4161 |
Hebei | 0.4950 | 0.5904 | 0.5345 | 0.7915 | 1.2308 | 0.6090 | 0.6734 | 0.5049 | 0.8684 | 0.7270 | 0.7025 |
Shanxi | 0.4530 | 0.8966 | 0.8068 | 0.7346 | 0.6367 | 0.5883 | 0.6476 | 0.6388 | 0.6401 | 0.6967 | 0.6739 |
Inner Mongolia | 0.5516 | 0.6884 | 0.5791 | 0.7069 | 0.6295 | 0.5099 | 0.4490 | 0.5301 | 0.5065 | 0.9362 | 0.6087 |
Liaoning | 1.4521 | 1.1319 | 1.5214 | 1.1799 | 1.4839 | 0.7671 | 0.8203 | 1.0859 | 2.4391 | 1.3950 | 1.3277 |
Jilin | 1.2729 | 1.2568 | 0.4327 | 0.5275 | 1.1418 | 0.6803 | 0.7940 | 0.7036 | 0.8611 | 0.9718 | 0.8643 |
Heilongjiang | 1.5394 | 1.7223 | 1.6556 | 1.2997 | 1.4894 | 1.4252 | 1.3932 | 1.3444 | 1.1285 | 1.1965 | 1.4194 |
Shanghai | 1.7041 | 1.6881 | 1.7153 | 1.5936 | 1.8674 | 1.8431 | 1.8091 | 1.6641 | 1.9988 | 1.8307 | 1.7714 |
Jiangsu | 1.6426 | 1.6316 | 1.6208 | 1.7981 | 1.6479 | 2.0725 | 1.8009 | 1.9725 | 2.1272 | 2.2030 | 1.8517 |
Zhejiang | 1.4382 | 1.4114 | 1.3933 | 1.4396 | 1.4176 | 1.2424 | 1.2120 | 1.1882 | 1.6031 | 1.4423 | 1.3788 |
Anhui | 0.8841 | 0.9254 | 0.6822 | 0.7490 | 0.6659 | 0.6865 | 0.6408 | 0.5815 | 0.5968 | 0.6116 | 0.7024 |
Fujian | 0.7467 | 0.7840 | 0.9055 | 0.7026 | 0.8222 | 0.8511 | 0.8714 | 0.7264 | 0.7828 | 1.3066 | 0.8499 |
Jiangxi | 1.1039 | 1.1317 | 1.1405 | 1.2749 | 1.6490 | 1.1804 | 1.5542 | 1.7000 | 1.7679 | 1.7439 | 1.4246 |
Shandong | 0.7157 | 0.6985 | 0.5496 | 0.8689 | 1.2530 | 0.8774 | 0.6684 | 0.7764 | 0.8184 | 0.7836 | 0.8010 |
Henan | 0.7533 | 1.5598 | 1.1900 | 0.7393 | 0.7977 | 0.6217 | 0.6344 | 0.6768 | 0.6102 | 0.7484 | 0.8332 |
Hubei | 0.6731 | 0.7174 | 0.5881 | 1.1593 | 1.1998 | 1.3806 | 1.3800 | 1.3651 | 1.3601 | 1.3658 | 1.1189 |
Hunan | 0.6143 | 1.0789 | 1.0360 | 1.1160 | 1.1921 | 0.6817 | 0.7606 | 0.6276 | 0.6555 | 1.2035 | 0.8966 |
Guangdong | 0.8449 | 0.8519 | 0.6713 | 1.2321 | 0.9701 | 0.9654 | 0.7960 | 0.7151 | 0.8796 | 1.0718 | 0.8998 |
Guangxi | 1.0871 | 1.1585 | 1.1388 | 2.1106 | 2.0726 | 1.5667 | 2.2134 | 2.1448 | 1.8713 | 1.6406 | 1.7004 |
Hainan | 2.1446 | 2.9386 | 2.4240 | 3.4699 | 3.2902 | 1.9139 | 1.9746 | 2.0403 | 1.6971 | 2.1277 | 2.4021 |
Chongqing | 0.9286 | 0.9179 | 0.9867 | 1.0577 | 1.3274 | 1.3229 | 1.2686 | 1.2107 | 1.2692 | 1.2888 | 1.1578 |
Sichuan | 0.5485 | 0.7527 | 0.6980 | 0.8306 | 1.0471 | 1.0686 | 0.8612 | 0.7795 | 0.7601 | 1.3008 | 0.8647 |
Guizhou | 0.7076 | 0.6188 | 0.7156 | 0.6836 | 0.6840 | 0.6188 | 0.5293 | 0.5849 | 0.6909 | 0.7216 | 0.6555 |
Yunnan | 0.7405 | 0.9739 | 0.6941 | 0.5721 | 0.5108 | 0.6853 | 0.7014 | 0.5893 | 0.5781 | 0.7449 | 0.6790 |
Shaanxi | 1.1327 | 1.0657 | 0.7262 | 0.8086 | 1.1870 | 1.1181 | 1.1389 | 1.1058 | 1.1447 | 1.0636 | 1.0491 |
Gansu | 0.6444 | 0.8119 | 0.6650 | 1.0460 | 0.9736 | 0.9863 | 0.8624 | 0.8631 | 0.9171 | 0.7453 | 0.8515 |
Qinghai | 1.1087 | 1.1055 | 1.1154 | 1.2378 | 1.2529 | 1.1114 | 0.7711 | 0.7051 | 1.0800 | 1.1222 | 1.0610 |
Ningxia | 1.1615 | 0.9086 | 0.6712 | 0.7430 | 0.8718 | 0.7283 | 0.8797 | 0.8002 | 0.8643 | 0.7198 | 0.8348 |
Xinjiang | 1.1217 | 1.0679 | 1.0984 | 1.2402 | 1.2379 | 1.2233 | 1.1124 | 1.2246 | 1.1478 | 0.7656 | 1.1240 |
Province | 2010– 2011 | 2011– 2012 | 2012– 2013 | 2013– 2014 | 2014– 2015 | 2015– 2016 | 2016– 2017 | 2017– 2018 | 2018– 2019 | Mean | Rank |
---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 1.7074 | 1.5484 | 1.0632 | 1.0855 | 1.3365 | 0.8540 | 1.1867 | 0.7336 | 0.6064 | 1.1246 | 13 |
Tianjin | 1.2300 | 1.0070 | 1.2548 | 1.0102 | 0.6483 | 1.4077 | 1.0309 | 0.4836 | 2.4721 | 1.1716 | 8 |
Hebei | 1.6006 | 1.0643 | 1.1667 | 1.7787 | 0.4780 | 1.3641 | 0.7923 | 1.7967 | 0.9376 | 1.2199 | 5 |
Shanxi | 1.2466 | 0.9997 | 1.0887 | 1.0044 | 0.9176 | 0.8588 | 0.9890 | 1.1041 | 1.0263 | 1.0261 | 25 |
Inner Mongolia | 1.1971 | 0.9583 | 1.0304 | 0.8816 | 0.9903 | 0.8452 | 0.9514 | 0.9132 | 1.0958 | 0.9848 | 28 |
Liaoning | 1.4205 | 1.1628 | 1.6759 | 0.6663 | 0.6760 | 0.7308 | 1.5406 | 8.2256 | 0.1675 | 1.8073 | 1 |
Jilin | 1.0061 | 0.4866 | 1.6456 | 1.1320 | 0.6778 | 1.1170 | 1.0628 | 1.1902 | 0.7995 | 1.0131 | 26 |
Heilongjiang | 0.7923 | 1.3290 | 0.8085 | 0.8750 | 0.7095 | 1.2889 | 0.8651 | 0.5364 | 0.8203 | 0.8917 | 30 |
Shanghai | 0.9938 | 1.0818 | 1.2596 | 0.9849 | 1.2276 | 1.0235 | 0.9978 | 1.6907 | 0.9847 | 1.1383 | 10 |
Jiangsu | 1.0244 | 1.4886 | 1.4702 | 0.9625 | 1.5341 | 0.7089 | 1.2224 | 1.0672 | 1.0706 | 1.1721 | 7 |
Zhejiang | 1.2088 | 1.1467 | 1.1173 | 1.1878 | 1.0152 | 1.0239 | 1.3262 | 1.0766 | 0.5109 | 1.0682 | 19 |
Anhui | 1.2498 | 1.1239 | 1.0827 | 0.9868 | 1.2233 | 1.0101 | 1.0558 | 1.1930 | 0.9854 | 1.1012 | 14 |
Fujian | 1.2913 | 1.1717 | 0.9705 | 1.0624 | 1.1587 | 1.0368 | 1.0769 | 1.0042 | 0.9555 | 1.0809 | 17 |
Jiangxi | 1.0016 | 1.1004 | 1.0021 | 1.3680 | 0.7900 | 1.2682 | 1.5467 | 1.3234 | 1.6289 | 1.2255 | 4 |
Shandong | 1.0955 | 0.8512 | 1.2245 | 1.0494 | 1.3770 | 0.6178 | 1.8297 | 1.2298 | 1.0061 | 1.1423 | 9 |
Henan | 0.9385 | 0.9955 | 1.0206 | 1.0297 | 0.8851 | 1.0181 | 1.3848 | 0.9180 | 1.2214 | 1.0458 | 22 |
Hubei | 1.0947 | 0.8756 | 1.1767 | 1.4869 | 0.7911 | 1.7274 | 1.1536 | 1.4861 | 1.3245 | 1.2352 | 3 |
Hunan | 1.7811 | 0.9033 | 1.2532 | 1.2225 | 0.6487 | 1.0552 | 0.8135 | 1.0829 | 1.0400 | 1.0889 | 15 |
Guangdong | 1.1285 | 0.8751 | 1.4902 | 0.8956 | 1.1449 | 0.8406 | 0.8299 | 1.5980 | 1.3578 | 1.1290 | 11 |
Guangxi | 1.2791 | 1.1623 | 1.8974 | 0.9850 | 0.6985 | 1.6778 | 1.4151 | 0.4813 | 1.1955 | 1.1991 | 6 |
Hainan | 1.1903 | 1.0380 | 0.7577 | 0.7797 | 0.7913 | 1.4632 | 1.3276 | 0.9642 | 1.0121 | 1.0360 | 23 |
Chongqing | 1.0717 | 1.5515 | 1.3001 | 1.5135 | 1.2267 | 1.2008 | 1.2322 | 1.0996 | 1.1923 | 1.2654 | 2 |
Sichuan | 1.2783 | 1.0733 | 1.3776 | 1.0538 | 1.3541 | 0.8781 | 0.9892 | 0.9873 | 1.1573 | 1.1277 | 12 |
Guizhou | 1.1950 | 1.0141 | 0.9737 | 1.0340 | 1.0304 | 0.9684 | 1.0444 | 1.0456 | 1.1251 | 1.0479 | 21 |
Yunnan | 1.1240 | 1.0844 | 0.8342 | 0.7086 | 1.2512 | 0.9676 | 1.0798 | 0.9912 | 1.2031 | 1.0271 | 24 |
Shaanxi | 0.9618 | 0.9929 | 1.0057 | 0.9412 | 1.2034 | 1.2434 | 1.0982 | 1.0175 | 0.9761 | 1.0489 | 20 |
Gansu | 0.9411 | 0.5594 | 0.8410 | 0.9440 | 1.1557 | 1.0428 | 0.9797 | 0.9823 | 0.9928 | 0.9377 | 29 |
Qinghai | 1.0777 | 0.9484 | 0.9431 | 1.1044 | 1.0249 | 0.9738 | 0.9311 | 0.9245 | 1.0267 | 0.9949 | 27 |
Ningxia | 1.1813 | 1.2804 | 1.2522 | 0.9598 | 0.9944 | 1.0568 | 1.1213 | 0.9288 | 0.8843 | 1.0733 | 18 |
Xinjiang | 1.0726 | 1.4280 | 1.6281 | 1.0278 | 1.0543 | 0.8765 | 1.0740 | 0.4812 | 1.1462 | 1.0877 | 16 |
Mean | 1.1794 | 1.0767 | 1.1871 | 1.0574 | 1.0005 | 1.0715 | 1.1316 | 1.2852 | 1.0641 | 1.1171 | - |
Region | Northeast | North | East | South | Central | Northwest | Southwest |
---|---|---|---|---|---|---|---|
2010–2011 | 1.073 | 1.3963 | 1.1236 | 1.1993 | 1.204 | 1.0469 | 1.1673 |
2011–2012 | 0.9928 | 1.1155 | 1.1378 | 1.0251 | 0.9687 | 1.0418 | 1.1808 |
2012–2013 | 1.3767 | 1.1208 | 1.161 | 1.3818 | 1.1131 | 1.134 | 1.1214 |
2013–2014 | 0.8911 | 1.1521 | 1.086 | 0.8868 | 1.2768 | 0.9954 | 1.0775 |
2014–2015 | 0.6878 | 0.8742 | 1.1894 | 0.8783 | 0.7787 | 1.0866 | 1.2156 |
2015–2016 | 1.0455 | 1.0659 | 0.9556 | 1.3272 | 1.2672 | 1.0387 | 1.0037 |
2016–2017 | 1.1562 | 0.99 | 1.2936 | 1.1909 | 1.2246 | 1.0408 | 1.0864 |
2017–2018 | 3.3174 | 1.0062 | 1.2264 | 1.0145 | 1.2026 | 0.8669 | 1.0309 |
2018–2019 | 0.5958 | 1.2276 | 1.0203 | 1.1885 | 1.3037 | 1.0052 | 1.1695 |
Mean | 1.2374 | 1.1054 | 1.1326 | 1.1214 | 1.1488 | 1.0285 | 1.117 |
Year | ML Index | PECH | SECH | TECH | EFFCH |
---|---|---|---|---|---|
2010–2011 | 1.179388 | 1.174051 | 1.117697 | 0.963686 | 1.256037 |
2011–2012 | 1.076745 | 0.904084 | 0.876089 | 1.422637 | 0.782884 |
2012–2013 | 1.187079 | 1.180415 | 1.055724 | 1.016976 | 1.181975 |
2013–2014 | 1.057396 | 1.104164 | 1.172917 | 0.880673 | 1.242662 |
2014–2015 | 1.000498 | 0.891075 | 1.172436 | 1.016697 | 1.033574 |
2015–2016 | 1.071529 | 0.993712 | 1.066827 | 1.06636 | 1.072021 |
2016–2017 | 1.131616 | 0.980947 | 1.017284 | 1.159947 | 0.997372 |
2017–2018 | 1.285228 | 1.110863 | 0.966665 | 1.119239 | 1.172201 |
2018–2019 | 1.064101 | 1.121977 | 0.966917 | 1.016341 | 1.056899 |
Region | Province | 2010–2011 | 2013–2014 | 2016–2017 | 2018–2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PECH | SECH | TECH | PECH | SECH | TECH | PECH | SECH | TECH | PECH | SECH | TECH | ||
North | Beijing | 1.8566 | 0.6761 | 1.3602 | 0.6127 | 2.1352 | 0.8297 | 1.0229 | 0.9335 | 1.2427 | 0.9881 | 0.9087 | 0.6753 |
Tianjin | 1.1768 | 1.1158 | 0.9367 | 0.8728 | 1.1628 | 0.9955 | 0.8387 | 1.1442 | 1.0744 | 1.8903 | 1.0567 | 1.2376 | |
Hebei | 1.1927 | 0.9869 | 1.3599 | 1.5551 | 1.2648 | 0.9043 | 0.7499 | 0.8993 | 1.1749 | 0.8371 | 0.8804 | 1.2723 | |
Shanxi | 1.9793 | 0.7554 | 0.8338 | 0.8668 | 1.3153 | 0.8809 | 0.9864 | 0.9391 | 1.0677 | 1.0886 | 0.9566 | 0.9856 | |
Inner Mongolia | 1.2478 | 1.0053 | 0.9543 | 0.8905 | 0.8784 | 1.1270 | 1.1806 | 0.8938 | 0.9016 | 1.8485 | 0.5857 | 1.0122 | |
Mean | 1.4906 | 0.9079 | 1.0890 | 0.9596 | 1.3513 | 0.9475 | 0.9557 | 0.9620 | 1.0923 | 1.3305 | 0.8776 | 1.0366 | |
Northeast | Liaoning | 0.7795 | 1.9736 | 0.9234 | 1.2576 | 0.5999 | 0.8832 | 1.3237 | 1.0889 | 1.0688 | 0.5719 | 0.3586 | 0.8169 |
Jilin | 0.9874 | 1.0432 | 0.9768 | 2.1644 | 0.6035 | 0.8665 | 0.8862 | 1.3551 | 0.8850 | 1.1286 | 0.6086 | 1.1641 | |
Heilongjiang | 1.1188 | 0.7662 | 0.9243 | 1.1459 | 0.8608 | 0.8870 | 0.9649 | 0.7226 | 1.2407 | 1.0602 | 0.9726 | 0.7955 | |
Mean | 0.9619 | 1.2610 | 0.9415 | 1.5226 | 0.6881 | 0.8789 | 1.0583 | 1.0555 | 1.0648 | 0.9202 | 0.6466 | 0.9255 | |
East | Shanghai | 0.9906 | 1.1261 | 0.8910 | 1.1718 | 0.9476 | 0.8870 | 0.9199 | 0.9718 | 1.1161 | 0.9159 | 1.0000 | 1.0751 |
Jiangsu | 0.9933 | 1.2421 | 0.8303 | 0.9165 | 0.8371 | 1.2546 | 1.0953 | 0.9875 | 1.1302 | 1.0356 | 1.0001 | 1.0336 | |
Zhejiang | 0.9813 | 1.0578 | 1.1645 | 0.9847 | 1.1448 | 1.0536 | 0.9804 | 0.9686 | 1.3965 | 0.8997 | 0.5669 | 1.0016 | |
Anhui | 1.0466 | 1.6350 | 0.7303 | 0.8890 | 1.2938 | 0.8579 | 0.9074 | 0.9840 | 1.1825 | 1.0249 | 1.0178 | 0.9446 | |
Fujian | 1.0501 | 1.1966 | 1.0277 | 1.1702 | 0.9399 | 0.9659 | 0.8336 | 1.1655 | 1.1085 | 1.6693 | 1.1208 | 0.5107 | |
Shandong | 0.9761 | 1.4285 | 0.7857 | 1.4420 | 0.8807 | 0.8263 | 1.1616 | 1.4881 | 1.0585 | 0.9576 | 0.9442 | 1.1128 | |
Mean | 1.0063 | 1.2810 | 0.9049 | 1.0957 | 1.0073 | 0.9742 | 0.9830 | 1.0943 | 1.1654 | 1.0838 | 0.9416 | 0.9464 | |
Central | Jiangxi | 1.0251 | 1.0051 | 0.9721 | 1.2935 | 1.1266 | 0.9388 | 1.0938 | 1.1220 | 1.2603 | 0.9864 | 1.1376 | 1.4516 |
Henan | 2.0707 | 0.8307 | 0.5456 | 1.0790 | 1.2103 | 0.7885 | 1.0669 | 1.1448 | 1.1339 | 1.2265 | 1.0501 | 0.9483 | |
Hubei | 1.0657 | 1.1785 | 0.8717 | 1.0350 | 1.3821 | 1.0395 | 0.9892 | 0.9575 | 1.2179 | 1.0042 | 1.0285 | 1.2824 | |
Hunan | 1.7562 | 0.9859 | 1.0287 | 1.0681 | 0.9660 | 1.1848 | 0.8251 | 0.9804 | 1.0056 | 1.8361 | 0.5564 | 1.0179 | |
Mean | 1.4794 | 1.0001 | 0.8545 | 1.1189 | 1.1713 | 0.9879 | 0.9938 | 1.0512 | 1.1544 | 1.2633 | 0.9432 | 1.1751 | |
South | Guangdong | 1.0083 | 1.2862 | 0.8702 | 0.7873 | 1.3391 | 0.8495 | 0.8983 | 0.8652 | 1.0679 | 1.2186 | 0.9926 | 1.1225 |
Guangxi | 1.0657 | 1.3360 | 0.8984 | 0.9820 | 1.3443 | 0.7462 | 0.9690 | 0.6202 | 2.3546 | 0.8767 | 1.1449 | 1.1910 | |
Hainan | 1.3702 | 0.8691 | 0.9995 | 0.9482 | 1.0539 | 0.7803 | 1.0332 | 0.8840 | 1.4535 | 1.2537 | 0.9163 | 0.8810 | |
Mean | 1.1481 | 1.1638 | 0.9227 | 0.9058 | 1.2458 | 0.7920 | 0.9668 | 0.7898 | 1.6253 | 1.1163 | 1.0179 | 1.0648 | |
Southwest | Chongqing | 0.9885 | 0.9807 | 1.1055 | 1.2550 | 1.3668 | 0.8823 | 0.9544 | 0.9829 | 1.3136 | 1.0154 | 0.9450 | 1.2425 |
Sichuan | 1.3723 | 0.9949 | 0.9363 | 1.2608 | 1.2202 | 0.6850 | 0.9050 | 0.9686 | 1.1284 | 1.7115 | 0.6563 | 1.0303 | |
Guizhou | 0.8744 | 1.4104 | 0.9689 | 1.0006 | 1.9350 | 0.5341 | 1.1051 | 0.8303 | 1.1382 | 1.0444 | 1.2376 | 0.8705 | |
Yunnan | 1.3152 | 0.8607 | 0.9929 | 0.8929 | 1.1778 | 0.6738 | 0.8402 | 1.1863 | 1.0833 | 1.2886 | 1.0798 | 0.8647 | |
Mean | 1.1376 | 1.0617 | 1.0009 | 1.1023 | 1.4250 | 0.6938 | 0.9512 | 0.9920 | 1.1659 | 1.2650 | 0.9797 | 1.0020 | |
Northeast | Shaanxi | 0.9408 | 1.0726 | 0.9531 | 1.4681 | 0.7572 | 0.8467 | 0.9709 | 1.0026 | 1.1281 | 0.9291 | 0.9660 | 1.0876 |
Gansu | 1.2600 | 1.0744 | 0.6952 | 0.9308 | 1.1979 | 0.8466 | 1.0008 | 0.9179 | 1.0665 | 0.8126 | 1.3399 | 0.9118 | |
Qinghai | 0.9971 | 1.5469 | 0.6987 | 1.0122 | 2.3467 | 0.4649 | 0.9144 | 1.2345 | 0.8248 | 1.0391 | 0.9208 | 1.0730 | |
Ningxia | 0.7822 | 1.3762 | 1.0973 | 1.1734 | 0.8988 | 0.9100 | 0.9096 | 1.3726 | 0.8980 | 0.8329 | 1.0320 | 1.0288 | |
Xinjiang | 0.9521 | 0.7140 | 1.5778 | 0.9981 | 1.0001 | 1.0297 | 1.1009 | 0.9068 | 1.0759 | 0.6670 | 2.0259 | 0.8482 | |
Mean | 0.9864 | 1.1568 | 1.0044 | 1.1165 | 1.2401 | 0.8196 | 0.9793 | 1.0869 | 0.9987 | 0.8561 | 1.2569 | 0.9899 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Li, S.; Meng, X.; Peng, Y.; Tang, W. Study on Regional Differences of Carbon Emission Efficiency: Evidence from Chinese Construction Industry. Energies 2023, 16, 6882. https://doi.org/10.3390/en16196882
Hu S, Li S, Meng X, Peng Y, Tang W. Study on Regional Differences of Carbon Emission Efficiency: Evidence from Chinese Construction Industry. Energies. 2023; 16(19):6882. https://doi.org/10.3390/en16196882
Chicago/Turabian StyleHu, Senchang, Shaoyi Li, Xiangxin Meng, Yingzheng Peng, and Wenzhe Tang. 2023. "Study on Regional Differences of Carbon Emission Efficiency: Evidence from Chinese Construction Industry" Energies 16, no. 19: 6882. https://doi.org/10.3390/en16196882
APA StyleHu, S., Li, S., Meng, X., Peng, Y., & Tang, W. (2023). Study on Regional Differences of Carbon Emission Efficiency: Evidence from Chinese Construction Industry. Energies, 16(19), 6882. https://doi.org/10.3390/en16196882