A CFD Modelling Approach of Fuel Spray under Initial Non-Reactive Conditions in an Optical Engine
Abstract
:1. Introduction
2. Experimental Facility and Methodology
3. Model Description
3.1. Optical Engine Model
3.2. Fluid Model
3.3. Spray Model
4. Results and Discussion
4.1. Test Results
4.2. Model Results
5. Conclusions
- Keeping the nozzle hole diameter constant, the rate of change of the mass flow rate decreases with increasing injection pressure. This effect is probably due to increased cavitation as a result of increased fluid flow velocities. On the other hand, an increase in nozzle hole diameter with constant injection pressure leads to a linear mass flow rate behaviour, when a non-linear dependence is expected. This effect can probably be due to the occurrence of cavitation as a consequence of high flow velocities in the smaller diameter nozzles holes, thus reducing the mass flow rate.
- At medium and high injection pressures, the average discharge coefficient remains almost constant, so the effect of the decrease in mass flow rate as a consequence of the likely occurrence of cavitation is more significant on the discharge coefficient than the increase in fluid velocity as an effect of the increase in injection pressure difference. Keeping the injection injection pressure constant, an increase in nozzle hole diameter implies a decrease in the average discharge coefficient, so the effect of the mass flow rate on the discharge coefficient is more significant than the nozzle hole diameter.
- A CFD model has been proposed. With this model, the spray penetration was simulated under non-reactive conditions under different injection pressures and nozzle hole diameters. In all cases studied, the modelled and experimental results exceed 94.8% agreement.
- The developed model has allowed us to propose a correlation to estimate the non-reactive spray penetration from easily measurable quantities on an experimental facility, such as injection pressure and nozzle hole diameter.
- The improvement of the presented model to a non-axilsymmetric 3D model, including the nozzle and combustion chamber together and the extension of the testing of the experimental facility, are the planned future investigations.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
a | acceleration |
A | area |
nozzle hole cross-sectional area | |
discharge coefficient | |
Spalding mass number | |
d | diameter |
nozzle hole diameter | |
mass diffusion coeficient | |
mass transfer coefficient | |
K | fuel compressibility module |
m | mass |
mass flow rate | |
p | pressure |
P | non-reactive spray penetration |
r | radius |
Reynolds number | |
Schmidt number | |
Sherwood number | |
T | temperature |
Y | vapour mass fraction |
wavelength | |
dynamic viscosity | |
maximum growth rate | |
density | |
droplet surface tension | |
breakup time | |
Subscripts | |
0 | ambient conditions |
combustion chamber | |
d | droplet |
f | fuel |
g | gas |
injection | |
n | new |
p | parent |
RT model | |
s | surface |
v | vapour |
w | KH model |
∞ | bulk gas |
Acronyms | |
CFD | Computational Fluid Dynamics |
CFPP | Cold Filter Plugging Point |
FPS | Frames per Second |
HHV | High Heating Value |
KH-RT | Kelvin–Helmholtz/Rayleigh–Taylor |
LHV | Low Heating Value |
SoI | Start of Injection |
TDC | Top Dead Centre |
References
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Seaton, A.; Donaldson, K. Nanoscience, nanotoxicology, and the need to think small. Lancet 2005, 365, 923–924. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.; Ntziachristos, L.; Tzamkiozis, T.; Schauer, J.; Samaras, Z.; Moore, K.; Sioutas, C. Emissions of particulate trace elements, metals and organic species from gasoline, diesel, and biodiesel passenger vehicles and their relation to oxidative potential. Aerosol Sci. Technol. 2010, 44, 500–513. [Google Scholar] [CrossRef]
- Eckerle, W.A.; Lyford-Pike, E.J.; Stanton, D.W.; LaPointe, L.A.; Whitacre, S.D.; Wall, J.C. Effects of methyl ester biodiesel blends on NOx emissions. SAE Int. J. Fuels Lubr. 2009, 1, 102–118. [Google Scholar] [CrossRef]
- Kim, K.; Kim, D.; Jung, Y.; Bae, C. Spray and combustion characteristics of gasoline and diesel in a direct injection compression ignition engine. Fuel 2013, 109, 616–626. [Google Scholar] [CrossRef]
- Iwabuchi, Y.; Kawai, K.; Shoji, T.; Takeda, Y. Trial of New Concept Diesel Combustion System-Premixed Compression-Ignited Combustion; Technical Report, SAE Technical Paper; SAE International: Warrendale, PA, USA, 1999. [Google Scholar] [CrossRef]
- Xuan, T.; Pastor, J.V.; García-Oliver, J.M.; García, A.; He, Z.; Wang, Q.; Reyes, M. In-flame soot quantification of diesel sprays under sooting/non-sooting critical conditions in an optical engine. Appl. Therm. Eng. 2019, 149, 1–10. [Google Scholar] [CrossRef]
- Labeckas, G.; Slavinskas, S.; Mažeika, M. The effect of ethanol–diesel–biodiesel blends on combustion, performance and emissions of a direct injection diesel engine. Energy Convers. Manag. 2014, 79, 698–720. [Google Scholar] [CrossRef]
- Heywood, J.B. Internal Combustion Engine Fundamentals; McGraw-Hill Education: New York, NY, USA, 2018. [Google Scholar]
- Flynn, P.F.; Durrett, R.P.; Hunter, G.L.; zur Loye, A.O.; Akinyemi, O.C.; Dec, J.E.; Westbrook, C.K. Diesel combustion: An integrated view combining laser diagnostics, chemical kinetics, and empirical validation. SAE Trans. 1999, 108, 587–600. [Google Scholar]
- Siebers, D. Liquid-phase fuel penetration in diesel sprays. SAE Trans. 1998, 107, 1205–1227. [Google Scholar]
- Li, D.; He, Z.; Xuan, T.; Zhong, W.; Cao, J.; Wang, Q.; Wang, P. Simultaneous capture of liquid length of spray and flame lift-off length for second-generation biodiesel/diesel blended fuel in a constant volume combustion chamber. Fuel 2017, 189, 260–269. [Google Scholar] [CrossRef]
- Kook, S.; Pickett, L.M. Liquid length and vapor penetration of conventional, Fischer–Tropsch, coal-derived, and surrogate fuel sprays at high-temperature and high-pressure ambient conditions. Fuel 2012, 93, 539–548. [Google Scholar] [CrossRef]
- Siebers, D.; Higgins, B. Flame lift-off on direct-injection diesel sprays under quiescent conditions. SAE Trans. 2001, 110, 400–421. [Google Scholar]
- Siebers, D.; Higgins, B.; Pickett, L. Flame lift-off on direct-injection diesel fuel jets: Oxygen concentration effects. SAE Trans. 2002, 111, 1490–1509. [Google Scholar]
- Musculus, M.P.; Dec, J.E.; Tree, D.R. Effects of fuel parameters and diffusion flame lift-off on soot formation in a heavy-duty DI diesel engine. SAE Trans. 2002, 111, 1467–1489. [Google Scholar]
- Nishida, K.; Zhu, J.; Leng, X.; He, Z. Effects of micro-hole nozzle and ultra-high injection pressure on air entrainment, liquid penetration, flame lift-off and soot formation of diesel spray flame. Int. J. Engine Res. 2017, 18, 51–65. [Google Scholar] [CrossRef]
- Hespel, C.; Houidi, M.B.; Ajrouche, H.; Foucher, F.; Haidous, Y.; Moreau, B.; Nilaphai, O.; Rousselle, C.; Bellenoue, M.; Claverie, A.; et al. Characterization of the ECN spray A in different facilities. Part 2: Spray vaporization and combustion. Oil Gas Sci. Technol.–Rev. d’IFP Energies Nouv. 2020, 75, 78. [Google Scholar] [CrossRef]
- Naber, J.D.; Siebers, D.L. Effects of gas density and vaporization on penetration and dispersion of diesel sprays. SAE Trans. 1996, 105, 82–111. [Google Scholar]
- Desantes, J.; Payri, R.; Salvador, F.; Soare, V. Study of the Influence of Geometrical and Injection Parameters on Diesel Sprays Characteristics in Isothermal Conditions; Technical Report, SAE Technical Paper; SAE International: Warrendale, PA, USA, 2005. [Google Scholar] [CrossRef]
- Payri, R.; Salvador, F.; Gimeno, J.; Zapata, L. Diesel nozzle geometry influence on spray liquid-phase fuel penetration in evaporative conditions. Fuel 2008, 87, 1165–1176. [Google Scholar] [CrossRef]
- Payri, R.; Salvador, F.; Gimeno, J.; De la Morena, J. Macroscopic behavior of diesel sprays in the near-nozzle field. SAE Int. J. Engines 2009, 1, 528–536. [Google Scholar] [CrossRef]
- Xu, M.; Sun, Y.; Cui, Y.; Deng, K.; Shi, L. One-dimensional model on fuel penetration in diesel sprays with gas flow. Int. J. Automot. Technol. 2016, 17, 109–118. [Google Scholar] [CrossRef]
- García-Oliver, J.M.; Margot, X.; Chávez, M.; Karlsson, A. A combined 1D3D–CFD approach for reducing mesh dependency in Diesel spray calculations. Math. Comput. Model. 2011, 54, 1732–1737. [Google Scholar] [CrossRef]
- Desantes, J.; Margot, X.; Pastor, J.; Chavez, M.; Pinzello, A. CFD-Phenomenological Diesel Spray Analysis under Evaporative Conditions. Energy Fuels 2009, 23, 3919–3929. [Google Scholar] [CrossRef]
- Campbell, J.; Gosman, A.; Hardy, G. Analysis of premix flame and lift-off in diesel spray combustion using multi-dimensional CFD. SAE Int. J. Engines 2009, 1, 571–590. [Google Scholar] [CrossRef]
- Taskiran, O.O.; Ergeneman, M. Effect of nozzle dimensions and fuel type on flame lift-off length. Fuel 2014, 115, 833–840. [Google Scholar] [CrossRef]
- Wiesmann, F.; Strauß, L.; Rieß, S.; Manin, J.; Wan, K.; Lauer, T. Numerical and Experimental Investigations on the Ignition Behavior of OME. Energies 2022, 15, 6855. [Google Scholar] [CrossRef]
- Payri, R.; Novella, R.; Carreres, M.; Belmar-Gil, M. Modeling gaseous non-reactive flow in a lean direct injection gas turbine combustor through an advanced mesh control strategy. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2020, 234, 1788–1810. [Google Scholar] [CrossRef]
- Corral-Gómez, L.; Armas, O.; Soriano, J.A.; Pastor, J.V.; García-Oliver, J.M.; Micó, C. An Optical Engine Used as a Physical Model for Studies of the Combustion Process Applying a Two-Color Pyrometry Technique. Energies 2022, 15, 4717. [Google Scholar] [CrossRef]
- Settles, G.S. Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Ma, Y.; Huang, S.; Huang, R.; Zhang, Y.; Xu, S. Spray and evaporation characteristics of n-pentanol–diesel blends in a constant volume chamber. Energy Convers. Manag. 2016, 130, 240–251. [Google Scholar] [CrossRef]
- Corral-Gómez, L.; Castillo-García, F.J.; Soriano, J.A.; Armas, O. Macroscopic Parameters of Fuel Sprays Injected in an Optical Reciprocating Single-Cylinder Engine: An Approximation by Means of Visualization with Schlieren Technique. Sensors 2023, 23, 6747. [Google Scholar] [CrossRef]
- Tuncer, C. Analysis of Turbulent Flows; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Martos, F.J.; Soriano, J.A.; Braic, A.; Fernández-Yáñez, P.; Armas, O. A CFD Modelling Approach for the Operation Analysis of an Exhaust Backpressure Valve Used in a Euro 6 Diesel Engine. Energies 2023, 16, 4112. [Google Scholar] [CrossRef]
- Martos, F.J.; Soriano, J.A.; Mata, C.; Armas, O.; Soto, F. Impact of alternative and fossil diesel fuels on internal flow of injection nozzle. Int. J. Engine Res. 2022, 23, 940–957. [Google Scholar] [CrossRef]
- Safarov, J.; Ashurova, U.; Ahmadov, B.; Hassel, E. Vapor pressure of 1-butanol and Diesel B0 binary fuel blends. J. Serbian Chem. Soc. 2019, 84, 599–607. [Google Scholar] [CrossRef]
- Armas, O.; Martínez-Martínez, S.; Mata, C.; Pacheco, C. Alternative method for bulk modulus estimation of Diesel fuels. Fuel 2016, 167, 199–207. [Google Scholar] [CrossRef]
- Cristofaro, M.; Edelbauer, W.; Koukouvinis, P.; Gavaises, M. A numerical study on the effect of cavitation erosion in a diesel injector. Appl. Math. Model. 2020, 78, 200–216. [Google Scholar] [CrossRef]
- Salvador, F.J.; De la Morena, J.; Bracho, G.; Jaramillo, D. Computational investigation of diesel nozzle internal flow during the complete injection event. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 153. [Google Scholar] [CrossRef]
- Miller, R.; Harstad, K.; Bellan, J. Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations. Int. J. Multiph. Flow 1998, 24, 1025–1055. [Google Scholar] [CrossRef]
- Sazhin, S.S. Advanced models of fuel droplet heating and evaporation. Prog. Energy Combust. Sci. 2006, 32, 162–214. [Google Scholar] [CrossRef]
- Ranz, W.E. Evaporation from Drops-I and-II. Chem. Eng. Prog. 1952, 48, 141–146. [Google Scholar]
- O’Rourke, P.J. Collective Drop Effects on Vaporizing Liquid Sprays. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 1981. [Google Scholar]
- Hossainpour, S.; Binesh, A. Investigation of fuel spray atomization in a DI heavy-duty diesel engine and comparison of various spray breakup models. Fuel 2009, 88, 799–805. [Google Scholar] [CrossRef]
- Reitz, R.D. Modeling atomization processes in high-pressure vaporizing sprays. At. Spray Technol. 1987, 3, 309–337. [Google Scholar]
- Xin, J.; Ricart, L.; Reitz, R. Computer modeling of diesel spray atomization and combustion. Combust. Sci. Technol. 1998, 137, 171–194. [Google Scholar] [CrossRef]
- Liu, A.B.; Mather, D.; Reitz, R.D. Modeling the effects of drop drag and breakup on fuel sprays. SAE Trans. 1993, 102, 83–95. [Google Scholar] [CrossRef]
- Beale, J.C.; Reitz, R.D. Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model. At. Sprays 1999, 9, 623–650. [Google Scholar] [CrossRef]
- Patterson, M.A.; Reitz, R.D. Modeling the effects of fuel spray characteristics on diesel engine combustion and emission. SAE Trans. 1998, 107, 27–43. [Google Scholar] [CrossRef]
- Desantes, J.M.; Payri, R.; Salvador, F.J.; Gil, A. Development and validation of a theoretical model for diesel spray penetration. Fuel 2006, 85, 910–917. [Google Scholar] [CrossRef]
- Pastor, J.V.; García-Oliver, J.M.; Micó, C.; García-Carrero, A.A.; Gómez, A. Experimental study of the effect of hydrotreated vegetable oil and oxymethylene ethers on main spray and combustion characteristics under engine combustion network spray a conditions. Appl. Sci. 2020, 10, 5460. [Google Scholar] [CrossRef]
Properties | Value | Properties | Value |
---|---|---|---|
C (% w/w) | 86.2 | H (% w/w) | 13.8 |
Viscosity at 40 °C (cSt) | 2.96 | Cetane number | 54.5 |
HHV (MJ/kg) | 45.97 | LHV (MJ/kg) | 43.18 |
CFPP (°C) | −19 | Flash point (°C) | 61 |
Density at 15 °C (kg/m) | 835.8 | Density at 40 °C (kg/m) | 827.6 |
Distillation (vol.): | |||
10% (°C) | 206.5 | 50% (°C) | 275.9 |
90% (°C) | 344.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corral-Gómez, L.; Martos, F.J.; Fernández-Yáñez, P.; Armas, O. A CFD Modelling Approach of Fuel Spray under Initial Non-Reactive Conditions in an Optical Engine. Energies 2023, 16, 6537. https://doi.org/10.3390/en16186537
Corral-Gómez L, Martos FJ, Fernández-Yáñez P, Armas O. A CFD Modelling Approach of Fuel Spray under Initial Non-Reactive Conditions in an Optical Engine. Energies. 2023; 16(18):6537. https://doi.org/10.3390/en16186537
Chicago/Turabian StyleCorral-Gómez, Lis, Francisco J. Martos, Pablo Fernández-Yáñez, and Octavio Armas. 2023. "A CFD Modelling Approach of Fuel Spray under Initial Non-Reactive Conditions in an Optical Engine" Energies 16, no. 18: 6537. https://doi.org/10.3390/en16186537
APA StyleCorral-Gómez, L., Martos, F. J., Fernández-Yáñez, P., & Armas, O. (2023). A CFD Modelling Approach of Fuel Spray under Initial Non-Reactive Conditions in an Optical Engine. Energies, 16(18), 6537. https://doi.org/10.3390/en16186537