Scaling Performance Parameters of Reciprocating Engines for Sustainable Energy System Optimization Modelling
Abstract
:1. Introduction
2. Curve-Fitted Equations
2.1. Scaling Laws
Power (kW) | ||||||||
Reference | a | b | c | |||||
Menon et al. [34] | (dm3) | 1 | 27.654 | 0.9543 | 0 | |||
Brown et al. [35] | (dm3) | 1 | 37.349 | 0.74 | 0 | |||
Chon et al. [39] | (dm3) | 1 | 49.435 | 1 | 0 | |||
Chon et al. [39] | A (dm2) | 1 | - | - | 0 | |||
Heywood et al. [41] | (dm3) | - | 2/3 | 1/3 | ||||
Rowton et al. [42] | 1 | 27,583 | −3.1 | 0 | ||||
Rated Power (kWs/m) | ||||||||
Reference | x | a | b | |||||
Chon et al. [39] | A (dm2) | 2.6 | 1 | |||||
Torque (Nm) | ||||||||
Reference | x | a | ||||||
Chon et al. [39] | (dm3) | 90.888 | ||||||
BTE (%) | ||||||||
Reference | x | a | b | c | ||||
Menon et al. [34] | (dm3) | 24.644 | 0.0688 | 0 | ||||
Rowton et al. [43] | 664.078 | −1.5 | 0 | |||||
Rowton et al. [43] | (dm3) | 395.285 | 1.5 | 7 |
2.2. Available Engine Data
Hydrogen | |||||
---|---|---|---|---|---|
Reference | B (mm) | (dm3) | (-) | Stoichiometric Operation? (Yes/No) | Pre-Chamber? (Yes/No) |
Koch et al. [47,48] | 110 | 7.8 | 6 | No | No |
Nork et al. [45] | 110 | 7.8 | 6 | No | No |
Sommermann et al. [46] | 145 | 16.8 | 6 | No | No |
Methanol | |||||
Zhen et al. [54,55,56,57,58] | 100 | 3.99 | 4 | Yes | No |
Li et al. [50] | 100 | 3.99 | 4 | No | No |
Zhu et al. [59] | 123 | 10.3 | 6 | No | No |
Mahendar et al. [49] | 127 | 1.95 | 1 | Yes | No |
Mahendar et al. [49] | 127 | 1.95 | 1 | No | No |
Gong et al. [60,61] | 130 | 2 | 1 | No | No |
Björnestrand et al. [62] | 130 | 2.12 | 1 | No | No |
Li et al. [63] | 130 | 2.12 | 1 | No | No |
Güdden et al. [64] | - | 2.13 | 1 | Yes | No |
Bosklopper et al. [65] | 170 | 34.5 | 8 | No | No |
Güdden et al. [64] | - | 5 | 1 | No | No |
Leng et al. [66] | 320 | 33.78 | 1 | No | Yes |
Ethanol (E100) | |||||
Li et al. [50] | 100 | 3.99 | 4 | No | No |
Mahendar et al. [49] | 127 | 1.95 | 1 | Yes | No |
Mahendar et al. [49] | 127 | 1.95 | 1 | No | No |
Ethanol (E85) | |||||
Brusstar et al. [51] | 95 | 4.5 | 6 | Yes | No |
Kumar et al. [52] | 104 | 5.76 | 6 | Yes | No |
Ottosson and Zioris [53] | 127 | 1.95 | 1 | Yes | No |
2.3. Curve-Fitted Equations for Large-Bore SI NG Engines with Pre-Chamber Combustion
3. Alternative Methods
3.1. Willans Line Method
3.2. Similitude
- The combustion chamber and injection system must be geometrically scaled.
- The fuel should have the same stochiometric air-to-fuel ratio and the same nondimensional heating value .
- The fuel mass flow rate for each crank angle should be proportional to the density times the third power of the bore, .
- The swirl ratio must be equal.
- The ratio must be equal for both engines.
- The fuel droplet diameter should be made proportional to by controlling the injection pressure, fuel viscosity and surface tension of the fuel.
- The cylinder wall temperature must be controlled to give the same heat transfer effect.
- The ignition delay must be equal in crank angle degree.
4. Summary and Conclusions
- A large data set is needed for engines with the same class (e.g., SI or CI, lean or stoichiometric, pre-chamber or open-chamber) and the same fuel type. This data set is currently missing for renewable fuels in large-bore SI engines.
- No boundary conditions or constraints are defined on the scaling range. SI engines tend to be limited by abnormal combustion behavior, which is not included in this method.
- It presupposes identical dimensionless performance values, such as the BTE and BMEP, for scaled and reference engine, disregarding the advantages of a larger bore size. This limitation has been partially addressed by extending the similitude method with scaling laws based on the bore diameter ratio between the reference and scaled engines.
- Deriving the requirements to achieve similitude is highly complex, and not all interaction effects are accounted for, leading to differences between the reference engine and the scaled engines.
- While combustion similitude has been demonstrated for conventional diesel and, to some extent, for low-temperature combustion, it remains unproven for spark-ignition engines, with no guarantee that it can be established.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Shafiul Alam, M.; Al-Ismail, F.S.; Salem, A.; Abido, M.A. High-Level Penetration of Renewable Energy Sources into Grid Utility: Challenges and Solutions. IEEE Access 2020, 8, 190277–190299. [Google Scholar] [CrossRef]
- Sorrenti, I.; Harild Rasmussen, T.B.; You, S.; Wu, Q. The Role of Power-to-X in Hybrid Renewable Energy Systems: A Comprehensive Review. Renew. Sustain. Energy Rev. 2022, 165, 112380. [Google Scholar] [CrossRef]
- Samende, C.; Fan, Z.; Cao, J.; Fabián, R.; Baltas, G.N.; Rodriguez, P. Battery and Hydrogen Energy Storage Control in a Smart Energy Network with Flexible Energy Demand Using Deep Reinforcement Learning. Energies 2023, 16, 6770. [Google Scholar] [CrossRef]
- Kebede, A.A.; Kalogiannis, T.; Van Mierlo, J.; Berecibar, M. A Comprehensive Review of Stationary Energy Storage Devices for Large Scale Renewable Energy Sources Grid Integration. Renew. Sustain. Energy Rev. 2022, 159, 112213. [Google Scholar] [CrossRef]
- BloombergNEF. Available online: https://about.bnef.com/blog/energy-storage-investments-boom-battery-costs-halve-next-decade/#_ftn1 (accessed on 13 September 2022).
- Heide, D.; von Bremen, L.; Greiner, M.; Hoffmann, C.; Speckmann, M.; Bofinger, S. Seasonal Optimal Mix of Wind and Solar Power in a Future, Highly Renewable Europe. Renew. Energy 2010, 35, 2483–2489. [Google Scholar] [CrossRef]
- Heide, D.; Greiner, M.; von Bremen, L.; Hoffmann, C. Reduced Storage and Balancing Needs in a Fully Renewable European Power System with Excess Wind and Solar Power Generation. Renew. Energy 2011, 36, 2515–2523. [Google Scholar] [CrossRef]
- Pleßmann, G.; Erdmann, M.; Hlusiak, M.; Breyer, C. Global Energy Storage Demand for a 100% Renewable Electricity Supply. Energy Procedia 2014, 46, 22–31. [Google Scholar] [CrossRef]
- Feijoo, F.; Pfeifer, A.; Herc, L.; Groppi, D.; Duić, N. A Long-Term Capacity Investment and Operational Energy Planning Model with Power-to-X and Flexibility Technologies. Renew. Sustain. Energy Rev. 2022, 167, 112781. [Google Scholar] [CrossRef]
- Brynolf, S.; Taljegard, M.; Grahn, M.; Hansson, J. Electrofuels for the Transport Sector: A Review of Production Costs. Renew. Sustain. Energy Rev. 2018, 81, 1887–1905. [Google Scholar] [CrossRef]
- Rixhon, X.; Limpens, G.; Coppitters, D.; Jeanmart, H.; Contino, F. The Role of Electrofuels under Uncertainties for the Belgian Energy Transition. Energies 2021, 14, 4027. [Google Scholar] [CrossRef]
- Plazas-Niño, F.A.; Ortiz-Pimiento, N.R.; Montes-Páez, E.G. National Energy System Optimization Modelling for Decarbonization Pathways Analysis: A Systematic Literature Review. Renew. Sustain. Energy Rev. 2022, 162, 112406. [Google Scholar] [CrossRef]
- Dagoumas, A.S.; Koltsaklis, N.E. Review of Models for Integrating Renewable Energy in the Generation Expansion Planning. Appl. Energy 2019, 242, 1573–1587. [Google Scholar] [CrossRef]
- Spataru, C.; Drummond, P.; Zafeiratou, E.; Barrett, M. Long-Term Scenarios for Reaching Climate Targets and Energy Security in UK. Sustain. Cities Soc. 2015, 17, 95–109. [Google Scholar] [CrossRef]
- Aboumahboub, T.; Brecha, R.J.; Shrestha, H.B.; Fuentes, U.; Geiges, A.; Hare, W.; Schaeer, M.; Welder, L.; Gidden, M.J. Decarbonization of Australia s Energy System: Integrated Modeling of the Transformation of Electricity, Transportation, and Industrial Sectors. Energies 2020, 13, 3805. [Google Scholar] [CrossRef]
- Limpens, G.; Jeanmart, H.; Maréchal, F. Belgian Energy Transition: What Are the Options? Energies 2020, 13, 261. [Google Scholar] [CrossRef]
- Safonov, G.; Potashnikov, V.; Lugovoy, O.; Safonov, M.; Dorina, A.; Bolotov, A. The Low Carbon Development Options for Russia. Clim. Change 2020, 162, 1929–1945. [Google Scholar] [CrossRef]
- Al Moussawi, H.; Fardoun, F.; Louahlia-Gualous, H. Review of Tri-Generation Technologies: Design Evaluation, Optimization, Decision-Making, and Selection Approach. Energy Convers. Manag. 2016, 120, 157–196. [Google Scholar] [CrossRef]
- Perrone, D.; Castiglione, T.; Morrone, P.; Pantano, F.; Bova, S. Energetic, Economic and Environmental Performance Analysis of a Micro-Combined Cooling, Heating and Power (CCHP) System Based on Biomass Gasification. Energies 2023, 16, 6911. [Google Scholar] [CrossRef]
- Jradi, M.; Riffat, S. Tri-Generation Systems: Energy Policies, Prime Movers, Cooling Technologies, Configurations and Operation Strategies. Renew. Sustain. Energy Rev. 2014, 32, 396–415. [Google Scholar] [CrossRef]
- Badami, M.; Mura, M.; Campanile, P.; Anzioso, F. Design and Performance Evaluation of an Innovative Small Scale Combined Cycle Cogeneration System. Energy 2008, 33, 1264–1276. [Google Scholar] [CrossRef]
- Montazerinejad, H.; Eicker, U. Recent Development of Heat and Power Generation Using Renewable Fuels: A Comprehensive Review. Renew. Sustain. Energy Rev. 2022, 165, 112578. [Google Scholar] [CrossRef]
- Ren, F.; Wei, Z.; Zhai, X. A Review on the Integration and Optimization of Distributed Energy Systems. Renew. Sustain. Energy Rev. 2022, 162, 112440. [Google Scholar] [CrossRef]
- Verhelst, S.; Sheppard, C.G.W. Multi-Zone Thermodynamic Modelling of Spark-Ignition Engine Combustion—An Overview. Energy Convers. Manag. 2009, 50, 1326–1335. [Google Scholar] [CrossRef]
- Rakopoulos, C.D.; Michos, C.N.; Giakoumis, E.G. Availability Analysis of a Syngas Fueled Spark Ignition Engine Using a Multi-Zone Combustion Model. Energy 2008, 33, 1378–1398. [Google Scholar] [CrossRef]
- D’Errico, G.; Cerri, T.; Pertusi, G. Multi-Objective Optimization of Internal Combustion Engine by Means of 1D Fluid-Dynamic Models. Appl. Energy 2011, 88, 767–777. [Google Scholar] [CrossRef]
- Yun, K.T.; Cho, H.; Luck, R.; Mago, P.J. Modeling of Reciprocating Internal Combustion Engines for Power Generation and Heat Recovery. Appl. Energy 2013, 102, 327–335. [Google Scholar] [CrossRef]
- Moret, S.; Codina Gironès, V.; Bierlaire, M.; Maréchal, F. Characterization of Input Uncertainties in Strategic Energy Planning Models. Appl. Energy 2017, 202, 597–617. [Google Scholar] [CrossRef]
- Nguyen, D.; Kar, T.; Turner, J.W.G. Performance, Emissions, and Combustion Characteristics of a Hydrogen-Fueled Spark-Ignited Engine at Different Compression Ratios: Experimental and Numerical Investigation. Energies 2023, 16, 5730. [Google Scholar] [CrossRef]
- Zhou, Y.; Hong, W.; Yang, Y.; Li, X.; Xie, F.; Su, Y. Experimental Investigation of Diluents Components on Performance and Emissions of a High Compression Ratio Methanol SI Engine. Energies 2019, 12, 3366. [Google Scholar] [CrossRef]
- Falfari, S.; Cazzoli, G.; Mariani, V.; Bianchi, G.M. Hydrogen Application as a Fuel in Internal Combustion Engines. Energies 2023, 16, 2545. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, Z.; Liu, J. An Evaluation of the Conversion of Gasoline and Natural Gas Spark Ignition Engines to Ammonia/Hydrogen Operation from the Perspective of Laminar Flame Speed. J. Energy Resour. Technol. Trans. ASME 2023, 145, 012302. [Google Scholar] [CrossRef]
- Yang, R.; Yan, Y.; Liu, Z.; Liu, J. Formation and Evolution of Thermal and Fuel Nitrogen Oxides in the Turbulent Combustion Field of Ammonia Internal Combustion Engines; SAE Technical Paper 2023-01-0192; SAE International: Warrendale, PA, USA, 2023. [Google Scholar]
- Menon, S.; Cadou, C.P. Scaling of Miniature Piston-Engine Performance, Part 1: Overall Engine Performance; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2013; Volume 29, pp. 774–787. [Google Scholar] [CrossRef]
- Brown, S.; Menon, S.; Hagen, C. Investigation of Scaling Laws for Combustion Engine Performance. Available online: https://sites01.lsu.edu/faculty/smenon/wp-content/uploads/sites/133/2017/02/WSSCI_Provo_v5.pdf (accessed on 6 November 2023).
- McMahon, T.A.; Bonner, J.T. On Size and Life; Scientific American Books: New York, NY, USA, 1983; Volume 1. [Google Scholar]
- Muranaka, S.; Takagi, Y.; Ishida, T. Factors Limiting the Improvement in Thermal Efficiency of S. I. Engine at Higher Compression Ratio; SAE Technical Papers; SAE International: Warrendale, PA, USA, 1987; Volume 96, pp. 526–536. [Google Scholar] [CrossRef]
- Arisawa, T.; Arai, T.; Sakane, Y.; Kobashi, Y.; Shibata, G.; Ogawa, H. CFD Analysis of Engine Size Dependence of Diesel Combustion. In Proceedings of the 27th ICE symposium of JSAE CDROM, Sapporo, Japan, 19–21 October 2016; pp. 19–21. [Google Scholar]
- Chon, D.M.; Heywood, J.B. Performance Scaling of Spark-Ignition Engines: Correlation and Historical Analysis of Production Engine Data; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2000. [Google Scholar] [CrossRef]
- Heywood, J.B. Internal Combustion Engine Fundamentals, McGraw-Hill Series in Mechanical Engineering; MacGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Heywood, J.B.; Welling, O.Z. Trends in Performance Characteristics of Modern Automobile SI and Diesel Engines; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2009; Volume 2, pp. 1650–1662. [Google Scholar] [CrossRef]
- Rowton, A.K.; Ausserer, J.K.; Grinstead, K.D.; Litke, P.J.; Polanka, M.D. Measuring Scaling Effects in Small Two-Stroke Internal Combustion Engines; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2014. [Google Scholar] [CrossRef]
- Rowton, A.K. Measuring Scaling Effects in Small Two-Stroke Internal Combustion Engines. Master’s Thesis, Department of the Air Force Air University, Montgomery, AL, USA, 2014. [Google Scholar]
- Abidin, Z.; Hoag, K.; Badain, N. Dilute Combustion Assessment in Large Bore, Low Speed Engines; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2017. [Google Scholar] [CrossRef]
- Nork, D.B.; Fh, D.; Qriqra, A.; Kleuser, D.R. Deutz Hydrogen-ICE—A Simulation of the Entire System. In Proceedings of the 18th Symposium on Sustainable Mobility, Transport and Power Generation, Graz, Austria, 23–24 September 2021; pp. 150–161. [Google Scholar]
- Sommermann, A.; Hinrichsen, F.; Malischewski, T.; Hyna, D.; Karl, C.; Schmitt, J.; Mcmackin, M.; Beck, H.; Truck, M.A.N.; Se, B. MAN H45 Hydrogen Engine: A Robust and Highly Efficient Technology for CO2-Neutral Mobility. In Proceedings of the Symposium “Sustainable Mobility, Transport and Power Generation”, Graz, Austria, 23–24 September 2021; pp. 162–176. [Google Scholar]
- Thomas Koch, D.; Sousa, A.; Bertram, D. H2-Engine Operation with EGR Achieving High Power and High Efficiency Emission-Free Combustion; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Ebert, T.; Koch, M.S.D.; Kerschl, B.S.D.; Fh, D.; Wehrli, M.; Vonnoe, M.E.M.; Lahni, M.S.T. Effectiveness of the H2-Specific Operating Strategy in Dynamic Engine Operation. In Proceedings of the 18th Symposium on Sustainable Mobility, Transport and Power Generation, Graz, Austria, 23–24 September 2021; pp. 177–191. [Google Scholar]
- Mahendar, S.K.; Larsson, T.; Erlandsson, A.C. Alcohol Lean Burn in Heavy Duty Engines: Achieving 25 Bar IMEP with High Efficiency in Spark Ignited Operation. Int. J. Engine Res. 2020, 22, 3313–3324. [Google Scholar] [CrossRef]
- Li, X.; Zhen, X.; Xu, S.; Wang, Y.; Liu, D.; Tian, Z. Numerical Comparative Study on Knocking Combustion of High Compression Ratio Spark Ignition Engine Fueled with Methanol, Ethanol and Methane Based on Detailed Chemical Kinetics. Fuel 2021, 306, 121615. [Google Scholar] [CrossRef]
- Brusstar, M.J.; Gray, C.L. High Efficiency with Future Alcohol Fuels in a Stoichiometric Medium Duty Spark Ignition Engine; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2007; Volume 116, pp. 1183–1190. [Google Scholar] [CrossRef]
- Kumar, G.S.; Kumar, G.E. Initial Development of a E85 Fueled, Multi Cylinder, Turbocharged, Spark Ignited, Heavy Duty Engine. SAE Int. J. Engines 2017, 10, 55–60. [Google Scholar] [CrossRef]
- Ottosson, D.; Zioris, K. Experimental Comparison of DI and PFI in Terms of Emissions and Efficiency Running Ethanol-85. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2014; p. 42. [Google Scholar]
- Zhen, X.; Wang, Y.; Xu, S.; Zhu, Y. Numerical Analysis on Knock for a High Compression Ratio Spark-Ignition Methanol Engine. Fuel 2013, 103, 892–898. [Google Scholar] [CrossRef]
- Zhen, X.; Wang, Y.; Xu, S.; Zhu, Y. Study of Knock in a High Compression Ratio Spark-Ignition Methanol Engine by Multi-Dimensional Simulation. Energy 2013, 50, 150–159. [Google Scholar] [CrossRef]
- Zhen, X.; Wang, Y.; Zhu, Y. Study of Knock in a High Compression Ratio SI Methanol Engine Using Les with Detailed Chemical Kinetics. Energy Convers. Manag. 2013, 75, 523–531. [Google Scholar] [CrossRef]
- Zhen, X.; Wang, Y. Study of Ignition in a High Compression Ratio SI (Spark Ignition) Methanol Engine Using LES (Large Eddy Simulation) with Detailed Chemical Kinetics. Energy 2013, 59, 549–558. [Google Scholar] [CrossRef]
- Zhen, X.; Li, X.; Wang, Y.; Liu, D.; Tian, Z.; Wang, Y. Effects of the Initial Flame Kernel Radius and EGR Rate on the Performance, Combustion and Emission of High-Compression Spark-Ignition Methanol Engine. Fuel 2020, 262, 116633. [Google Scholar] [CrossRef]
- Zhu, Z.; Gu, H.; Zhu, Z.; Wei, Y.; Zeng, K.; Liu, S. Investigation on Mixture Formation and Combustion Characteristics of a Heavy-Duty SI Methanol Engine. Appl. Therm. Eng. 2021, 196, 117258. [Google Scholar] [CrossRef]
- Gong, C.; Liu, F.; Sun, J.; Wang, K. Effect of Compression Ratio on Performance and Emissions of a Stratified-Charge DISI (Direct Injection Spark Ignition) Methanol Engine. Energy 2016, 96, 166–175. [Google Scholar] [CrossRef]
- Gong, C.; Yi, L.; Zhang, Z.; Sun, J.; Liu, F. Assessment of Ultra-Lean Burn Characteristics for a Stratified-Charge Direct-Injection Spark-Ignition Methanol Engine under Different High Compression Ratios. Appl. Energy 2020, 261, 114478. [Google Scholar] [CrossRef]
- Björnestrand, L. Efficiency and Emission Analysis of a Methanol Fuelled Direct Injection Spark Ignition Heavy Duty Engine. Master’s Thesis, Lunds Unversitet, Lund, Sweden, 2017. [Google Scholar]
- Li, Y.; Bai, X.S.; Tunér, M.; Im, H.G.; Johansson, B. Investigation on a High-Stratified Direct Injection Spark Ignition (DISI) Engine Fueled with Methanol under a High Compression Ratio. Appl. Therm. Eng. 2019, 148, 352–362. [Google Scholar] [CrossRef]
- Güdden, A.; Pischinger, S.; Geiger, J.; Heuser, B.; Müther, M. Methanol Combustion Systems for Heavy-Duty Applications: Diffusive or Premixed Combustion? In Proceedings of the 18th Symposium on Sustainable Mobility, Transport and Power Generation, Graz, Austria, 23–24 September 2021; pp. 38–51. [Google Scholar]
- Bosklopper, J.J. Experimental and Simulation-Based Investigation of the Perfor-Mance of a 100% Methanol Port-Injected Spark-Ignited Engine. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2020. [Google Scholar]
- Leng, X.; Deng, Y.; He, D.; Wei, S.; He, Z.; Wang, Q.; Long, W.; Zhu, S. A Preliminary Numerical Study on the Use of Methanol as a Mono-Fuel for a Large Bore Marine Engine. Fuel 2022, 310, 122309. [Google Scholar] [CrossRef]
- Sturm, M.; Caterpillar, M. CHP-Market Demand and Optimized Solutions with the Caterpillar G20CM34 10 MW Gas Engine; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Loetz, A. Modeling and Measurement of Combustion and Emissions Formation in Gas Engine Pre-Chambers. In Proceedings of the CIMAC Congress, Vancouver, BC, Canada, 10–14 June 2019. [Google Scholar]
- Burke, J. Market Survey: 43rd Power Generation Order Survey; Diesel & Gas Turbine Publications, Inc.: Waukesha, WI, USA, 2019. [Google Scholar]
- Guido, C.; Napolitano, P.; Alfuso, S.; Corsetti, C.; Beatrice, C. How Engine Design Improvement Impacts on Particle Emissions from an HD SI Natural Gas Engine. Energy 2021, 231, 120748. [Google Scholar] [CrossRef]
- Posada, F.; Chambliss, S.; Blumberg, K. Costs of Emission Reduction Technologies for Heavy-Duty Diesel Vehicles Acknowledgements. 2016. Available online: https://theicct.org/publication/costs-of-emission-reduction-technologies-for-heavy-duty-diesel-vehicles/ (accessed on 6 November 2023).
- Ibrahim, A.; Bari, S. A Comparison between EGR and Lean-Burn Strategies Employed in a Natural Gas SI Engine Using a Two-Zone Combustion Model. Energy Convers. Manag. 2009, 50, 3129–3139. [Google Scholar] [CrossRef]
- MAN; ROLLO E2842 Description of Engines. Available online: https://www.manrollo.com/wp-content/uploads/E2842-series.pdf (accessed on 30 March 2022).
- McDowell, R.; Xiong, Y.; Zurlo, J.; Knudsen, J.; Donahue, R.; Feldner, M.; Youakim, M. Waukesha VHP Series Five Gas Engine: Increased Output, Reduced Operating Costs, Improved Component Cooling, and Updated Controls. In Proceedings of the CIMAC Congress, Vancouver, BC, Canada, 10–14 June 2019. [Google Scholar]
- Wheeler, J.; Stein, J.; Hunter, G. Effects of Charge Motion, Compression Ratio, and Dilution on a Medium Duty Natural Gas Single Cylinder Research Engine. SAE Int. J. Engines 2014, 7, 1650–1664. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, M.; Li, G.; Shao, S.; Li, P. Transient Emission Characteristics of a Heavy-Duty Natural Gas Engine at Stoichiometric Operation with EGR and TWC. Energy 2017, 132, 225–237. [Google Scholar] [CrossRef]
- Neame, G.R.; Gardiner, D.P.; Mallory, R.W.; Rao, V.K.; Bardon, M.F.; Battista, V. Improving the Fuel Economy of Stoichiometrically Fuelled S.I. Engines by Means of EGR and Enhanced Ignition—A Comparison of Gasoline, Methanol and Natural Gas; SAE Technical Papers; SAE International: Warrendale, PA, USA, 1995. [Google Scholar] [CrossRef]
- Abd-Alla, G.H. Using Exhaust Gas Recirculation in Internal Combustion Engines: A Review. Energy Convers. Manag. 2002, 43, 1027–1042. [Google Scholar] [CrossRef]
- Germane, G.J.; Wood, C.G.; Hess, C.C. Lean Combustion in Spark-Ignited Internal Combustion Engines—A Review; SAE Technical Papers; SAE International: Warrendale, PA, USA, 1983. [Google Scholar] [CrossRef]
- Dunn-Rankin, D.; Therkelsen, P. Lean Combustion: Technology and Control; Springer: Berlin/Heidelberg, Germany, 2016; 267p. [Google Scholar]
- Di Iorio, S.; Sementa, P.; Vaglieco, B.M. Experimental Investigation on the Combustion Process in a Spark Ignition Optically Accessible Engine Fueled with Methane/Hydrogen Blends. Int. J. Hydrogen Energy 2014, 39, 9809–9823. [Google Scholar] [CrossRef]
- Wu, C.; Deng, K.; Wang, Z. The Effect of Combustion Chamber Shape on Cylinder Flow and Lean Combustion Process in a Large Bore Spark-Ignition CNG Engine. J. Energy Inst. 2016, 89, 240–247. [Google Scholar] [CrossRef]
- Toulson, E.; Schock, H.J.; Attard, W.P. A Review of Pre-Chamber Initiated Jet Ignition Combustion Systems; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2010. [Google Scholar] [CrossRef]
- Shah, A.; Tunestal, P.; Johansson, B. Investigation of Performance and Emission Characteristics of a Heavy Duty Natural Gas Engine Operated with Pre-Chamber Spark Plug and Dilution with Excess Air and EGR. SAE Int. J. Engines 2012, 5, 1790–1801. [Google Scholar] [CrossRef]
- Hlaing, P.; Echeverri Marquez, M.; Cenker, E.; Im, H.G.; Johansson, B.; Turner, J.W.G. Effects of Volume and Nozzle Area in Narrow-Throat Spark-Ignited Pre-Chamber Combustion Engines. Fuel 2022, 313, 123029. [Google Scholar] [CrossRef]
- Kizuka, T.; Kawasaki, H.I. Development of Stable Combustion Technology for the World’s Largest Bore Diameter Gas Engine. In Proceedings of the 29th CIMAC World Congress, Vancouver, BC, Canada, 10–14 June 2019. [Google Scholar]
- Birgel, A.; Bowing, R.; Trapp, C.; Wimmer, A. GE’s J920 Gas Engine—10.4 MW Power and More than 50% Electrical Efficiency. MTZ Ind. 2017, 7, 34–39. [Google Scholar] [CrossRef]
- Solutions, M.E. MAN V35/44G. Available online: https://www.man-es.com/docs/default-source/document-sync/man-v35-44g-eng.pdf?sfvrsn=732fa54_0 (accessed on 17 March 2022).
- Solutions, M.E. MAN V51/60G. Available online: https://www.man-es.com/docs/default-source/document-sync/man-v51-60g-eng.pdf?sfvrsn=3776bc19_0 (accessed on 17 March 2022).
- Lauer, T. Impact of the Fuel Gas Quality on the Efficiency of a Large Gas Engine. In Proceedings of the 28th CIMAC World Congress, Helsinki, Finland, 6–10 June 2016. [Google Scholar]
- Geiger, J. Combustion System Development for a Large Bore Gas Engine—Efficient Combination of Simulation and Experiment. In Proceedings of the 28th CIMAC World Congress, Helsinki, Finland, 2016., 6–10 June.
- Issei, O. New Marine Gas Engine Development in YANMAR. In Proceedings of the 28th CIMAC World Congress, Helsinki, Finland, 6–10 June 2016. [Google Scholar]
- Kuroiwa, T. Performance Improvement of Spark-Ignited Medium-Speed Gas Engine 28AGS. In Proceedings of the 29th CIMAC World Congress, Vancouver, BC, Canada, 10–14 June 2019. [Google Scholar]
- Sakai, Y. Operational Experience and New Development for High Performance of Kawasaki Green Gas Engine. In Proceedings of the 28th CIMAC World Congress, Helsinki, Finland, 6–10 June 2016. [Google Scholar]
- Yoshizumi, H. Improvement of Powser Generation Efficiency and Heat Recovery of Cooling Energy in Mitsubishi KU30GSI Gas Engine for Better Heat and Power Utilization. In Proceedings of the 28th CIMAC World Congress, Helsinki, Finland, 6–10 June 2016. [Google Scholar]
- Wellander, R.; Rosell, J.; Richter, M.; Alden, M.; Andersson, O.; Johansson, B.; Duong, J.; Hyvonen, J. Study of the Early Flame Development in a Spark-Ignited Lean Burn Four-Stroke Large Bore Gas Engine by Fuel Tracer PLIF. SAE Int. J. Engines 2014, 7, 928–936. [Google Scholar] [CrossRef]
- Wolfgramm, M. G20CM34—A Highly Flexible 10 MW Gas Engine Concept. In Proceedings of the 28th CIMAC World Congress, Helsinki, Finland, 6–10 June 2016. [Google Scholar]
- Wideskog, M. Lean Burn Engines—The Optimal Power Source for Energy Solutions. In Proceedings of the 28th CIMAC World Congress, Helsinki, Finland, 6–10 June 2016. [Google Scholar]
- Hlaing, P.; Echeverri Marquez, M.; Bhavani Shankar, V.S.; Cenker, E.; Ben Houidi, M.; Johansson, B. A Study of Lean Burn Pre-Chamber Concept in a Heavy Duty Engine; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2019; pp. 1–13. [Google Scholar] [CrossRef]
- Bondarenko, O. Gas Engine for Marine Application: Modelin and Control. In Proceedings of the 28th CIMAC World Congress, Helsinki, Finland, 6–10 June 2016. [Google Scholar]
- Koda, K. Direct Measurement of Heat Loss on Combustion Chamber Wall in Gas Engine with Pre-Chamber. In Proceedings of the 29th CIMAC World Congress, Vancouver, BC, Canada, 10–14 June 2019. [Google Scholar]
- Eicheldinger, S.; Bartkowski, T.; Schröder, A.; Prager, D.I.M.; Wachtmeister, P.D.I.G. Experimental Investigation on the Influence of Brake Mean Effective Pressures Up to 30 Bar on the Behavior of a Large Bore Otto Gas Engine; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Sander, U. MTU Series 4000 for Natural Gas Operation in Ships—Challenges for High Speed Gas Engines in Mobile Applications. In Proceedings of the 28th CIMAC World Congress, Helsinki, Finland, 6–10 June 2016. [Google Scholar]
- Kunz, P. MTU Series 4000 for Natural Gas Operation in Ships—Challenges for High-Speed Gas Engines in Mobile Applications. In Proceedings of the 29th CIMAC World Congress, Vancouver, BC, Canada, 10–14 June 2019. [Google Scholar]
- Caterpillar PRODUCTSPECIFICATIES VOOR CG260-16. Available online: https://www.cat.com/nl_NL/products/new/power-systems/electric-power/gas-generator-sets/15969827.html (accessed on 17 March 2022).
- Wärtsilä Wärtsilä 34SG BALANCER. Available online: https://www.wartsila.com/docs/default-source/power-plants-documents/downloads/product-leaflets/w34sg-balancer-leaflet.pdf?utm_term=energy&utm_content=leaflet (accessed on 17 March 2022).
- Wärtsilä WÄRTSILÄ 34SG GAS ENGINE GENERATING SET. Available online: https://www.wartsila.com/docs/default-source/power-plants-documents/downloads/product-leaflets/w34sg_leaflet.pdf (accessed on 17 March 2022).
- Wärtsilä WÄRTSILÄ 50SG GAS ENGINE GENERATING SET. Available online: https://www.wartsila.com/docs/default-source/power-plants-documents/downloads/product-leaflets/w50sg_leaflet.pdf (accessed on 17 March 2022).
- Urlaub, A. Verbrennungsmotoren; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Rizzoni, G.; Guzzella, L.; Baumann, B.M. Unified Modeling of Hybrid Electric Vehicle Drivetrains. IEEE/ASME Trans. Mechatron. 1999, 4, 246–257. [Google Scholar] [CrossRef]
- Sundström, O.; Guzzella, L.; Soltic, P. Torque-Assist Hybrid Electric Powertrain Sizing: From Optimal Control towards a Sizing Law. IEEE Trans. Control. Syst. Technol. 2010, 18, 837–849. [Google Scholar] [CrossRef]
- Verhaeghe, E. Optimization of Hybrid Electric Vehicles Based on Fuel Consumption; Ghent University: Gent, Belgium, 2014. [Google Scholar]
- Ebbesen, S.; Elbert, P.; Guzzella, L. Engine Downsizing and Electric Hybridization Under Consideration of Cost and Drivability. Oil Gas Sci. Technol.–Rev. D’ifp Energ. Nouv. 2013, 68, 109–116. [Google Scholar] [CrossRef]
- Sorrentino, M.; Mauramati, F.; Arsie, I.; Cricchio, A.; Pianese, C.; Nesci, W. Application of Willans Line Method for Internal Combustion Engines Scalability towards the Design and Optimization of Eco-Innovation Solutions; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- Davey, K.; Darvizeh, R.; Golbaf, A.; Sadeghi, H. The Breaking of Geometric Similarity. Int. J. Mech. Sci. 2020, 187, 105925. [Google Scholar] [CrossRef]
- Coutinho, C.P.; Baptista, A.J.; Dias Rodrigues, J. Reduced Scale Models Based on Similitude Theory: A Review up to 2015. Eng. Struct. 2016, 119, 81–94. [Google Scholar] [CrossRef]
- Lanchester, F.W. The Horse-Power of the Petrol Motor in Its Relation to Bore, Stroke and Weight. Proc. Inst. Automob. Eng. 2006, 1, 153–220. [Google Scholar] [CrossRef]
- Chikahisa, T.; Murayama, T. Theory on Combustion Similarity for Different-Sized Diesel Engines. JSME Int. J. 1990, 33, 395–400. [Google Scholar] [CrossRef]
- Zhou, X.; Li, T.; Lai, Z.; Wang, B. Theoretical Study on Similarity of Diesel Combustion; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2018; Volume 39, pp. 1–7. [Google Scholar] [CrossRef]
- Chikahisa, T.; Kikuta, K.; Murayama, T. Combustion Similarity for Different Size Diesel Engines: Theoretical Prediction and Experimental Results; SAE Technical Papers; SAE International: Warrendale, PA, USA, 1992; Volume 101, pp. 780–789. [Google Scholar] [CrossRef]
- Bergin, M.J.; Hessel, R.P.; Reitz, R.D. Optimization of a Large Diesel Engine via Spin Spray Combustion; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2005; Volume 114, pp. 765–779. [Google Scholar] [CrossRef]
- Stager, L.A.; Reitz, R.D. Assessment of Diesel Engine Size-Scaling Relationships; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2007; Volume 2007, pp. 776–790. [Google Scholar] [CrossRef]
- Pickett, L.M.; Siebers, D.L.; Idicheria, C.A. Relationship between Ignition Processes and the Lift-Off Length of Diesel Fuel Jets; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2005. [Google Scholar] [CrossRef]
- Zhou, X.; Li, T.; Yi, P. The Similarity Ratio Effects in Design of Scaled Model Experiments for Marine Diesel Engines. Energy 2021, 231, 121116. [Google Scholar] [CrossRef]
- Shi, Y.; Reitz, R.D. Study of Diesel Engine Size-Scaling Relationships Based on Turbulence and Chemistry Scales; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2008. [Google Scholar] [CrossRef]
- Staples, L.R.; Reitz, R.D.; Hergart, C. An Experimental Investigation into Diesel Engine Size-Scaling Parameters; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2009; pp. 1068–1084. [Google Scholar] [CrossRef]
- Lee, C.W.; Reitz, R.D.; Kurtz, E. A Numerical Study on Diesel Engine Size-Scaling in Low Temperature Combustion Operation. Numeri. Heat Transf. A Appl. 2010, 58, 681–701. [Google Scholar] [CrossRef]
- Zhou, X.; Li, T.; Wei, Y.; Wu, S. Scaling Spray Combustion Processes in Marine Low-Speed Diesel Engines. Fuel 2019, 258, 116133. [Google Scholar] [CrossRef]
- Tess, M.J.; Lee, C.W.; Reitz, R.D. Diesel Engine Size Scaling at Medium Load without EGR. SAE Int. J. Engines 2011, 4, 1993–2009. [Google Scholar] [CrossRef]
- Chuahy, F.D.F.; Olk, J.; DelVescovo, D.; Kokjohn, S.L. An Engine Size–Scaling Method for Kinetically Controlled Combustion Strategies. Int. J. Engine Res. 2020, 21, 927–947. [Google Scholar] [CrossRef]
- Shi, Y.; Ge, H.-W.; Reitz, R.D. Computational Optimization of Internal Combustion Engines; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar] [CrossRef]
- Livengood, J.C.; Wu, P.C. Correlation of Autoignition Phenomena in Internal Combustion Engines and Rapid Compression Machines. Symp. (Int.) Combust. 1955, 5, 347–356. [Google Scholar] [CrossRef]
Torque (Nm) | Rated Power (kWs/m) | ||
---|---|---|---|
Scaling law | R2 | Scaling law | R2 |
Equation(3) | 0.9971 | Equation (7) | 0.9935 |
Power (kW) | BTE (%) | ||
Scaling law | R2 | Scaling law | R2 |
Equation (1) | 0.9664 | Equation (2) | 0.6495 |
Equation (4) | 0.9516 | Equation (13) | 0.5168 |
Equation(6) | 0.9813 | Equation(14) | 0.7369 |
Equation (9) | 0.9805 | ||
Equation (12) | 0.9671 |
Conditions to Meet | S-Law | P-Law | L-Law |
---|---|---|---|
Geometric similarity | |||
Dimensions () | r | r | r |
Kinematic similarity | |||
) | 1 | 1 | 1 |
r | 1 | ||
) | 1 | ||
Others | |||
r3 | r3 | r3 | |
(s) | 1 | r | |
Injection pressure ratio () | r2 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suijs, W.; Verhelst, S. Scaling Performance Parameters of Reciprocating Engines for Sustainable Energy System Optimization Modelling. Energies 2023, 16, 7497. https://doi.org/10.3390/en16227497
Suijs W, Verhelst S. Scaling Performance Parameters of Reciprocating Engines for Sustainable Energy System Optimization Modelling. Energies. 2023; 16(22):7497. https://doi.org/10.3390/en16227497
Chicago/Turabian StyleSuijs, Ward, and Sebastian Verhelst. 2023. "Scaling Performance Parameters of Reciprocating Engines for Sustainable Energy System Optimization Modelling" Energies 16, no. 22: 7497. https://doi.org/10.3390/en16227497
APA StyleSuijs, W., & Verhelst, S. (2023). Scaling Performance Parameters of Reciprocating Engines for Sustainable Energy System Optimization Modelling. Energies, 16(22), 7497. https://doi.org/10.3390/en16227497