Recent Findings on Fly Ash-Derived Zeolites Synthesis and Utilization According to the Circular Economy Concept
Abstract
:1. Introduction
2. Industrial Waste Management in Poland
2.1. Industrial Waste Generation Globally and in Poland—FA Generation and Utilization
2.2. FA Types and Properties
- Silica-based, determined as a sum of the concentrations of selected oxides: SiO2 + Al2O3 + TiO2
- Calcium-based, determined as a sum of the concentrations of selected oxides: CaO + MgO + Na2O + K2O
- Iron-based, determined as a sum of the concentrations of selected oxides: Fe2O3 + MnO + SO3 + P2O5,
FA Component | PL-L1 | PL-HC 2 | PL-L3 | PL-B4 | PL-B5 | PL-W6 | PL-W7 |
---|---|---|---|---|---|---|---|
SiO2 | 27.37 | 48.43 | 47.3 | 36.03 | 44.41 | 14.02 | 5.55 |
Al2O3 | 6.63 | 28.72 | 31.4 | 8.33 | 10.80 | 22.73 | 18.19 |
CaO | 34.48 | 4.63 | 1.7 | 27.41 | 23.84 | 20.22 | 32.49 |
MgO | 8.23 | 2.60 | 1.9 | 3.56 | 3.76 | 6.53 | 2.29 |
Na2O | 1.08 | 1.77 | - | 0.87 | 1.27 | 5.83 | 5.55 |
K2O | 0.41 | 2.81 | - | 4.92 | 3.99 | 3.08 | 3.22 |
Fe2O3 | 3.75 | 6.35 | 7.7 | 4.12 | 3.63 | 0.56 | 0.62 |
TiO2 | 0.96 | 1.17 | 1.6 | 0.94 | 1.05 | 0.76 | 0.76 |
P2O5 | - | - | - | 3.21 | 2.02 | 0.82 | 1.23 |
Heavy metals (sum) | - | - | - | - | - | 10.49 | 7.48 |
Reference | [58] | [59] | [60] | [3] | [61] | [62] | [62] |
3. Circular Economy (CE) Concept
- long-term consequences and irreversibility,
- making the ability of our planet to provide a safe space for us weaker,
- high uncertainty of outcomes.
4. FA-Derived Zeolites
4.1. FA as a Potential Precursor for Zeolites Synthesis
4.2. Methods of Synthesis for FA-Derived Zeolites
4.3. Standard Characterization Methods of Zeolite Materials
- X-ray Diffraction (XRD) is used to determine the crystalline structure and phase composition of zeolites. It provides information about the arrangement of atoms in the zeolite framework and helps identify different zeolite phases [118]. It is a valuable tool in the determination of the efficiency of synthetic zeolite synthesis methods [7].
- 2.
- Scanning Electron Microscopy allows us to visualize the surface morphology of zeolite materials at a high resolution. It provides information about particle size, shape, and distribution. Additional EDS (Energy-Dispersive X-ray Spectroscopy) gives information about the semiquantitative chemical composition of the material. Observation of the sample morphology enables an estimation of its porous structure development through synthesis procedures. SEM has been used to investigate zeolites’ microstructure, particle morphology, and crystal growth [115,119,120].
- 3.
- 4.
- Low-Temperature Gas Adsorption using nitrogen or carbon dioxide (BET Analysis) is used to determine the specific surface area and porosity of zeolites [9,18,124]. It provides information about the structure of the material and its potential sorption capacity. To more precisely determine the sorption properties of the material toward a given adsorbate or contamination more advanced methods are needed, like, for example the dynamic vapor sorption method (DVS) [125].
- 5.
- 6.
- Thermogravimetric Analysis (TGA) with Differential Scanning Calorimetry (DSC) together with Simultaneous Thermal Analysis (STA) is used to study the thermal stability of zeolites and to determine the water content and their desorption behavior. TGA and DSC are used to determine the thermal properties of zeolites, including phase transitions and thermal stability. These properties are crucial when zeolites are dedicated to high-temperature purposes like flue gas treatment. A unique method based on TGA was also proposed in [127], dedicated to determining the degree of fly ash conversion efficiency.
- 7.
- Nuclear Magnetic Resonance (NMR) Spectroscopy can provide information about the local environment of certain atoms in the zeolite structure, giving insights into their connectivity and coordination [126]. Due to its remarkable sensitivity to the atomic-scale environment, this method is well-suited for investigating local structure, disorder, and chemical reactivity in solid-state materials [128].
- 8.
- X-ray Photoelectron Spectroscopy (XPS) is used in some cases to study the chemical composition and oxidation states of the surface of zeolite materials [129].
4.4. FA-Derived Zeolites as Value-Added Products in Different Industrial Branches According to the CE Concept
5. Conclusions and Future Directions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tirva, D.; Palkar, R.R.; Agheda, K. An Optimization of Synthesis Technique for Na-X Zeolite from Coal-Fly Ash Using Taguchi Experimental Design. Chem. Pap. 2023, 77, 5143–5153. [Google Scholar] [CrossRef]
- Fukasawa, T.; Horigome, A.; Tsu, T.; Karisma, A.D.; Maeda, N.; Huang, A.N.; Fukui, K. Utilization of Incineration Fly Ash from Biomass Power Plants for Zeolite Synthesis from Coal Fly Ash by Hydrothermal Treatment. Fuel Process. Technol. 2017, 167, 92–98. [Google Scholar] [CrossRef]
- Teixeira, E.R.; Camões, A.; Branco, F.G.; Aguiar, J.B.; Fangueiro, R. Recycling of Biomass and Coal Fly Ash as Cement Replacement Material and Its Effect on Hydration and Carbonation of Concrete. Waste Manag. 2019, 94, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Gollakota, A.R.K.; Volli, V.; Shu, C.M. Progressive Utilisation Prospects of Coal Fly Ash: A Review. Sci. Total Environ. 2019, 672, 951–989. [Google Scholar] [CrossRef] [PubMed]
- Szerement, J.; Szatanik-Kloc, A.; Jarosz, R.; Bajda, T.; Mierzwa-Hersztek, M. Contemporary Applications of Natural and Synthetic Zeolites from Fly Ash in Agriculture and Environmental Protection. J. Clean. Prod. 2021, 311, 127461. [Google Scholar] [CrossRef]
- Bhatt, A.; Priyadarshini, S.; Acharath Mohanakrishnan, A.; Abri, A.; Sattler, M.; Techapaphawit, S. Physical, Chemical, and Geotechnical Properties of Coal Fly Ash: A Global Review. Case Stud. Constr. Mater. 2019, 11, e00263. [Google Scholar] [CrossRef]
- Ait Baha, A.; Tabit, K.; Idouhli, R.; Khadiri, M.; Zakir, O.; Dikici, B.; Abouelfida, A. Zeolitization of Fumed Silica and Coal Fly Ash Using the Taguchi Method toward Organic Pollutant Removal. Silicon 2023. [Google Scholar] [CrossRef]
- Zeolite Structure and Types—Lenntech. Available online: https://www.lenntech.pl/zeolites-structure-types.htm (accessed on 23 July 2023).
- Truttim, P.; Asavapisit, S.; Piyaphanuwat, R. Microwave Synthesis of Zeolite X from Bituminous Fly Ash and Its Characterization. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Wang, R.; Wang, L.; Wu, J. Adsorption Refrigeration Technology, Theory and Application; Wiley: Singapore, 2014. [Google Scholar]
- Moshoeshoe, M.; Nadiye-Tabbiruka, M.S.; Obuseng, V. A Review of the Chemistry, Structure, Properties and Applications of Zeolites. Am. J. Mater. Sci. 2017, 7, 196–221. [Google Scholar] [CrossRef]
- Chojnacki, A.; Chojnacka, K.; Hoffmann, J.; Górecki, H. The Application of Natural Zeolites for Mercury Removal: From Laboratory Tests to Industrial Scale. Min. Eng. 2004, 17, 933–937. [Google Scholar] [CrossRef]
- Gottardi, G.; Galli, E. Natural Zeolites; Minerals and Rocks; Springer: Berlin/Heidelberg, Germany, 1985; Volume 18, ISBN 978-3-642-46520-8. [Google Scholar]
- Cao, Z.; Niu, J.; Gu, Y.; Zhang, R.; Liu, Y.; Luo, L. Catalytic Pyrolysis of Rice Straw: Screening of Various Metal Salts, Metal Basic Oxide, Acidic Metal Oxide and Zeolite Catalyst on Products Yield and Characterization. J. Clean. Prod. 2020, 269, 122079. [Google Scholar] [CrossRef]
- Khalil, U.; Vongsvivut, J.; Shahabuddin, M.; Samudrala, S.P.; Srivatsa, S.C.; Bhattacharya, S. A Study on the Performance of Coke Resistive Cerium Modified Zeolite Y Catalyst for the Pyrolysis of Scrap Tyres in a Two-Stage Fixed Bed Reactor. Waste Manag. 2020, 102, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Algieri, C.; Drioli, E. Zeolite Membranes: Synthesis and Applications. Sep. Purif. Technol. 2022, 278, 119295. [Google Scholar] [CrossRef]
- Michalev, T.; Petrov, I. The Removal of Heavy Metal Ions by Synthetic Zeolites: A Review. Proc. Univ. Ruse 2012, 51, 79–84. [Google Scholar]
- Hai, T.; Alenizi, F.A.; Mohammed, A.H.; Chauhan, B.S.; Al-Qargholi, B.; Metwally, A.S.M.; Ullah, M. Machine Learning-Aided Modeling of the Hydrogen Storage in Zeolite-Based Porous Media. Int. Commun. Heat Mass Transf. 2023, 145, 106848. [Google Scholar] [CrossRef]
- Czuma, N.; Zarębska, K.; Motak, M.; Gálvez, M.E.; Da Costa, P. Ni/Zeolite X Derived from Fly Ash as Catalysts for CO2 Methanation. Fuel 2020, 267, 117139. [Google Scholar] [CrossRef]
- Strzałkowska, E. Fly Ash—A Valuable Material for the Circular Economy. Gospod. Surowcami Miner. Miner. Resour. Manag. 2021, 37, 49–62. [Google Scholar] [CrossRef]
- Boycheva, S.; Szegedi, Á.; Lázár, K.; Popov, C.; Popova, M. Advanced High-Iron Coal Fly Ash Zeolites for Low-Carbon Emission Catalytic Combustion of VOCs. Catal. Today 2023, 418, 114109. [Google Scholar] [CrossRef]
- Saldarriaga, J.F.; Gaviria, X.; Gene, J.M.; Aguado, R. Improving Circular Economy by Assessing the Use of Fly Ash as a Replacement of Lime Pastes Reducing Its Environmental Impact. Process Saf. Environ. Prot. 2022, 159, 1008–1018. [Google Scholar] [CrossRef]
- Ameh, A.E.; Fatoba, O.O.; Musyoka, N.M.; Petrik, L.F. Influence of Aluminium Source on the Crystal Structure and Framework Coordination of Al and Si in Fly Ash-Based Zeolite NaA. Powder Technol. 2017, 306, 17–25. [Google Scholar] [CrossRef]
- Indira, V.; Abhitha, K. A Review on Recent Developments in Zeolite A Synthesis for Improved Carbon Dioxide Capture: Implications for the Water-Energy Nexus. Energy Nexus 2022, 7, 100095. [Google Scholar] [CrossRef]
- Ma, B.; Lothenbach, B. Synthesis, Characterization, and Thermodynamic Study of Selected Na-Based Zeolites. Cem. Concr. Res. 2020, 135, 106111. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, Y.; Ma, S.; Zheng, S.; Zhang, Y.; Chu, P.K. Utilization of Coal Fly Ash in China: A Mini-Review on Challenges and Future Directions. Environ. Sci. Pollut. Res. 2021, 28, 18727–18740. [Google Scholar] [CrossRef] [PubMed]
- Central Electricity Authority Thermal Civil Design Division, New Delhi. Report on Fly Ash Generation at Coal/Lignite Based Thermal Power Stations and Its Utilization in the Country for the Year 2020–2021. 2021. Available online: https://cea.nic.in/wp-content/uploads/tcd/2021/09/Report_Ash_Yearly_2020_21.pdf (accessed on 23 July 2023).
- Update on Fly Ash in the US, April 2023—Cement Industry News from Global Cement. Available online: https://www.globalcement.com/news/item/15657-update-on-fly-ash-in-the-us-april-2023 (accessed on 31 August 2023).
- Valeev, D.; Bobylev, P.; Osokin, N.; Zolotova, I.; Rodionov, I.; Salazar-Concha, C.; Verichev, K. A Review of the Alumina Production from Coal Fly Ash, with a Focus in Russia. J. Clean. Prod. 2022, 363, 132360. [Google Scholar] [CrossRef]
- Smol, M.; Duda, J.; Czaplicka-Kotas, A.; Szołdrowska, D. Transformation towards Circular Economy (CE) in Municipal Waste Management System: Model Solutions for Poland. Sustainability 2020, 12, 4561. [Google Scholar] [CrossRef]
- Statistics Poland. Environment 2022; Statistics Poland: Warsaw, Poland, 2022.
- Zhao, X.; Zeng, L.; Guo, J.; Zhu, Q.; Huang, Z.; Lin, L.; Chen, X.; Cao, J.; Zhou, Z. Efficient Separation and Comprehensive Extraction of Aluminum, Silicon, and Iron from Coal Fly Ash by a Cascade Extraction Method. J. Clean. Prod. 2023, 406, 137090. [Google Scholar] [CrossRef]
- Brzeszczak, A. Analysis of Industrial Waste Management in Poland. World Sci. News 2019, 127, 337–348. [Google Scholar]
- Igliński, B.; Buczkowski, R. Development of Cement Industry in Poland—History, Current State, Ecological Aspects. A Review. J. Clean. Prod. 2017, 141, 702–720. [Google Scholar] [CrossRef]
- Kowsalya, M.; Sindhu Nachiar, S.; Anandh, S. A Review on Fly Ash Cenosphere as a Solid Waste in Concrete Application. Mater. Today Proc. 2022, 68, 2072–2078. [Google Scholar] [CrossRef]
- Kumar Nayak, D.; Abhilash, P.P.; Singh, R.; Kumar, R.; Kumar, V. Fly Ash for Sustainable Construction: A Review of Fly Ash Concrete and Its Beneficial Use Case Studies. Clean. Mater. 2022, 6, 100143. [Google Scholar] [CrossRef]
- Das, M.; Adhikary, S.K.; Rudzionis, Z. Effectiveness of Fly Ash, Zeolite, and Unburnt Rice Husk as a Substitute of Cement in Concrete. Mater. Today Proc. 2022, 61, 237–242. [Google Scholar] [CrossRef]
- Lafarge. Popiół Lotny—Dodatki Mineralne Do Betonów. Available online: https://www.lafarge.pl/popiol-lotny-certyfikowany-dodatek-mineralny-do-betonow (accessed on 23 July 2023).
- Su, H.F.; Lin, J.F.; Chen, H.; Wang, Q.Y. Production of a Novel Slow-Release Coal Fly Ash Microbial Fertilizer for Restoration of Mine Vegetation. Waste Manag. 2021, 124, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Popova, M.; Boycheva, S.; Lazarova, H.; Zgureva, D.; Lázár, K.; Szegedi, Á. VOC Oxidation and CO2 Adsorption on Dual Adsorption/Catalytic System Based on Fly Ash Zeolites. Catal. Today 2020, 357, 518–525. [Google Scholar] [CrossRef]
- Flores, C.G.; Schneider, H.; Marcilio, N.R.; Ferret, L.; Oliveira, J.C.P. Potassic Zeolites from Brazilian Coal Ash for Use as a Fertilizer in Agriculture. Waste Manag. 2017, 70, 263–271. [Google Scholar] [CrossRef]
- Majchrzak-Kucȩba, I.; Nowak, W. Thermal Analysis of Fly Ash-Based Zeolites. J. Therm. Anal. Calorim. 2004, 77, 125–131. [Google Scholar] [CrossRef]
- Yao, Z.T.; Xia, M.S.; Ye, Y.; Zhang, L. Synthesis of Zeolite Li-ABW from Fly Ash by Fusion Method. J. Hazard. Mater. 2009, 170, 639–644. [Google Scholar] [CrossRef]
- Rambau, K.M.; Musyoka, N.M.; Panek, R.; Franus, W.; Wdowin, M.; Manyala, N. Preparation of Coal Fly Ash Derived Metal Organic Frameworks and Their Carbon Derivatives. Mater. Today Commun. 2021, 27, 102433. [Google Scholar] [CrossRef]
- Kalmykova, Y.; Karlfeldt Fedje, K. Phosphorus Recovery from Municipal Solid Waste Incineration Fly Ash. Waste Manag. 2013, 33, 1403–1410. [Google Scholar] [CrossRef]
- Jia, L.; Fan, B.; Zheng, X.; Qiao, X.; Yao, Y.; Zhao, R.; Guo, J.; Jin, Y. Mercury Emission and Adsorption Characteristics of Fly Ash in PC and CFB Boilers. Front. Energy 2020, 15, 112–123. [Google Scholar] [CrossRef]
- Lekgoba, T.; Ntuli, F.; Falayi, T. Application of Coal Fly Ash for Treatment of Wastewater Containing a Binary Mixture of Copper and Nickel. J. Water Process Eng. 2021, 40, 101822. [Google Scholar] [CrossRef]
- Eteba, A.; Bassyouni, M.; Saleh, M. Utilization of Chemically Modified Coal Fly Ash as Cost-Effective Adsorbent for Removal of Hazardous Organic Wastes. Int. J. Environ. Sci. Technol. 2023, 20, 7589–7602. [Google Scholar] [CrossRef]
- Karamanis, D.; Vardoulakis, E. Application of Zeolitic Materials Prepared from Fly Ash to Water Vapor Adsorption for Solar Cooling. Appl. Energy 2012, 97, 334–339. [Google Scholar] [CrossRef]
- Odzijewicz, J.I.; Wołejko, E.; Wydro, U.; Wasil, M.; Jabłońska-Trypuć, A. Utilization of Ashes from Biomass Combustion. Energies 2022, 15, 9653. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. A Review on the Utilization of Fly Ash. Prog. Energy Combust. Sci. 2010, 36, 327–363. [Google Scholar] [CrossRef]
- Kar, K.K. Handbook of Fly Ash; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Jaworek, A.; Czech, T.; Sobczyk, A.T.; Krupa, A. Properties of Biomass vs. Coal Fly Ashes Deposited in Electrostatic Precipitator. J. Electrost. 2013, 71, 165–175. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An Overview of the Composition and Application of Biomass Ash. Part 1. Phase-Mineral and Chemical Composition and Classification. Fuel 2013, 105, 40–76. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Song, Y.C.; Li, W.Y.; Feng, J. Ash Contents and Ash-Forming Elements of Biomass and Their Significance for Solid Biofuel Combustion. Fuel 2017, 208, 377–409. [Google Scholar] [CrossRef]
- Mlonka-Mędrala, A.; Dziok, T.; Magdziarz, A.; Nowak, W. Composition and Properties of Fly Ash Collected from a Multifuel Fluidized Bed Boiler Co-Firing Refuse Derived Fuel (RDF) and Hard Coal. Energy 2021, 234, 121229. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G. A New Approach for the Classification of Coal Fly Ashes Based on Their Origin, Composition, Properties, and Behaviour. Fuel 2007, 86, 1490–1512. [Google Scholar] [CrossRef]
- Sarbak, Z.; Kramer-Wachowiak, M. Porous Structure of Waste Fly Ashes and Their Chemical Modifications. Powder Technol. 2002, 123, 53–58. [Google Scholar] [CrossRef]
- Wons, W.; Rzepa, K.; Reben, M.; Murzyn, P.; Sitarz, M.; Olejniczak, Z. Effect of Thermal Processing on the Structural Characteristics of Fly Ashes. J. Mol. Struct. 2018, 1165, 299–304. [Google Scholar] [CrossRef]
- Sarbak, Z.; Stańczyk, A.; Kramer-Wachowiak, M. Characterisation of Surface Properties of Various Fly Ashes. Powder Technol. 2004, 145, 82–87. [Google Scholar] [CrossRef]
- Liang, G.; Li, Y.; Yang, C.; Zi, C.; Zhang, Y.; Hu, X.; Zhao, W. Production of Biosilica Nanoparticles from Biomass Power Plant Fly Ash. Waste Manag. 2020, 105, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Sharifikolouei, E.; Baino, F.; Salvo, M.; Tommasi, T.; Pirone, R.; Fino, D.; Ferraris, M. Vitrification of Municipal Solid Waste Incineration Fly Ash: An Approach to Find the Successful Batch Compositions. Ceram. Int. 2021, 47, 7738–7744. [Google Scholar] [CrossRef]
- Zając, P.; Avdiushchenko, A. The Impact of Converting Waste into Resources on the Regional Economy, Evidence from Poland. Ecol. Model. 2020, 437, 109299. [Google Scholar] [CrossRef]
- Morseletto, P. Targets for a Circular Economy. Resour. Conserv. Recycl. 2020, 153, 104553. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the Circular Economy: An Analysis of 114 Definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Stahel, W.R. The Circular Economy. Nature 2016, 531, 435–438. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy—A New Sustainability Paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Moraga, G.; Huysveld, S.; Mathieux, F.; Blengini, G.A.; Alaerts, L.; Van Acker, K.; de Meester, S.; Dewulf, J. Circular Economy Indicators: What Do They Measure? Resour. Conserv. Recycl. 2019, 146, 452–461. [Google Scholar] [CrossRef]
- The Seven Pillars of the Circular Economy. Available online: https://www.metabolic.nl/news/the-seven-pillars-of-the-circular-economy (accessed on 22 July 2023).
- World Business Council for Sustainable Development. 8 Bussines Cases for the Circular Economy; World Business Council for Sustainable Development: Geneva, Switzerland, 2017. [Google Scholar]
- Shichalin, O.O.; Papynov, E.K.; Nepomnyushchaya, V.A.; Ivanets, A.I.; Belov, A.A.; Dran’kov, A.N.; Yarusova, S.B.; Buravlev, I.Y.; Tarabanova, A.E.; Fedorets, A.N.; et al. Hydrothermal Synthesis and Spark Plasma Sintering of NaY Zeolite as Solid-State Matrices for Cesium-137 Immobilization. J. Eur. Ceram. Soc. 2022, 42, 3004–3014. [Google Scholar] [CrossRef]
- Yoldi, M.; Fuentes-Ordoñez, E.G.; Korili, S.A.; Gil, A. Zeolite Synthesis from Industrial Wastes. Microporous Mesoporous Mater. 2019, 287, 183–191. [Google Scholar] [CrossRef]
- Gualtieri, A.F. Synthesis of Sodium Zeolites from a Natural Halloysite. Phys. Chem. Min. 2001, 28, 719–728. [Google Scholar] [CrossRef]
- Novembre, D.; di Sabatino, B.; Gimeno, D. Synthesis of Na-A Zeolite from 10 Å Halloysite and a New Crystallization Kinetic Model for the Transformation of Na-A into HS Zeolite. Clays Clay Min. 2005, 53, 28–36. [Google Scholar] [CrossRef]
- Kirdeciler, S.K.; Akata, B. One Pot Fusion Route for the Synthesis of Zeolite 4A Using Kaolin. Adv. Powder Technol. 2020, 31, 4336–4343. [Google Scholar] [CrossRef]
- Belviso, C.; Cavalcante, F.; Lettino, A.; Fiore, S. A and X-Type Zeolites Synthesised from Kaolinite at Low Temperature. Appl. Clay Sci. 2013, 80–81, 162–168. [Google Scholar] [CrossRef]
- Belviso, C.; Cavalcante, F.; Fiore, S. Synthesis of Zeolite from Italian Coal Fly Ash: Differences in Crystallization Temperature Using Seawater Instead of Distilled Water. Waste Manag. 2010, 30, 839–847. [Google Scholar] [CrossRef]
- Ju, T.; Meng, Y.; Han, S.; Lin, L.; Jiang, J. On the State of the Art of Crystalline Structure Reconstruction of Coal Fly Ash: A Focus on Zeolites. Chemosphere 2021, 283, 131010. [Google Scholar] [CrossRef]
- Yang, T.; Han, C.; Liu, H.; Yang, L.; Liu, D.; Tang, J.; Luo, Y. Synthesis of Na-X Zeolite from Low Aluminum Coal Fly Ash: Characterization and High Efficient As(V) Removal. Adv. Powder Technol. 2019, 30, 199–206. [Google Scholar] [CrossRef]
- Florez, C.; Restrepo-Baena, O.; Tobon, J.I. Effects of Calcination and Milling Pre-Treatments on Natural Zeolites as a Supplementary Cementitious Material. Constr. Build. Mater. 2021, 310, 125220. [Google Scholar] [CrossRef]
- Yang, S.; Yang, L.; Gao, M.; Bai, H.; Nagasaka, T. Synthesis of Zeolite-Geopolymer Composites with High Zeolite Content for Pb(II) Removal by a Simple Two-Step Method Using Fly Ash and Metakaolin. J. Clean. Prod. 2022, 378, 134528. [Google Scholar] [CrossRef]
- Le, T.M.; Nguyen, G.T.; Dat, N.D.; Tran, N.T. An Innovative Approach Based on Microwave Radiation for Synthesis of Zeolite 4A and Porosity Enhancement. Results Eng. 2023, 19, 101235. [Google Scholar] [CrossRef]
- Cheng, M.; Luo, Y.; Geng, J.; Cui, R.; Qu, Y.; Sun, L.; Dou, Q.; Fu, H. Adsorption Behavior of Iodide Ion by Silver-Doped Zeolite 4A in LiCl-KCl Molten Salt. Adv. Powder Technol. 2022, 33, 103415. [Google Scholar] [CrossRef]
- Sowunmi, A.R.; Folayan, C.O.; Anafi, F.O.; Ajayi, O.A.; Omisanya, N.O.; Obada, D.O.; Dodoo-Arhin, D. Dataset on the Comparison of Synthesized and Commercial Zeolites for Potential Solar Adsorption Refrigerating System. Data Brief. 2018, 20, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Sun, Q.; Zhang, Y.; Cao, J. Synthesis of Zeolite 4A from Kaolin and Its Adsorption Equilibrium of Carbon Dioxide. Materials 2019, 12, 1536. [Google Scholar] [CrossRef]
- Cortés, F.B.; Chejne, F.; Carrasco-Marín, F.; Pérez-Cadenas, A.F.; Moreno-Castilla, C. Water Sorption on Silica- and Zeolite-Supported Hygroscopic Salts for Cooling System Applications. Energy Convers. Manag. 2012, 53, 219–223. [Google Scholar] [CrossRef]
- Jacobs, J.H.; Deering, C.E.; Sui, R.; Cann, A.P.; Lesage, K.L.; Marriott, R.A. The Role of Carbon Dioxide and Water in the Degradation of Zeolite 4A, Zeolite 13X and Silica Gels. New J. Chem. 2023, 47, 5249–5261. [Google Scholar] [CrossRef]
- Ojha, K.; Pradhan, N.C.; Nath Samanta, A. Zeolite from Fly Ash: Synthesis and Characterization. Bull. Mater. Sci. 2004, 27, 555–564. [Google Scholar] [CrossRef]
- Hoang, P.H.; Dat, N.M. Study on Using Cellulose Derivatives as Pore Directing Agent for Preparation of Hierarchical ZSM-5 Zeolite Catalyst. Adv. Powder Technol. 2021, 32, 3927–3933. [Google Scholar] [CrossRef]
- Gevert, B.; Eriksson, L.; Törncrona, A. Preparation of Discrete Colloidal ZSM-5 Crystals with High Al-Content. J. Porous Mater. 2011, 18, 723–728. [Google Scholar] [CrossRef]
- Hoff, T.C.; Gardner, D.W.; Thilakaratne, R.; Wang, K.; Hansen, T.W.; Brown, R.C.; Tessonnier, J.P. Tailoring ZSM-5 Zeolites for the Fast Pyrolysis of Biomass to Aromatic Hydrocarbons. ChemSusChem 2016, 9, 1473–1482. [Google Scholar] [CrossRef]
- Jerzak, W.; Gao, N.; Kalemba-Rec, I.; Magdziarz, A. Catalytic Intermediate Pyrolysis of Post-Extraction Rapeseed Meal by Reusing ZSM-5 and Zeolite Y Catalysts. Catal. Today 2022, 404, 63–77. [Google Scholar] [CrossRef]
- Zhu, M.-H.; Chen, L.; Ding, W.; Zou, L.; Wu, T.; Li, Y.; Hu, N.; Chen, X.; Kita, H. Preparation and Catalytic Performance of TS-2 Zeolite Membrane. Microporous Mesoporous Mater. 2022, 331, 111660. [Google Scholar] [CrossRef]
- Hosseini Hashemi, M.S.; Eslami, F.; Karimzadeh, R. Organic Contaminants Removal from Industrial Wastewater by CTAB Treated Synthetic Zeolite Y. J. Environ. Manag. 2019, 233, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Lin, W.; Xu, D.; Wu, S.; Mondal, A.K.; Huang, F. Study the Effect of Zeolite Pore Size and Acidity on the Catalytic Pyrolysis of Kraft Lignin. Fuel Process. Technol. 2022, 237, 107467. [Google Scholar] [CrossRef]
- Doyle, A.M.; Albayati, T.M.; Abbas, A.S.; Alismaeel, Z.T. Biodiesel Production by Esterification of Oleic Acid over Zeolite Y Prepared from Kaolin. Renew. Energy 2016, 97, 19–23. [Google Scholar] [CrossRef]
- Querol, X.; Moreno, N.; Umaña, J.C.; Alastuey, A.; Hernández, E.; López-Soler, A.; Plana, F. Synthesis of Zeolites from Coal Fly Ash: An Overview. Int. J. Coal Geol. 2002, 50, 413–423. [Google Scholar] [CrossRef]
- Abdullahi, T.; Harun, Z.; Othman, M.H.D. A Review on Sustainable Synthesis of Zeolite from Kaolinite Resources via Hydrothermal Process. Adv. Powder Technol. 2017, 28, 1827–1840. [Google Scholar] [CrossRef]
- Murakami, T.; Otsuka, K.; Fukasawa, T.; Ishigami, T.; Fukui, K. Hierarchical Porous Zeolite Synthesis from Coal Fly Ash via Microwave Heating. Colloids Surf. A Physicochem. Eng. Asp. 2023, 661, 130941. [Google Scholar] [CrossRef]
- Król, M. Natural vs. Synthetic Zeolites. Crystals 2020, 10, 622. [Google Scholar] [CrossRef]
- Supelano, G.I.; Palacio, C.A.; Weber, M.; McCoy, J.; Jennings, J.; Mejía Gómez, J.A.; Parra Vargas, C.A.; Ortiz, C.; Lynn, K. Study of Fly Ash Based Zeolite by Using Slow Positrons. Mater. Sci. Eng. B Solid. State Mater. Adv. Technol. 2021, 263, 114890. [Google Scholar] [CrossRef]
- Koshlak, H. Synthesis of Zeolites from Coal Fly Ash Using Alkaline Fusion and Its Applications in Removing Heavy Metals. Materials 2023, 16, 4837. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Li, M.; Zhang, X.; Cao, P.; Jiang, H.; Luo, J.; Jiang, T. Hydrothermal Synthesis of Zeolites-Calcium Silicate Hydrate Composite from Coal Fly Ash with Co-Activation of Ca(OH)2-NaOH for Aqueous Heavy Metals Removal. Int. J. Min. Sci. Technol. 2022, 32, 563–573. [Google Scholar] [CrossRef]
- Verrecchia, G.; Cafiero, L.; de Caprariis, B.; Dell’Era, A.; Pettiti, I.; Tuffi, R.; Scarsella, M. Study of the Parameters of Zeolites Synthesis from Coal Fly Ash in Order to Optimize Their CO2 Adsorption. Fuel 2020, 276, 118041. [Google Scholar] [CrossRef]
- Panek, R.; Madej, J.; Bandura, L.; Słowik, G. Recycling of Waste Solution after Hydrothermal Conversion of Fly Ash on a Semi-Technical Scale for Zeolite Synthesis. Materials 2021, 14, 1413. [Google Scholar] [CrossRef]
- Dere Ozdemir, O.; Piskin, S. A Novel Synthesis Method of Zeolite X From Coal Fly Ash: Alkaline Fusion Followed by Ultrasonic-Assisted Synthesis Method. Waste Biomass Valorization 2019, 10, 143–154. [Google Scholar] [CrossRef]
- Chen, W.; Song, G.; Lin, Y.; Qiao, J.; Wu, T.; Yi, X.; Kawi, S. Synthesis and Catalytic Performance of Linde-Type A Zeolite (LTA) from Coal Fly Ash Utilizing Microwave and Ultrasound Collaborative Activation Method. Catal. Today 2022, 397–399, 407–418. [Google Scholar] [CrossRef]
- Shi, B.; Zhao, J.; Chang, Q. Green Synthesize of Fly Ash-Based Zeolite X: A Potential Microwave Absorbent. J. Mater. Sci. Mater. Electron. 2021, 32, 26097–26104. [Google Scholar] [CrossRef]
- Ndlovu, N.Z.N.; Ameh, A.E.; Petrik, L.F.; Ojumu, T.V. Synthesis and Characterisation of Pure Phase ZSM-5 and Sodalite Zeolites from Coal Fly Ash. Mater. Today Commun. 2023, 34, 105436. [Google Scholar] [CrossRef]
- Kunecki, P.; Panek, R.; Wdowin, M.; Bień, T.; Franus, W. Influence of the Fly Ash Fraction after Grinding Process on the Hydrothermal Synthesis Efficiency of Na-A, Na-P1, Na-X and Sodalite Zeolite Types. Int. J. Coal Sci. Technol. 2021, 8, 291–311. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, T.; Xiong, P.; Yang, S.; Gao, M.; Nagasaka, T. Green Activating Silica-Alumina Insoluble Phase of Fly Ash to Synthesize Zeolite P with High Adsorption Capacity for Pb(II) in Solution. Adv. Powder Technol. 2023, 34, 103938. [Google Scholar] [CrossRef]
- Zhang, X.; Li, C.; Zheng, S.; Di, Y.; Sun, Z. A Review of the Synthesis and Application of Zeolites from Coal-Based Solid Wastes. Int. J. Miner. Metall. Mater. 2022, 29, 1–21. [Google Scholar] [CrossRef]
- Dabbawala, A.A.; Ismail, I.; Vaithilingam, B.V.; Polychronopoulou, K.; Singaravel, G.; Morin, S.; Berthod, M.; Al Wahedi, Y. Synthesis of Hierarchical Porous Zeolite-Y for Enhanced CO2 Capture. Microporous Mesoporous Mater. 2020, 303, 110261. [Google Scholar] [CrossRef]
- Bai, R.; Song, Y.; Li, Y.; Yu, J. Creating Hierarchical Pores in Zeolite Catalysts. Trends Chem. 2019, 1, 601–611. [Google Scholar] [CrossRef]
- Wdowin, M.; Franus, M.; Panek, R.; Badura, L.; Franus, W. The Conversion Technology of Fly Ash into Zeolites. Clean. Technol. Environ. Policy 2014, 16, 1217–1223. [Google Scholar] [CrossRef]
- Querol, X.; Umaña, J.C.; Plana, F.; Alastuey, A.; Lopez-Soler, A.; Medinaceli, A.; Valero, A.; Domingo, M.J.; Garcia-Rojo, E. Synthesis of Zeolites from Fly Ash at Pilot Plant Scale. Examples of Potential Applications. Fuel 2001, 80, 857–865. [Google Scholar] [CrossRef]
- Bonetti, B.; Ferrarini, S.F.; Hammercshmitt, M.E.; De Aquino, T.F.; Pezente, D.P.; Dos Santos Zavarize, M.; Pires, M.J.R. Use of Pilot Scale Produced Zeolites as Fertilizer. J. Environ. Chem. Eng. 2022, 10, 107907. [Google Scholar] [CrossRef]
- Xu, H.Y.; Yuan, X.Q.; Dai, L.Y.; Wang, W.S.; Li, Y.; Dong, L.M. Fenton-like Degradation of Rhodamine B over Fe2O3–Al2O3-Zeolite Hybrids Derived from Coal Fly Ash. Int. J. Environ. Sci. Technol. 2023. [Google Scholar] [CrossRef]
- Supelano, G.I.; Gómez Cuaspud, J.A.; Moreno-Aldana, L.C.; Ortiz, C.; Trujillo, C.A.; Palacio, C.A.; Parra Vargas, C.A.; Mejía Gómez, J.A. Synthesis of Magnetic Zeolites from Recycled Fly Ash for Adsorption of Methylene Blue. Fuel 2020, 263, 116800. [Google Scholar] [CrossRef]
- Basaldella, E.I.; Torres Sánchez, R.M.; Conconi, M.S. Conversion of Exhausted Fluid Cracking Catalysts into Zeolites by Alkaline Fusion. Appl. Clay Sci. 2009, 42, 611–614. [Google Scholar] [CrossRef]
- Tian, X.; Shan, Y.; Zhang, J.; Yan, Z.; Sun, Y.; Ding, W.; Yu, Y. The Study of Pt/Zeolites for CO Oxidation: Effects of Skeleton Structure and Si/Al Ratio. Catal. Commun. 2023, 178, 106679. [Google Scholar] [CrossRef]
- Yu, L.; Xu, C.; Zhou, Q.; Fu, X.; Liang, Y.; Wang, W. Facile Synthesis of Hierarchical Porous ZSM-5 Zeolite with Tunable Mesostructure and Its Application in Catalytic Cracking of LDPE. J. Alloys Compd. 2023, 965, 171454. [Google Scholar] [CrossRef]
- Diaz, I.; Mayoral, A. TEM Studies of Zeolites and Ordered Mesoporous Materials. Micron 2011, 42, 512–527. [Google Scholar] [CrossRef] [PubMed]
- Valbuena, H.M.G.; Medina, A.F.; Vargas, J.C.; Fandiño, O.H. Synthesis of Zeolites Na-A, Na-X, and Analcime from Crushed Stone Waste and Their Applications in Heavy Metal Removal in Aqueous Media. Chem. Eng. Res. Des. 2023, 197, 159–172. [Google Scholar] [CrossRef]
- Mlonka-Mędrala, A.; Hasan, T.; Kalawa, W.; Sowa, M.; Sztekler, K.; Pinto, M.L.; Mika, Ł. Possibilities of Using Zeolites Synthesized from Fly Ash in Adsorption Chillers. Energies 2022, 15, 7444. [Google Scholar] [CrossRef]
- Baran, R.; Millot, Y.; Onfroy, T.; Krafft, J.M.; Dzwigaj, S. Influence of the Nitric Acid Treatment on Al Removal, Framework Composition and Acidity of BEA Zeolite Investigated by XRD, FTIR and NMR. Microporous Mesoporous Mater. 2012, 163, 122–130. [Google Scholar] [CrossRef]
- Majchrzak-Kucȩba, I. A Simple Thermogravimetric Method for the Evaluation of the Degree of Fly Ash Conversion into Zeolite Material. J. Porous Mater. 2013, 20, 407–415. [Google Scholar] [CrossRef]
- Ashbrook, S.E.; Morris, R.; Rice, C.M. Understanding the Synthesis and Reactivity of ADORable Zeolites Using NMR Spectroscopy. Curr. Opin. Colloid Interface Sci. 2022, 61, 101634. [Google Scholar] [CrossRef]
- Shigemoto, N.; Sugiyama, S.; Hayashi, H.; Miyaura, K. Characterization of Na-X, Na-A, and Coal Fly Ash Zeolites and Their Amorphous Precursors by IR, MAS NMR and XPS. J. Mater. Sci. 1995, 30, 5777–5783. [Google Scholar] [CrossRef]
- Panagiotou, T.; Morency, J.R.; Senior, C.L. Zeolite-Based Mercury Sorbent-Laboratory Testing and Modeling. ACS Div. Fuel Chem. Prepr. 2000, 45, 426–430. [Google Scholar]
- Ghorbannezhad, P.; Park, S.; Onwudili, J.A. Co-Pyrolysis of Biomass and Plastic Waste over Zeolite- and Sodium-Based Catalysts for Enhanced Yields of Hydrocarbon Products. Waste Manag. 2020, 102, 909–918. [Google Scholar] [CrossRef]
- Bellat, J.P.; Weber, G.; Bezverkhyy, I.; Lamonier, J.F. Selective Adsorption of Formaldehyde and Water Vapors in NaY and NaX Zeolites. Microporous Mesoporous Mater. 2019, 288, 109563. [Google Scholar] [CrossRef]
- Dabbawala, A.A.; Suresh Kumar Reddy, K.; Mittal, H.; Al Wahedi, Y.; Vaithilingam, B.V.; Karanikolos, G.N.; Singaravel, G.; Morin, S.; Berthod, M.; Alhassan, S.M. Water Vapor Adsorption on Metal-Exchanged Hierarchical Porous Zeolite-Y. Microporous Mesoporous Mater. 2021, 326, 111380. [Google Scholar] [CrossRef]
- Maia, A.Á.B.; Neves, R.F.; Angélica, R.S.; Pöllmann, H. Synthesis, Optimisation and Characterisation of the Zeolite NaA Using Kaolin Waste from the Amazon Region. Production of Zeolites KA, MgA and CaA. Appl. Clay Sci. 2015, 108, 55–60. [Google Scholar] [CrossRef]
- European Comission. Commission Implementing Decision (EU) 2021/2326 of 30 November 2021 Establishing Best Available Techniques (BAT) Conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for Large Combustion Plants (Notified under Document C (2021) 8580). Official Journal of the European Union. 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32021D2326 (accessed on 23 July 2023).
- Kunecki, P.; Wdowin, M.; Hanc, E. Fly Ash-Derived Zeolites and Their Sorption Abilities in Relation to Elemental Mercury in a Simulated Gas Stream. J. Clean. Prod. 2023, 391, 136181. [Google Scholar] [CrossRef]
- Yang, L.; Qian, X.; Yuan, P.; Bai, H.; Miki, T.; Men, F.; Li, H.; Nagasaka, T. Green Synthesis of Zeolite 4A Using Fly Ash Fused with Synergism of NaOH and Na2CO3. J. Clean. Prod. 2019, 212, 250–260. [Google Scholar] [CrossRef]
- Lee, K.M.; Jo, Y.M. Synthesis of Zeolite from Waste Fly Ash for Adsorption of CO2. J. Mater. Cycles Waste Manag. 2010, 12, 212–219. [Google Scholar] [CrossRef]
- Muriithi, G.N.; Petrik, L.F.; Doucet, F.J. Synthesis, Characterisation and CO2 Adsorption Potential of NaA and NaX Zeolites and Hydrotalcite Obtained from the Same Coal Fly Ash. J. CO2 Util. 2020, 36, 220–230. [Google Scholar] [CrossRef]
- Boycheva, S.; Zgureva, D.; Lazarova, H.; Popova, M. Comparative Studies of Carbon Capture onto Coal Fly Ash Zeolites Na-X and Na–Ca-X. Chemosphere 2021, 271, 129505. [Google Scholar] [CrossRef]
- He, X.; Yao, B.; Xia, Y.; Huang, H.; Gan, Y.; Zhang, W. Coal Fly Ash Derived Zeolite for Highly Efficient Removal of Ni2+ Inwaste Water. Powder Technol. 2020, 367, 40–46. [Google Scholar] [CrossRef]
- Yang, L.; Gao, M.; Wei, T.; Nagasaka, T. Synergistic Removal of As(V) from Aqueous Solution by Nanozero Valent Iron Loaded with Zeolite 5A Synthesized from Fly Ash. J. Hazard. Mater. 2022, 424, 127428. [Google Scholar] [CrossRef]
- Ankrah, A.F.; Tokay, B.; Snape, C.E. Heavy Metal Removal from Aqueous Solutions Using Fly-Ash Derived Zeolite NaP1. Int. J. Environ. Res. 2022, 16, 17. [Google Scholar] [CrossRef]
- Han, L.; Wang, J.; Liu, Z.; Zhang, Y.; Jin, Y.; Li, J.; Wang, D. Synthesis of Fly Ash-Based Self-Supported Zeolites Foam Geopolymer via Saturated Steam Treatment. J. Hazard. Mater. 2020, 393, 122468. [Google Scholar] [CrossRef] [PubMed]
- Myat, A.; Kim Choon, N.; Thu, K.; Kim, Y.D. Experimental Investigation on the Optimal Performance of Zeolite-Water Adsorption Chiller. Appl. Energy 2013, 102, 582–590. [Google Scholar] [CrossRef]
- Liu, Y.M.; Yuan, Z.X.; Wen, X.; Du, C.X. Evaluation on Performance of Solar Adsorption Cooling of Silica Gel and SAPO-34 Zeolite. Appl. Therm. Eng. 2021, 182, 116019. [Google Scholar] [CrossRef]
- Li, A.; Ismail, A.B.; Thu, K.; Ng, K.C.; Loh, W.S. Performance Evaluation of a Zeolite—Water Adsorption Chiller with Entropy Analysis of Thermodynamic Insight. Appl. Energy 2014, 130, 702–711. [Google Scholar] [CrossRef]
- Iqbal, A.; Sattar, H.; Haider, R.; Munir, S. Synthesis and Characterization of Pure Phase Zeolite 4A from Coal Fly Ash. J. Clean. Prod. 2019, 219, 258–267. [Google Scholar] [CrossRef]
- Subhapriya, S.; Gomathipriya, P. Zeolite X from Coal Fly Ash Inhibits Proliferation of Human Breast Cancer Cell Lines (MCF-7) via Induction of S Phase Arrest and Apoptosis. Mol. Biol. Rep. 2018, 45, 2063–2074. [Google Scholar] [CrossRef]
- Rajakrishnamoorthy, P.; Karthikeyan, D.; Saravanan, C.G. Emission Reduction Technique Applied in SI Engines Exhaust by Using Zsm5 Zeolite as Catalysts Synthesized from Coal Fly Ash. Mater. Today Proc. 2020, 22, 499–506. [Google Scholar] [CrossRef]
- Wu, Y.; Liang, G.; Zhao, X.; Wang, H.; Qu, Z. Flexible Textural Design of ZSM-5 Zeolite Adsorbent from Coal Fly Ash via Solvent-Free Method for Toluene Elimination. J. Environ. Chem. Eng. 2023, 11, 109589. [Google Scholar] [CrossRef]
- Krzywanski, J.; Grabowska, K.; Sosnowski, M.; Zylka, A.; Kulakowska, A.; Czakiert, T.; Sztekler, K.; Wesolowska, M.; Nowak, W. Heat Transfer in Adsorption Chillers with Fluidized Beds of Silica Gel, Zeolite, and Carbon Nanotubes. Heat Transf. Eng. 2021, 43, 172–182. [Google Scholar] [CrossRef]
- Kayal, S.; Baichuan, S.; Saha, B.B. Adsorption Characteristics of AQSOA Zeolites and Water for Adsorption Chillers. Int. J. Heat Mass Transf. 2016, 92, 1120–1127. [Google Scholar] [CrossRef]
- Wei, H.; Teo, B.; Chakraborty, A.; Han, B. Water Adsorption on CHA and AFI Types Zeolites: Modelling and Investigation of Adsorption Chiller under Static and Dynamic Conditions. Appl. Therm. Eng. 2017, 127, 35–45. [Google Scholar] [CrossRef]
- Choudhury, B.; Saha, B.B.; Chatterjee, P.K.; Sarkar, J.P. An Overview of Developments in Adsorption Refrigeration Systems towards a Sustainable Way of Cooling. Appl. Energy 2013, 104, 554–567. [Google Scholar] [CrossRef]
- Grabowska, K.; Krzywanski, J.; Nowak, W.; Wesolowska, M. Construction of an Innovative Adsorbent Bed Configuration in the Adsorption Chiller—Selection Criteria for Effective Sorbent-Glue Pair. Energy 2018, 151, 317–323. [Google Scholar] [CrossRef]
- Fernandes, M.S.; Brites, G.J.V.N.; Costa, J.J.; Gaspar, A.R.; Costa, V.A.F. Review and Future Trends of Solar Adsorption Refrigeration Systems. Renew. Sustain. Energy Rev. 2014, 39, 102–123. [Google Scholar] [CrossRef]
- Amoni, B.C.; Freitas, A.D.L.; Bessa, R.A.; Oliveira, C.P.; Bastos-Neto, M.; Azevedo, D.C.S.; Lucena, S.M.P.; Sasaki, J.M.; Soares, J.B.; Soares, S.A.; et al. Effect of Coal Fly Ash Treatments on Synthesis of High-Quality Zeolite A as a Potential Additive for Warm Mix Asphalt. Mater. Chem. Phys. 2022, 275, 125197. [Google Scholar] [CrossRef]
- Estevam, S.T.; de Aquino, T.F.; da Silva, T.D.; da Cruz, R.; Bonetti, B.; Riella, H.G.; Soares, C. Synthesis of K-Merlinoite Zeolite from Coal Fly Ash for Fertilizer Application. Braz. J. Chem. Eng. 2022, 39, 631–643. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, B.; Chang, J.; Fan, C.; Liu, Z. Effect of Zeolite Contents on Mineral Evolution and Heavy Metal Solidification in Alkali-Activated MSWI Fly Ash Specimens. Constr. Build. Mater. 2022, 345, 128309. [Google Scholar] [CrossRef]
- Chen, J.; Yang, R.; Zhang, Z.; Wu, D. Removal of Fluoride from Water Using Aluminum Hydroxide-Loaded Zeolite Synthesized from Coal Fly Ash. J. Hazard. Mater. 2022, 421, 126817. [Google Scholar] [CrossRef]
- Teng, L.; Jin, X.; Bu, Y.; Ma, J.; Liu, Q.; Yang, J.; Liu, W.; Yao, L. Facile and Fast Synthesis of Cancrinite-Type Zeolite from Coal Fly Ash by a Novel Hot Stuffy Route. J. Environ. Chem. Eng. 2022, 10, 108369. [Google Scholar] [CrossRef]
- Gjyli, S.; Korpa, A. High Catalytic Activity of a Seawater Fly Ash Based Zeolite for Phenol Alkylation. Kinet. Catal. 2021, 62, 270–278. [Google Scholar] [CrossRef]
- Mahima Kumar, M.; Senthilvadivu, R.; Brahmaji Rao, J.S.; Neelamegam, M.; Ashok Kumar, G.V.S.; Kumar, R.; Jena, H. Characterization of Fly Ash by ED-XRF and INAA for the Synthesis of Low Silica Zeolites. J. Radioanal. Nucl. Chem. 2020, 325, 941–947. [Google Scholar] [CrossRef]
- Panasenko, A.E.; Shichalin, O.O.; Yarusova, S.B.; Ivanets, A.I.; Belov, A.A.; Dran’kov, A.N.; Azon, S.A.; Fedorets, A.N.; Buravlev, I.Y.; Mayorov, V.Y.; et al. A Novel Approach for Rice Straw Agricultural Waste Utilization: Synthesis of Solid Aluminosilicate Matrices for Cesium Immobilization. Nucl. Eng. Technol. 2022, 54, 3250–3259. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, Z.; Wang, Q. Evaluation of Zeolite Catalysts on Product Distribution and Synergy during Wood-Plastic Composite Catalytic Pyrolysis. Energy 2019, 189, 116174. [Google Scholar] [CrossRef]
- Bai, S.; Zhou, L.; Chang, Z.; Zhang, C.; Chu, M. Synthesis of Na-X Zeolite from Longkou Oil Shale Ash by Alkaline Fusion Hydrothermal Method. Carbon. Resour. Convers. 2018, 1, 245–250. [Google Scholar] [CrossRef]
- Roulia, M.; Koukouza, K.; Stamatakis, M.; Vasilatos, C. Fly-Ash Derived Na-P1, Natural Zeolite Tuffs and Diatomite in Motor Oil Retention. Clean. Mater. 2022, 4, 100063. [Google Scholar] [CrossRef]
- Kumar, M.M.; Jena, H. Direct Single-Step Synthesis of Phase Pure Zeolite Na–P1, Hydroxy Sodalite and Analcime from Coal Fly Ash and Assessment of Their Cs+ and Sr2+ Removal Efficiencies. Microporous Mesoporous Mater. 2022, 333, 111738. [Google Scholar] [CrossRef]
- Gollakota, A.R.K.; Volli, V.; Munagapati, V.S.; Wen, J.C.; Shu, C.M. Synthesis of Novel ZSM-22 Zeolite from Taiwanese Coal Fly Ash for the Selective Separation of Rhodamine 6G. J. Mater. Res. Technol. 2020, 9, 15381–15393. [Google Scholar] [CrossRef]
- Mokrzycki, J.; Fedyna, M.; Marzec, M.; Szerement, J.; Panek, R.; Klimek, A.; Bajda, T.; Mierzwa-Hersztek, M. Copper Ion-Exchanged Zeolite X from Fly Ash as an Efficient Adsorbent of Phosphate Ions from Aqueous Solutions. J. Environ. Chem. Eng. 2022, 10, 108567. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, Y.; Qiu, Q.; Long, L.; Liu, X.; Lin, S.; Jiang, X. Zeolite NaP1 Synthesized from Municipal Solid Waste Incineration Fly Ash for Photocatalytic Degradation of Methylene Blue. Environ. Res. 2023, 218, 114873. [Google Scholar] [CrossRef]
- Soongprasit, K.; Vichaphund, S.; Sricharoenchaikul, V.; Atong, D. Activity of Fly Ash-Derived ZSM-5 and Zeolite X on Fast Pyrolysis of Millettia (Pongamia) Pinnata Waste. Waste Biomass Valorization 2020, 11, 715–724. [Google Scholar] [CrossRef]
Adsorbent | Specific Surface Area, m2/g | Pore Size, nm | Reference |
---|---|---|---|
Natural zeolite | 9–15 | 9.2–14.6 | [80,81] |
Zeolite 4A | 7–559 | 22 | [82,83,84,85] |
Zeolite 13X | 310–730 | 1–2.5 | [84,86,87,88] |
ZSM-5 | 304–417 | - | [89,90,91,92] |
TS-1/2zeolite | 500 | - | [93] |
Zeolite Y | 527 | 2.5–3 | [92,94] |
Zeolite HY | 620–625 | 7.4 | [95,96] |
Adsorbent | Specific Surface Area | Pore Size | Reference |
---|---|---|---|
Unit | [m2/g] | [nm] | - |
Na-X zeolite obtained from FA from oil shale combustion (China) | 252 | 3.817 | [167] |
Na-P1 zeolite obtained from FA from lignite combustion (Greece) | 64.5 | 0.8 | [168] |
NaA zeolite obtained from CFA (South Africa) | 33 | - | [139] |
NaX zeolite obtained from CFA (South Africa) | 228 | - | [139] |
Na-P1 zeolite obtained from CFA (India) | 63 | - | [169] |
Zeolite ZSM-22 obtained from CFA (Taiwan) | 30.2 | - | [170] |
Zeolite X obtained from CFA (Poland) | 629 | 1.7 | [171] |
Zeolite NaP1 obtained from FA from the waste incineration process | 23.86 | - | [172] |
FA-derived zeolite NaP1 from class F FA, obtained from a coal power plant (Poland) | 60 | 11 | [143] |
Na-P1 zeolite obtained from CFA (Poland) | 88 | - | [115] |
Sodalite zeolites obtained from CFA (South Africa) | 366–399 | - | [109] |
Zeolite-geopolymer composites obtained from FA and metakaolin (China) | 52–100 | 4–7 | [81] |
Zeolites-calcium silicate hydrate composite obtained from CFA (China) | 96.5 | - | [103] |
Zeolites obtained from CFA collected from the electrostatic precipitators (Bulgaria) | 284–486 | 13.2–61.1 | [140] |
Zeolite X prepared from FA (China) | 473.56 | 1.9 | [108] |
ZSM5 obtained from CFA (Thailand) | 329 | 6.0–27.8 | [173] |
X zeolite obtained from CFA (Thailand) | 722 | 5.7–24.2 | [173] |
Zeolite 4A obtained from CFA (China) | 18.33 | 11.3 | [137] |
Zeolite 4A obtained from CFA (Pakistan) | 122 | - | [148] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mlonka-Mędrala, A. Recent Findings on Fly Ash-Derived Zeolites Synthesis and Utilization According to the Circular Economy Concept. Energies 2023, 16, 6593. https://doi.org/10.3390/en16186593
Mlonka-Mędrala A. Recent Findings on Fly Ash-Derived Zeolites Synthesis and Utilization According to the Circular Economy Concept. Energies. 2023; 16(18):6593. https://doi.org/10.3390/en16186593
Chicago/Turabian StyleMlonka-Mędrala, Agata. 2023. "Recent Findings on Fly Ash-Derived Zeolites Synthesis and Utilization According to the Circular Economy Concept" Energies 16, no. 18: 6593. https://doi.org/10.3390/en16186593
APA StyleMlonka-Mędrala, A. (2023). Recent Findings on Fly Ash-Derived Zeolites Synthesis and Utilization According to the Circular Economy Concept. Energies, 16(18), 6593. https://doi.org/10.3390/en16186593