Short-Term Natural Gas and Carbon Price Forecasting Using Artificial Neural Networks
Abstract
:1. Introduction
2. Literature Review
2.1. Prediction of Gas Prices Using Artificial Neural Networks
- 1.
- Input data selection and preparation;
- 2.
- Model architecture and layout;
- 3.
- Model parametrization and hyper-parameters, e.g., activation functions, learning rates, etc.
Ref. | Year | Inputs | Market | Architecture | Layer/Nodes | Activation Function |
---|---|---|---|---|---|---|
[35] | 2020 | Gas prices | USA | Hybrid LSTM (RNN) | n/a | Tanh, Sigmoid |
[31] | 2019 | Gas prices | USA | ARNN (RNN) | 1/13 | n/a |
[36] | 2019 | Gas prices | IRN | Hybrid (unspecified) | 1/8 | Sigmoid |
[37] | 2019 | Gas prices, oil prices, CDD, HDD, drilling activities, gas offer and demand, gas imports, gas storage levels | USA | NAR (RNN) | 1/10 | n/a |
[33] | 2016 | Gas prices, CDD, HDD, temperature, oil prices, gas demand, storage capacity and operation | USA | NAR (RNN) NARX (RNN) | 1/1 1/6 | n/a |
[38] | 2015 | Gas prices | USA | Hybrid MLP (FFNN) | 1/3 | n/a |
[39] | 2015 | Gas prices | USA | Hybrid MLP (FFNN) | 1/n/a | n/a |
[32] | 2015 | Gas prices, 46 others | USA | GRU (RNN) | n/a | Sigmoid, ReLU |
[30] | 2013 | Gas prices | USA | MLP (FFNN) | n/a | n/a |
[40] | 2012 | Gas prices, economic indicators | IRN | Hybrid (FFNN) | n/a | n/a |
[34] | 2012 | Gas prices, EUR/USD exchange rate, gas imports, oil prices, gas storage level, weekend and holiday indicator | GER | NARX (RNN) | 1/7 | Tanh |
[41] | 2012 | Gas prices | EU, USA | MoG NN (FFNN) | n/a | n/a |
[29] | 2011 | Gas prices | USA | Hybrid (FFNN) | 2/n/a | n/a |
[42] | 2010 | Gas prices, components of Wavelet transformation | UK | Hybrid MLP (FFNN) | 1/6 | Tanh |
RBFNN (FFNN) | 1/40 | RBF |
2.2. Prediction of CO2 Prices Using Artificial Neural Networks
Ref. | Year | Inputs | Market | Architecture | Layer/Nodes | Activation Function |
---|---|---|---|---|---|---|
[43] | 2020 | CO2 prices | 8 different markets in China | Hybrid MLP (FFNN) | 1/n/a | RBF |
[46] | 2019 | CO2, oil, coal, gas, and electricity prices; DAX; clean energy index | EU-ETS | FFNN | 1/n/a | n/a |
[44] | 2019 | CO2, oil, and coal prices; leading stock index, air quality index, temperature | Shenzhen | Hybrid (FFNN) | 1/p | n/a |
[45] | 2018 | CO2 prices, Stoxx600, global cal Newcastle index | EU-ETS | Hybrid GNN | 1/3 | n/a |
[51] | 2017 | CO2 prices | EU-ETS | FFNN | 1/10 | n/a |
[49] | 2016 | CO2 prices | EU-ETS | Hybrid FFNN | 1/n/a | Sigmoid |
[52] | 2015 | CO2 prices | EU-ETS | MLP (FFNN) | 1/7 | Purelin |
[47] | 2015 | CO2 prices | EU-ETS | Hybrid FFNN | n/a | n/a |
[50] | 2014 | CO2, oil, coal, and gas prices | EU-ETS | MLP (FFNN) | n/a | RBF |
[53] | 2013 | CO2, oil, coal, and gas prices | EU-ETS | Hybrid MLP (FFNN) | 1/13 | RBF |
[54] | 2012 | CO2 prices | EU-ETS | Hybrid FFNN | 1/2*p + 1 | n/a |
3. Methodology and Data
3.1. General Approach for Network Optimisation
3.2. Network and Input Preparation for Gas Price Predictions
3.2.1. Data Collection and Preparation
3.2.2. Network Implementation and Variation
3.3. Network and Input Preparation for CO2 Price Predictions
3.3.1. Data Collection and Preparation
3.3.2. Network Implementation and Variation
4. Results and Discussion
4.1. Prediction of Natural Gas Prices
4.1.1. Autoregressive Analysis
4.1.2. Consideration of Exogenous Parameters
4.1.3. Discussion of Determinants
4.1.4. Comparison with the Literature
4.2. Prediction of Carbon Prices
4.2.1. Autoregressive Analysis
4.2.2. Consideration of Exogenous Parameters
4.2.3. Discussion of Determinants
4.2.4. Comparison with the Literature
4.3. Comparison of the Prediction Performance of Gas and Carbon Prices
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Latin Letters | |
normalized root mean square error | |
coefficient of determination | |
number of time steps t in time series | |
historic value of variable x at time t | |
predicted value of variable x at time t | |
Abbreviations | |
ACF | autocorrelation function |
AGSI+ | aggregated gas storage inventory |
ANN | artificial neural network |
ARIMA | auto-regressive integrated moving average |
ARX | autoregressive model with exogenous variables |
BPNN | backpropagation neural network |
CEEMDAN | complete ensemble empirical mode decomposition with adaptive noise |
DAX | German stock index |
ECP D0 | daily settlement prices of daily future carbon certificate contracts |
EGSI | European gas spot index |
EMD | empirical mode decomposition |
ETS | EU emissions trading system |
EUA | European union allowance |
FFNN | feed-forward neural network |
GARCH | generalized autoregressive conditional heteroscedasticity |
ICE | international climate exchange |
LSTM | long short term memory |
MLP | multilayer perceptron |
MSE | mean square error |
NAR | nonlinear autoregressive model |
NARX | nonlinear autoregressive model with exogenous variables |
NCG | NetConnect Germany market zone |
NRMSE | normalized root mean square error |
PACF | partial autocorrelation function |
PEGAS | pan-European gas cooperation |
purelin | linear transfer function |
RBF | radial basis function |
RES | rule-based expert system |
RMSE | root mean square error |
RNN | recurrent neural network |
satlins | symmetric saturating linear transfer function |
tansig | hyperbolic tangent transfer function |
References
- Scharf, H.; Arnold, F.; Lencz, D. Future natural gas consumption in the context of decarbonization—A meta-analysis of scenarios modeling the German energy system. Energy Strat. Rev. 2021, 33, 100591. [Google Scholar] [CrossRef]
- Kolb, S.; Plankenbühler, T.; Hofmann, K.; Bergerson, J.; Karl, J. Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review. Renew. Sustain. Energy Rev. 2021, 146, 111147. [Google Scholar] [CrossRef]
- Weron, R. Electricity price forecasting: A review of the state-of-the-art with a look into the future. Int. J. Forecast. 2014, 30, 1030–1081. [Google Scholar] [CrossRef]
- Kolb, S.; Plankenbühler, T.; Frank, J.; Dettelbacher, J.; Ludwig, R.; Karl, J.; Dillig, M. Scenarios for the integration of renewable gases into the German natural gas market—A simulation-based optimisation approach. Renew. Sustain. Energy Rev. 2021, 139, 110696. [Google Scholar] [CrossRef]
- Kolb, S.; Plankenbühler, T.; Pfaffenberger, F.; Vrzel, J.; Kalu, A.; Holtz-Bacha, C.; Ludwig, R.; Karl, J.; Dillig, M. Scenario-based analysis for the integration of renewable gases into the german gas market. In Proceedings of the 27th European Biomass Conference and Exhibition, EUBCE 2019, Lisbon, Portugal, 27–31 May 2019; pp. 1863–1868. [Google Scholar] [CrossRef]
- Abada, I.; Gabriel, S.; Briat, V.; Massol, O. A Generalized Nash–Cournot Model for the Northwestern European Natural Gas Markets with a Fuel Substitution Demand Function: The GaMMES Model. Netw. Spat. Econ. 2013, 13, 1–42. [Google Scholar] [CrossRef]
- Boots, M.G.; Rijkers, F.A.; Hobbs, B.F. Trading in the Downstream European Gas Market: A Successive Oligopoly Approach. Energy J. 2004, 25, 73–102. [Google Scholar] [CrossRef]
- Egging, R. Benders Decomposition for multi-stage stochastic mixed complementarity problems—Applied to a global natural gas market model. Eur. J. Oper. Res. 2013, 226, 341–353. [Google Scholar] [CrossRef]
- Rubin, O.D.; Babcock, B.A. The impact of expansion of wind power capacity and pricing methods on the efficiency of deregulated electricity markets. Energy 2013, 59, 676–688. [Google Scholar] [CrossRef]
- Kolb, S.; Dillig, M.; Plankenbühler, T.; Karl, J. The impact of renewables on electricity prices in Germany—An update for the years 2014–2018. Renew. Sustain. Energy Rev. 2020, 134, 110307. [Google Scholar] [CrossRef]
- Kanamura, T.; Ōhashi, K. A structural model for electricity prices with spikes: Measurement of spike risk and optimal policies for hydropower plant operation. Energy Econ. 2007, 29, 1010–1032. [Google Scholar] [CrossRef]
- Coulon, M.; Howison, S. Stochastic behavior of the electricity bid stack: From fundamental drivers to power prices. J. Energy Mark. 2009, 2, 29–69. [Google Scholar] [CrossRef]
- Nick, S.; Thoenes, S. What drives natural gas prices?—A structural VAR approach. Energy Econ. 2014, 45, 517–527. [Google Scholar] [CrossRef]
- Nogales, F.; Contreras, J.; Conejo, A.; Espinola, R. Forecasting next-day electricity prices by time series models. IEEE Trans. Power Syst. 2002, 17, 342–348. [Google Scholar] [CrossRef]
- Kristiansen, T. Forecasting Nord Pool day-ahead prices with an autoregressive model. Energy Policy 2012, 49, 328–332. [Google Scholar] [CrossRef]
- Zareipour, H.; Canizares, C.; Bhattacharya, K.; Thomson, J. Application of Public-Domain Market Information to Forecast Ontario’s Wholesale Electricity Prices. IEEE Trans. Power Syst. 2006, 21, 1707–1717. [Google Scholar] [CrossRef]
- Garcia, R.; Contreras, J.; Vanakkeren, M.; Garcia, J. A GARCH Forecasting Model to Predict Day-Ahead Electricity Prices. IEEE Trans. Power Syst. 2005, 20, 867–874. [Google Scholar] [CrossRef]
- Ketterer, J.C. The impact of wind power generation on the electricity price in Germany. Energy Econ. 2014, 44, 270–280. [Google Scholar] [CrossRef]
- Zeitlberger, A.C.M.; Brauneis, A. Modeling carbon spot and futures price returns with GARCH and Markov switching GARCH models: Evidence from the first commitment period (2008–2012). Central Eur. J. Oper. Res. 2016, 24, 149–176. [Google Scholar] [CrossRef]
- Lago, J.; De Ridder, F.; De Schutter, B. Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms. Appl. Energy 2018, 221, 386–405. [Google Scholar] [CrossRef]
- Reddy, S.S.; Jung, C.-M.; Seog, K.J. Day-ahead electricity price forecasting using back propagation neural networks and weighted least square technique. Front. Energy 2016, 10, 105–113. [Google Scholar] [CrossRef]
- Singhal, D.; Swarup, K. Electricity price forecasting using artificial neural networks. Int. J. Electr. Power Energy Syst. 2011, 33, 550–555. [Google Scholar] [CrossRef]
- Pindoriya, N.M.; Singh, S.N.; Singh, S.K. An Adaptive Wavelet Neural Network-Based Energy Price Forecasting in Electricity Markets. IEEE Trans. Power Syst. 2008, 23, 1423–1432. [Google Scholar] [CrossRef]
- Nowotarski, J.; Weron, R. Recent advances in electricity price forecasting: A review of probabilistic forecasting. Renew. Sustain. Energy Rev. 2018, 81, 1548–1568. [Google Scholar] [CrossRef]
- Čeperić, E.; Žiković, S.; Čeperić, V. Short-term forecasting of natural gas prices using machine learning and feature selection algorithms. Energy 2017, 140, 893–900. [Google Scholar] [CrossRef]
- Zhang, G.; Patuwo, B.E.; Hu, M.Y. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast. 1998, 14, 35–62. [Google Scholar] [CrossRef]
- Tzeng, F.-Y.; Ma, K.-L. Opening the Black Box—Data Driven Visualization of Neural Network. In Proceedings of the IEEE Visualization Conference, Minneapolis, MN, USA, 23–28 October 2005. [Google Scholar]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [PubMed]
- Abrishami, H.; Varahrami, V. Different methods for gas price forecasting. Cuad. Econ. 2011, 34, 137–144. [Google Scholar] [CrossRef]
- Salehnia, N.; Falahi, M.A.; Seifi, A.; Adeli, M.H.M. Forecasting natural gas spot prices with nonlinear modeling using Gamma test analysis. J. Nat. Gas Sci. Eng. 2013, 14, 238–249. [Google Scholar] [CrossRef]
- Siddiqui, A.W. Predicting Natural Gas Spot Prices Using Artificial Neural Network. In Proceedings of the 2nd International Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 1–3 May 2019; Volume 2019, pp. 4–9. [Google Scholar] [CrossRef]
- Maitra, S. Natural Gas Spot Price Prediction Using Artificial Neural Network 2015. Available online: https://towardsdatascience.com/natural-gas-spot-price-prediction-using-artificial-neural-network-56da369b2346 (accessed on 6 May 2020).
- Hosseinipoor, S. Forecasting Natural Gas Prices in the United States Using Artificial Neural Networks. Master’s Thesis, University of Oklahoma, Norman, OK, USA, 2016. [Google Scholar]
- Busse, S.; Helmholz, P.; Weinmann, M. Forecasting day ahead spot price movements of natural gas—An analysis of potential influence factors on basis of a NARX neural network. In Multikonferenz Wirtschaftsinformatik; Gito Verlag: Berlin, Germany, 2012; pp. 1395–1406. [Google Scholar]
- Wang, J.; Lei, C.; Guo, M. Daily natural gas price forecasting by a weighted hybrid data-driven model. J. Pet. Sci. Eng. 2020, 192, 107240. [Google Scholar] [CrossRef]
- Naderi, M.; Khamehchi, E.; Karimi, B. Novel statistical forecasting models for crude oil price, gas price, and interest rate based on meta-heuristic bat algorithm. J. Pet. Sci. Eng. 2019, 172, 13–22. [Google Scholar] [CrossRef]
- Su, M.; Zhang, Z.; Zhu, Y.; Zha, D.; Wen, W. Data Driven Natural Gas Spot Price Prediction Models Using Machine Learning Methods. Energies 2019, 12, 1094. [Google Scholar] [CrossRef]
- Jin, J.; Kim, J. Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks. PLoS ONE 2015, 10, e0142064. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.; Kumar, S.; Tiwari, A. Hybrid model of gas price prediction using moving average and neural network. In Proceedings of the 2015 1st International Conference on Next Generation Computing Technologies (NGCT), Dehradun, India, 4–5 September 2015; pp. 735–737. [Google Scholar] [CrossRef]
- Azadeh, A.; Sheikhalishahi, M.; Shahmiri, S. A hybrid neuro-fuzzy simulation approach for improvement of natural gas price forecasting in industrial sectors with vague indicators. Int. J. Adv. Manuf. Technol. 2012, 62, 15–33. [Google Scholar] [CrossRef]
- Panella, M.; Barcellona, F.; D’Ecclesia, R.L. Forecasting Energy Commodity Prices Using Neural Networks. Adv. Decis. Sci. 2012, 2012, 289810. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Nabney, I.T. Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models. Energy 2010, 35, 3674–3685. [Google Scholar] [CrossRef]
- Lu, H.; Ma, X.; Huang, K.; Azimi, M. Carbon trading volume and price forecasting in China using multiple machine learning models. J. Clean. Prod. 2020, 249, 119386. [Google Scholar] [CrossRef]
- Han, M.; Ding, L.; Zhao, X.; Kang, W. Forecasting carbon prices in the Shenzhen market, China: The role of mixed-frequency factors. Energy 2019, 171, 69–76. [Google Scholar] [CrossRef]
- Zhang, J.; Li, D.; Hao, Y.; Tan, Z. A hybrid model using signal processing technology, econometric models and neural network for carbon spot price forecasting. J. Clean. Prod. 2018, 204, 958–964. [Google Scholar] [CrossRef]
- Yahşi, M.; Çanakoğlu, E.; Ağralı, S. Carbon price forecasting models based on big data analytics. Carbon Manag. 2019, 10, 175–187. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, P. International carbon market price forecasting using an integration model based on SVR. In Proceedings of the 2015 International Conference on Engineering Management, Engineering Education and Information Technology, Guangzhou, China, 24–25 October 2015. [Google Scholar] [CrossRef]
- Zhu, B. A Novel Multiscale Ensemble Carbon Price Prediction Model Integrating Empirical Mode Decomposition, Genetic Algorithm and Artificial Neural Network. Energies 2012, 5, 355–370. [Google Scholar] [CrossRef]
- Atsalakis, G.S. Using computational intelligence to forecast carbon prices. Appl. Soft Comput. J. 2016, 43, 107–116. [Google Scholar] [CrossRef]
- Tsai, M.T.; Kuo, Y.T. Application of Radial Basis Function Neural Network for Carbon Price Forecasting. Appl. Mech. Mater. 2014, 590, 683–687. [Google Scholar] [CrossRef]
- Zhiyuan, L.; Zongdi, S. The Carbon Trading Price and Trading Volume Forecast in Shanghai City by BP Neural Network. Int. J. Econ. Manag. Eng. 2017, 11, 598–604. [Google Scholar]
- Fan, X.; Li, S.; Tian, L. Chaotic characteristic identification for carbon price and an multi-layer perceptron network prediction model. Expert Syst. Appl. 2015, 42, 3945–3952. [Google Scholar] [CrossRef]
- Tsai, M.-T.; Kuo, Y.-T. A Forecasting System of Carbon Price in the Carbon Trading Markets Using Artificial Neural Network. Int. J. Environ. Sci. Dev. 2013, 4, 163–167. [Google Scholar] [CrossRef]
- MathWorks. Implement Box-Jenkins Model Selection and Estimation Using Econometric. MathWorks Help n.d. Available online: https://de.mathworks.com/help/econ/box-jenkins-model-selection-using-econometric-modeler.html (accessed on 25 June 2020).
- Otto, S.A. How to Normalize the RMSE 2019. Available online: https://www.marinedatascience.co/blog/2019/01/07/normalizing-the-rmse/ (accessed on 15 November 2021).
- Kneip, A. Zeitreihenanalyse; University of Bonn: Bonn, Germany, 2010. [Google Scholar]
- Montel 2020:2020. Available online: https://www.montelnews.com/de/ (accessed on 22 May 2020).
- Deutscher Wetterdienst, n.d. Available online: https://www.dwd.de/DE/Home/home_node.html (accessed on 17 March 2023).
- Aggregated Gas Storage Inventory n.d. Available online: https://agsi.gie.eu/#/ (accessed on 3 September 2020).
- Wagner, M.W. CO2-Emissionszertifikate—Preismodellierung und Derivatebewertung. Ph.D. Thesis, Universität Karlsruhe, Karlsruhe, Germany, 2007. [Google Scholar] [CrossRef]
- Frauendorfer, K.; Kiske, K. Die Spotvolatilität der Strompreise an der EEX. EMW—Energ. Markt Wettbew. 2010, 1, 52–56. [Google Scholar]
- Niggemann, M. Steuerung von Gaspreisrisiken; Springer: Wiesbaden, Germany, 2013. [Google Scholar] [CrossRef]
- Zhao, X.; Zou, Y.; Yin, J.; Fan, X. Cointegration relationship between carbon price and its factors: Evidence from structural breaks analysis. Energy Procedia 2017, 142, 2503–2510. [Google Scholar] [CrossRef]
- AI United. Aktivierungsfunktionen, ihre Arten und Verwendungsmöglichkeiten 2019. Available online: http://www.ai-united.de/aktivierungsfunktionen-ihre-arten-und-verwendungsmoeglichkeiten/ (accessed on 23 August 2020).
- AI United. Die Aktivationsfunktion des Neuronennetzes 2019. Available online: http://www.ai-united.de/die-aktivationsfunktion-des-neuronennetzes-die-sigmoidfunktion-die-lineare-die-gestufte-aktivationsfunktion-relu-der-hyperbeltangens/ (accessed on 16 September 2020).
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef]
- Liu, Z.-P.; Zhou, M.-G.; Liu, W.-B.; Li, C.-L.; Gu, J.; Yin, H.-L.; Chen, Z.-B. Automated machine learning for secure key rate in discrete-modulated continuous-variable quantum key distribution. Opt. Express 2022, 30, 15024–15036. [Google Scholar] [CrossRef]
- Wang, W.; Lo, H.-K. Machine learning for optimal parameter prediction in quantum key distribution. Phys. Rev. A 2019, 100, 062334. [Google Scholar] [CrossRef]
- Zhou, M.-G.; Liu, Z.-P.; Yin, H.-L.; Li, C.-L.; Xu, T.-K.; Chen, Z.-B. Quantum Neural Network for Quantum Neural Computing. Research 2023, 6, 0134. [Google Scholar] [CrossRef]
- Ntokas, K.F.F.; Odry, J.; Boucher, M.-A.; Garnaud, C. Investigating ANN architectures and training to estimate snow water equivalent from snow depth. Hydrol. Earth Syst. Sci. 2021, 25, 3017–3040. [Google Scholar] [CrossRef]
Data | Available Time Span | Data Points | Source |
---|---|---|---|
Gas prices | 1 October 2007–23 June 2020 | 4565 | Montel [57] |
Oil prices | 1 October 2007–23 June 2020 | 3286 | Montel [57] |
Coal prices | 1 October 2007–23 June 2020 | 3286 | Montel [57] |
Temperature | 1 October 2007–28 June 2020 | 4650 | German meteorological service [58] |
Net flow | 22 June 2014–23 June 2020 | 2194 | Montel [57] |
Gas storage level | 10 January 2011–23 June 2020 | 3262 | AGSI+ [59] |
Model Name | Inputs 1 | Lags |
---|---|---|
Model G1 | Historic gas prices | up to 3 weeks back additively + single inputs of 4, 5, and 6 weeks back |
Model G2 | Future temperature | 3, 1, 2, and 4 days ahead as well as a day of price forecast itself additively |
Model G3 | Historic temperature | single inputs up to 5 days back |
Model G4 | Historic oil prices | single inputs up to 1 month back |
Model G5 | Historic coal prices | single inputs up to 1 month back |
Model G6 | Net flow | single inputs up to 1 month back |
Model G7 | Gas storage level | single inputs up to 1 month back |
Data | Available Time Span | Data Points | Source |
---|---|---|---|
CO2-prices | 10 December 2012–23 June 2020 | 1936 | Montel [57] |
Coal prices | 10 December 2012–23 June 2020 | 1936 | Montel [57] |
Oil prices | 10 December 2012–23 June 2020 | 1936 | Montel [57] |
Gas prices | 10 December 2012–23 June 2020 | 2743 | Montel [57] |
Temperature | 10 December 2012–23 June 2020 | 2747 | German meteorological service [58] |
Model Name | Input Parameter | Lags |
---|---|---|
Model C1 | Historic CO2 prices | up to 3 weeks back additively + single inputs of t-23, t-24, t-27, t-30, t-40, t-45, and t-49 |
Model C2 | Historic coal prices | single inputs up to 1 month back |
Model C3 | Historic oil prices | single inputs up to 1 month back |
Model C4 | Historic gas prices | single inputs up to 1 month back |
Model C5 | Temperature | single inputs up to 1 month back + single inputs of up to 5 days ahead |
Model C6 | Historic electricity prices | single inputs up to 1 month back |
Model Name | Best Model | Worst Model | ||
---|---|---|---|---|
R2 Train | R2 Test | R2 Train | R2 Test | |
Gas price prediction | ||||
Model G1 | 0.984 | 0.960 | 0.977 | 0.757 |
Model G2 | 0.986 | 0.960 | 0.985 | 0.748 |
Model G3 | 0.986 | 0.965 | 0.987 | 0.908 |
Model G4 | 0.985 | 0.960 | 0.985 | 0.838 |
Model G5 | 0.985 | 0.960 | 0.988 | 0.740 |
Model G6 | 0.979 | 0.910 | 0.916 | 0.603 |
Model G7 | 0.971 | 0.936 | 0.971 | 0.403 |
Carbon price prediction | ||||
Model C1 | 0.993 | 0.969 | 0.993 | −0.845 |
Model C2 | 0.993 | 0.967 | 0.993 | −2.692 |
Model C3 | 0.993 | 0.962 | 0.994 | −0.002 |
Model C4 | 0.993 | 0.968 | 0.995 | 0.171 |
Model C5 | 0.993 | 0.967 | 0.994 | −0.333 |
Model C6 | 0.992 | 0.959 | 0.990 | −1.771 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Böhm, L.; Kolb, S.; Plankenbühler, T.; Miederer, J.; Markthaler, S.; Karl, J. Short-Term Natural Gas and Carbon Price Forecasting Using Artificial Neural Networks. Energies 2023, 16, 6643. https://doi.org/10.3390/en16186643
Böhm L, Kolb S, Plankenbühler T, Miederer J, Markthaler S, Karl J. Short-Term Natural Gas and Carbon Price Forecasting Using Artificial Neural Networks. Energies. 2023; 16(18):6643. https://doi.org/10.3390/en16186643
Chicago/Turabian StyleBöhm, Laura, Sebastian Kolb, Thomas Plankenbühler, Jonas Miederer, Simon Markthaler, and Jürgen Karl. 2023. "Short-Term Natural Gas and Carbon Price Forecasting Using Artificial Neural Networks" Energies 16, no. 18: 6643. https://doi.org/10.3390/en16186643
APA StyleBöhm, L., Kolb, S., Plankenbühler, T., Miederer, J., Markthaler, S., & Karl, J. (2023). Short-Term Natural Gas and Carbon Price Forecasting Using Artificial Neural Networks. Energies, 16(18), 6643. https://doi.org/10.3390/en16186643