Numerical Analysis of Dual Fuel Combustion in a Medium Speed Marine Engine Supplied with Methane/Hydrogen Blends
Abstract
:1. Introduction
2. Methodology
- At first, a one-dimensional software based on thermo-fluid dynamics is used as a tool to recreate the behavior of the overall engine. Indeed, the one-dimensional code can perform several test cases by varying different engine parameters, and it can be used to provide the initial conditions to the CFD model for a more detailed in-cylinder study of the cases considered more significant. This approach was already used by the authors as it has demonstrated to be robust and reliable [45]. The reference case for engine calibration burns natural gas as LRF.
- Once the necessary information has been obtained, the 3D calculation, performed with closed valves, allows for carrying out interesting results, such as the in-cylinder fuel vapor, temperature, and burning rate distributions, to better understand the mechanisms which govern the combustion phenomenon. As known, only a detailed CFD calculation can allow an investigation on the processes taking place inside the cylinder, especially in dual fuel operation where the adoption of two fuels with different physical and chemical properties makes the combustion process challenging to model, as extensively reported in scientific literature. Starting from the reference case with only natural gas as LRF, an increasing amount of hydrogen was introduced in different percentages, reducing the methane energy supply and investigating the effects of H2 substitution ratio on the engine parameters and emissions.
2.1. One-Dimensional Calculations
2.2. CFD Calculations
2.2.1. Mesh Sensitivity Analysis
2.2.2. Chemical Reactions Mechanism
2.2.3. Atomization Model Analysis
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ATDC | After Top Dead Center |
BMEP | Brake Mean Effective Pressure |
BTDC | Before Top Dead Center |
CAD | Crank Angle Degree |
CFD | Computational Fluid Dynamics |
DF | Dual Fuel |
DPF | Diesel Particulate Filters |
ECA | Emission Control Area |
EGR | Exhaust Gas Recirculation |
ER | Equivalence Ratio |
EVC | Exhaust Valve Closing |
EVO | Exhaust Valve Opening |
GHG | Greenhouse Gas |
GWP | Global Warming Potential |
HFO | Heavy Fuel Oils |
HRF | High Reactivity Fuels |
IMEP | Indicated Mean Effective Pressure |
IMO | International Maritime Organization |
IVC | Intake Valve Closing |
IVO | Intake Valve Opening |
KHRT | Kelvin–Helmholtz/Rayleigh–Taylor |
LHV | Lower Heating Value |
LNG | Liquefied Natural Gas |
LRF | Low Reactivity Fuels |
NG | Natural Gas |
NOx | Nitrogen Oxide |
PM | Particulate Metter |
RANS | Reynolds Average Navier-Stokes |
ROHR | Rate of Heat Release |
RP | Premixed Ratio |
SCR | Selective Catalytic Reduction |
SOx | Sulfur Oxide |
SOC | Start of Combustion |
SOI | Start of Injection |
TDC | Top Dead Center |
UHC | Unburned Hydrocarbon |
References
- Viana, M.; Hammingh, P.; Colette, A.; Querol, X.; Degraeuwe, B.; de Vlieger, I.; van Aardenne, J. Impact of maritime transport emissions on coastal air quality in Europe. Atmos. Environ. 2014, 90, 96–105. [Google Scholar] [CrossRef]
- Eyring, V.; Isaksen, I.S.A.; Berntsen, T.; Collins, W.J.; Corbett, J.J.; Endresen, O.; Grainger, R.G.; Moldanova, J.; Schlager, H.; Stevenson, D.S. Transport impacts on atmosphere and climate: Shipping. Atmos. Environ. 2010, 44, 4735–4771. [Google Scholar] [CrossRef]
- Li, L.; Pan, Y.; Gao, S.; Yang, W. An innovative model to design extreme emission control areas (ECAs) by considering ship’s evasion strategy. Ocean Coast Manag. 2022, 227, 106289. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Park, H.; Lee, S.; Kim, E. Have Emission Control Areas (ECAs) harmed port efficiency in Europe? Transp. Res. Part D Transp. Environ. 2018, 58, 39–53. [Google Scholar] [CrossRef]
- Amendments to the Annex of the Protocol of 1997 to Amend the International Convention for the Prevention of Pollution from Ships, 1973-176(58), as Modified by the Protocol of 1978 Relating Thereto (Revised MARPOL Annex VI). 2011. Available online: https://www.lemoci.com/media/omi-2008-marpol-annexe-6.pdf (accessed on 27 April 2023).
- Zhu, Y.; Zhou, W.; Xia, C.; Hou, Q. Application and Development of Selective Catalytic Reduction Technology for Marine Low-Speed Diesel Engine: Trade-Off among High Sulfur Fuel, High Thermal Efficiency, and Low Pollution Emission. Atmosphere 2022, 13, 731. [Google Scholar] [CrossRef]
- Li, X.; Li, K.; Yang, H.; Wang, Z.; Liu, Y.; Shen, T.; Tu, S.; Lou, D. Experimental evaluation of DPF performance loaded over Pt and sulfur-resisting material for marine diesel engines. PLoS ONE 2022, 17, e0272441. [Google Scholar] [CrossRef]
- Winnes, H.; Fridell, E.; Moldanová, J. Effects of Marine Exhaust Gas Scrubbers on Gas and Particle Emissions. J. Mar. Sci. Eng. 2020, 8, 299. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Soares, C.G. Optimization of the Performance of Marine Diesel Engines to Minimize the Formation of SOx Emissions. J. Mar. Sci. Appl. 2020, 19, 473–484. [Google Scholar] [CrossRef]
- Sun, X.; Ning, J.; Liang, X.; Jing, G.; Chen, Y.; Chen, G. Effect of direct water injection on combustion and emissions characteristics of marine diesel engines. Fuel 2022, 309, 122213. [Google Scholar] [CrossRef]
- Zhang, E.; Liang, X.; Zhang, F.; Yang, P.; Cao, X.; Wang, X.; Yu, H. Evaluation of Exhaust Gas Recirculation and Fuel Injection Strategies for Emission Performance in Marine Two-Stroke Engine. Energy Procedia 2019, 158, 4523–4528. [Google Scholar] [CrossRef]
- Abdelhameed, E.; Tashima, H. EGR and Emulsified Fuel Combination Effects on the Combustion, Performance, and NOx Emissions in Marine Diesel Engines. Energies 2022, 16, 336. [Google Scholar] [CrossRef]
- Al-Enazi, A.; Okonkwo, E.C.; Bicer, Y.; Al-Ansari, T. A review of cleaner alternative fuels for maritime transportation. Energy Rep. 2021, 7, 1962–1985. [Google Scholar] [CrossRef]
- Tan, E.C.D.; Hawkins, T.R.; Lee, U.; Tao, L.; Meyer, P.A.; Wang, M.; Thompson, T. Biofuel Options for Marine Applications: Technoeconomic and Life-Cycle Analyses. Environ. Sci. Technol. 2021, 55, 7561–7570. [Google Scholar] [CrossRef] [PubMed]
- Thomson, H.; Corbett, J.J.; Winebrake, J.J. Natural gas as a marine fuel. Energy Policy 2015, 87, 153–167. [Google Scholar] [CrossRef]
- Zardoya, A.R.; Lucena, I.L.; Bengoetxea, I.O.; Orosa, J.A. Research on the new combustion chamber design to operate with low methane number fuels in an internal combustion engine with pre-chamber. Energy 2023, 275, 127458. [Google Scholar] [CrossRef]
- Oloruntobi, O.; Chuah, L.F.; Mokhtar, K.; Gohari, A.; Onigbara, V.; Chung, J.X.; Mubashir, M.; Asif, S.; Show, P.L.; Han, N. Assessing methanol potential as a cleaner marine fuel: An analysis of its implications on emissions and regulation compliance. Clean. Eng. Technol. 2023, 14, 100639. [Google Scholar] [CrossRef]
- Abadie, L.M.; Goicoechea, N. Powering newly constructed vessels to comply with ECA regulations under fuel market prices uncertainty: Diesel or dual fuel engine? Transp. Res. D Transp. Environ. 2019, 67, 433–448. [Google Scholar] [CrossRef]
- Sinha, R.P.; Nik, W.M.N.W. Investigation of propulsion system for large LNG ships. IOP Conf. Ser. Mater. Sci. Eng. 2012, 36, 012004. [Google Scholar] [CrossRef]
- Yu, H.; Wang, W.; Sheng, D.; Li, H.; Duan, S. Performance of combustion process on marine low speed two-stroke dual fuel engine at different fuel conditions: Full diesel/diesel ignited natural gas. Fuel 2022, 310, 122370. [Google Scholar] [CrossRef]
- Rochussen, J.; Jaeger, N.S.B.; Penner, H.; Khan, A.; Kirchen, P. Development and demonstration of strategies for GHG and methane slip reduction from dual-fuel natural gas coastal vessels. Fuel 2023, 349, 128433. [Google Scholar] [CrossRef]
- Qu, J.; Feng, Y.; Xu, G.; Zhang, M.; Zhu, Y.; Zhou, S. Design and thermodynamics analysis of marine dual fuel low speed engine with methane reforming integrated high pressure exhaust gas recirculation system. Fuel 2022, 319, 123747. [Google Scholar] [CrossRef]
- Zarrinkolah, M.T.; Hosseini, V. Methane slip reduction of conventional dual-fuel natural gas diesel engine using direct fuel injection management and alternative combustion modes. Fuel 2023, 331, 125775. [Google Scholar] [CrossRef]
- Valladolid, P.G.; Tunestål, P.; Monsalve-Serrano, J.; García, A.; Hyvönen, J. Impact of diesel pilot distribution on the ignition process of a dual fuel medium speed marine engine. Energy Convers. Manag. 2017, 149, 192–205. [Google Scholar] [CrossRef]
- Altinkurt, M.D.; Merts, M.; Tunér, M.; Turkcan, A. Effects of split diesel injection strategies on combustion, knocking, cyclic variations and emissions of a natural gas-diesel dual fuel medium speed engine. Fuel 2023, 347, 128517. [Google Scholar] [CrossRef]
- Cong, Y.; Gan, H.; Wang, H. Parameter investigation of the pilot fuel post-injection strategy on performance and emissions characteristics of a large marine two-stroke natural gas-diesel dual-fuel engine. Fuel 2022, 323, 124404. [Google Scholar] [CrossRef]
- Yu, H.; Chen, J.; Duan, S.; Sun, P.; Wang, W.; Tian, H. Effect of natural gas injection timing on performance and emission characteristics of marine low speed two-stroke natural gas/diesel dual-fuel engine at high load conditions. Fuel 2022, 314, 123127. [Google Scholar] [CrossRef]
- Xing, H.; Stuart, C.; Spence, S.; Chen, H. Alternative fuel options for low carbon maritime transportation: Pathways to 2050. J. Clean. Prod. 2021, 297, 126651. [Google Scholar] [CrossRef]
- Dimitriou, P.; Tsujimura, T. A review of hydrogen as a compression ignition engine fuel. Int. J. Hydrogen Energy 2017, 42, 24470–24486. [Google Scholar] [CrossRef]
- Seediek, I.S.; Elgohary, M.M.; Ammar, N.R. The hydrogen-fuelled internal combustion engines for marine applications with a case study. Brodogradnja 2015, 66, 23–38. [Google Scholar]
- Abdelhameed, E.; Tashima, H. Experimental study on the effects of methane-hydrogen jet as direct injected fuel in marine diesel engine. Energy 2023, 267, 126569. [Google Scholar] [CrossRef]
- Gholami, A.; Jazayeri, S.A.; Esmaili, Q. A detail performance and CO2 emission analysis of a very large crude carrier propulsion system with the main engine running on dual fuel mode using hydrogen/diesel versus natural gas/diesel and conventional diesel engines. Process. Saf. Environ. Prot. 2022, 163, 621–635. [Google Scholar] [CrossRef]
- Yan, F.; Xu, L.; Wang, Y. Application of hydrogen enriched natural gas in spark ignition IC engines: From fundamental fuel properties to engine performances and emissions. Renew. Sustain. Energy Rev. 2018, 82, 1457–1488. [Google Scholar] [CrossRef]
- Cameretti, M.C.; Tuccillo, R.; De Simio, L.; Iannaccone, S.; Ciaravola, U. A numerical and experimental study of dual fuel diesel engine for different injection timings. Appl. Therm. Eng. 2016, 101, 630–638. [Google Scholar] [CrossRef]
- Cameretti, M.C.; De Robbio, R.; Tuccillo, R.; Pedrozo, V.; Zhao, H. Integrated CFD-Experimental Methodology for the Study of a Dual Fuel Heavy Duty Diesel Engine; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- De Robbio, R.; Cameretti, M.C.; Mancaruso, E.; Tuccillo, R.; Vaglieco, B.M. Combined CFD—Experimental Analysis of the In-Cylinder Combustion Phenomena in a Dual Fuel Optical Compression Ignition Engine; SAE International: Warrendale, PA, USA, 2021. [Google Scholar] [CrossRef]
- De Robbio, R.; Cameretti, M.C.; Mancaruso, E.; Tuccillo, R.; Vaglieco, B.M. CFD Study and Experimental Validation of a Dual Fuel Engine: Effect of Engine Speed. Energies 2021, 14, 4307. [Google Scholar] [CrossRef]
- De Robbio, R.; Cameretti, M.C.; Mancaruso, E.; Tuccillo, R.; Vaglieco, B.M. CFD Analysis of Different Methane/Hydrogen Blends in a CI Engine Operating in Dual Fuel Mode; SAE International: Warrendale, PA, USA, 2022. [Google Scholar] [CrossRef]
- Cameretti, M.C.; De Robbio, R.; Mancaruso, E.; Palomba, M. CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen. Energies 2022, 15, 5521. [Google Scholar] [CrossRef]
- Mancaruso, E.; De Robbio, R.; Vaglieco, B.M. Hydrogen/Diesel Combustion Analysis in a Single Cylinder Research Engine; SAE International: Warrendale, PA, USA, 2022. [Google Scholar] [CrossRef]
- Liu, L.; Wu, Y.; Wang, Y. Numerical investigation on knock characteristics and mechanism of large-bore natural gas dual-fuel marine engine. Fuel 2022, 310, 122298. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, J.; Li, W.; Long, J.; Wang, S.; Tan, D.; Yin, Z. Performance and emission evaluation of a marine diesel engine fueled with natural gas ignited by biodiesel-diesel blended fuel. Energy 2022, 256, 124662. [Google Scholar] [CrossRef]
- Nemati, A.; Ong, J.C.; Pang, K.M.; Mayer, S.; Walther, J.H. A numerical study of the influence of pilot fuel injection timing on combustion and emission formation under two-stroke dual-fuel marine engine-like conditions. Fuel 2022, 312, 122651. [Google Scholar] [CrossRef]
- Ranzi, E.; Frassoldati, A.; Stagni, A.; Pelucchi, M.; Cuoci, A.; Faravelli, T. Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels. Int. J. Chem. Kinet. 2014, 46, 512–542. [Google Scholar] [CrossRef]
- Cameretti, M.C.; De Robbio, R.; Tuccillo, R. Performance Improvement and Emission Control of a Dual Fuel Operated Diesel Engine; SAE International: Warrendale, PA, USA, 2017. [Google Scholar] [CrossRef]
- Merts, M.; Derafshzan, S.; Hyvönen, J.; Richter, M.; Lundgren, M.; Verhelst, S. An optical investigation of dual fuel and RCCI pilot ignition in a medium speed engine. Fuel Commun. 2021, 9, 100037. [Google Scholar] [CrossRef]
- Woschni, G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine; SAE International: Warrendale, PA, USA, 1967. [Google Scholar] [CrossRef]
- Liu, J.; Dumitrescu, C.E. Single and double Wiebe function combustion model for a heavy-duty diesel engine retrofitted to natural-gas spark-ignition. Appl. Energy 2019, 248, 95–103. [Google Scholar] [CrossRef]
- Zhu, J.; Du, P.; Zhang, G.; Song, H.; Li, B.; Long, W.; Dong, D. Development and Validation of a Modeling and Calibration Method for Diesel-Like Multistage Combustion Based on a Modified Multi-Wiebe Function. ACS Omega 2022, 7, 11756–11769. [Google Scholar] [CrossRef]
- Wang, H.; Ra, Y.; Jia, M.; Reitz, R.D. Development of a reduced n-dodecane-PAH mechanism and its application for n-dodecane soot predictions. Fuel 2014, 136, 25–36. [Google Scholar] [CrossRef]
- The CRECK Modeling Group. Available online: http://creckmodeling.chem.polimi.it (accessed on 14 June 2023).
- Reitz, R.D.; Beale, J.C. Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model. At. Sprays 1999, 9, 623–650. [Google Scholar] [CrossRef]
- Brulatout, J.; Garnier, F.; Mounaïm-Rousselle, C.; Seers, P. Calibration strategy of diesel-fuel spray atomization models using a design of experiment method. Int. J. Engine Res. 2016, 17, 713–731. [Google Scholar] [CrossRef]
- Berwal, P.; Solagar, S.; Kumar, S. Experimental investigations on laminar burning velocity variation of CH4+H2+air mixtures at elevated temperatures. Int. J. Hydrog. Energy 2022, 47, 16686–16697. [Google Scholar] [CrossRef]
- Tutak, W.; Jamrozik, A.; Grab-Rogaliński, K. Effect of natural gas enrichment with hydrogen on combustion process and emission characteristic of a dual fuel diesel engine. Int. J. Hydrogen Energy 2020, 45, 9088–9097. [Google Scholar] [CrossRef]
- Ahmadi, R.; Hosseini, S.M. Numerical investigation on adding/substituting hydrogen in the CDC and RCCI combustion in a heavy duty engine. Appl. Energy 2018, 213, 450–468. [Google Scholar] [CrossRef]
- Rahnama, P.; Paykani, A.; Reitz, R.D. A numerical study of the effects of using hydrogen, reformer gas and nitrogen on combustion, emissions and load limits of a heavy duty natural gas/diesel RCCI engine. Appl. Energy 2017, 193, 182–198. [Google Scholar] [CrossRef]
- Vijayaragavan, M.; Subramanian, B.; Sudhakar, S.; Natrayan, L. Effect of induction on exhaust gas recirculation and hydrogen gas in compression ignition engine with simarouba oil in dual fuel mode. Int. J. Hydrogen Energy 2022, 47, 37635–37647. [Google Scholar] [CrossRef]
- Khatri, N.; Khatri, K.K. Hydrogen enrichment on diesel engine with biogas in dual fuel mode. Int. J. Hydrogen Energy 2020, 45, 7128–7140. [Google Scholar] [CrossRef]
- Nag, S.; Sharma, P.; Gupta, A.; Dhar, A. Experimental study of engine performance and emissions for hydrogen diesel dual fuel engine with exhaust gas recirculation. Int. J. Hydrogen Energy 2019, 44, 12163–12175. [Google Scholar] [CrossRef]
- Karagöz, Y.; Güler, İ.; Sandalcı, T.; Yüksek, L.; Dalkılıç, A.S. Effect of hydrogen enrichment on combustion characteristics, emissions and performance of a diesel engine. Int. J. Hydrogen Energy 2016, 41, 656–665. [Google Scholar] [CrossRef]
- Bhagat, R.N.; Sahu, K.B.; Ghadai, S.K.; Kumar, C.B. A review of performance and emissions of diesel engine operating on dual fuel mode with hydrogen as gaseous fuel. Int. J. Hydrogen Energy 2023, 48, 27394–27407. [Google Scholar] [CrossRef]
- Miyamoto, T.; Hasegawa, H.; Mikami, M.; Kojima, N.; Kabashima, H.; Urata, Y. Effect of hydrogen addition to intake gas on combustion and exhaust emission characteristics of a diesel engine. Int. J. Hydrogen Energy 2011, 36, 13138–13149. [Google Scholar] [CrossRef]
- Jamrozik, A.; Grab-Rogaliński, K.; Tutak, W. Hydrogen effects on combustion stability, performance and emission of diesel engine. Int. J. Hydrogen Energy 2020, 45, 19936–19947. [Google Scholar] [CrossRef]
Tier | Date | NOx Limits [g/kWh] | ||
---|---|---|---|---|
n < 130 | 130 ≤ n < 2000 | n ≥ 2000 | ||
Tier I | 2000 | 17.0 | 45 × n−0.2 | 9.8 |
Tier II | 2011 | 14.4 | 44 × n−0.23 | 7.7 |
Tier III | 2016 | 3.4 | 9 × n−0.2 | 1.96 |
Engine Type | Stroke [cm] | Bore [cm] | Displacement Volume [cm3] | Volume at TDC [cm3] | Compression Ratio |
---|---|---|---|---|---|
DF, 4-stroke, turbocharged, 6 cylinders in line, 4 valves | 28 | 20 | 8796 | 710 | 13.4:1 |
IVO | IVC | EVO | EVC | SOI |
---|---|---|---|---|
365°BTDC | 215° BTDC | 145° ATDC | 350° ATDC | 15° BTDC |
Engine Speed [rpm] | Gross BMEP [bar] | Diesel Injection Timing [CAD BTDC] | Diesel Injection Pressure [bar] | Intake Pressure[bar] |
---|---|---|---|---|
1000 | 10 | 15 | 1700 | 1.85 |
Diesel Mass [mg/Cycle] | NG Mass [mg/Cycle] | Diesel LHV [MJ/kg] | NG LHV [MJ/kg] | RP [%] | Global ER |
---|---|---|---|---|---|
50 | 328 | 43.1 | 48.1 | 88 | 0.5 |
#Cells at BDC | #Cells at TDC | Cell Dimension [mm] | |
---|---|---|---|
Mesh#1 | 28,000 | 2100 | 3.54 |
Mesh#2 | 53,000 | 3600 | 2.71 |
Mesh#3 | 107,000 | 6400 | 2.14 |
Mesh#4 | 156,000 | 9000 | 1.89 |
Mesh#5 | 184,000 | 10,000 | 1.79 |
Mesh#6 | 210,000 | 11,000 | 1.71 |
IMEP [bar] | Pressure Peak [bar] | |
---|---|---|
1D | 10 | 86.5 |
CKH = 5 | 9.67 | 77.28 |
CKH = 7.5 | 10.00 | 86.69 |
CKH = 10 | 9.91 | 95.07 |
3D Simulations | ||||||
---|---|---|---|---|---|---|
CH4 [%] | 100 | 90 | 70 | 50 | 40 | 0 |
H2 [%] | 0 | 10 | 30 | 50 | 60 | 100 |
Inlet total mass [mg] | 12,567 | 12,409 | 12,104 | 11,798 | 11,655 | 11,037 |
Mass CH4 [mg] | 328.55 | 295.695 | 230 | 164.275 | 131.42 | 0 |
Mass H2 [mg] | 0 | 13.5 | 40.7 | 67.8 | 81.4 | 135.6 |
Energy from CH4 [J] | 16,279.7 | 14,652 | 11,395.8 | 8139.8 | 6511.9 | 0 |
Energy from H2 [J] | 0 | 1628.0 | 4883.9 | 8139.8 | 9767.8 | 16,279.7 |
Total Energy [J] | 18,296 | 18,563 | 18,536 | 18,371 | 18,324 | 18,196 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cameretti, M.C.; De Robbio, R.; Palomba, M. Numerical Analysis of Dual Fuel Combustion in a Medium Speed Marine Engine Supplied with Methane/Hydrogen Blends. Energies 2023, 16, 6651. https://doi.org/10.3390/en16186651
Cameretti MC, De Robbio R, Palomba M. Numerical Analysis of Dual Fuel Combustion in a Medium Speed Marine Engine Supplied with Methane/Hydrogen Blends. Energies. 2023; 16(18):6651. https://doi.org/10.3390/en16186651
Chicago/Turabian StyleCameretti, Maria Cristina, Roberta De Robbio, and Marco Palomba. 2023. "Numerical Analysis of Dual Fuel Combustion in a Medium Speed Marine Engine Supplied with Methane/Hydrogen Blends" Energies 16, no. 18: 6651. https://doi.org/10.3390/en16186651
APA StyleCameretti, M. C., De Robbio, R., & Palomba, M. (2023). Numerical Analysis of Dual Fuel Combustion in a Medium Speed Marine Engine Supplied with Methane/Hydrogen Blends. Energies, 16(18), 6651. https://doi.org/10.3390/en16186651