Investigation of Cooling Techniques for Roof-Mounted Silicon Photovoltaic Panels in the Climate of the UAE: A Computational and Experimental Study
Abstract
:1. Introduction
- Carrying out a systematic literature review to identify the most optimal PV cooling technique from existing literature;
- Proposing a set of modifications to the selected cooling technique to increase its cooling potential;
- Evaluating the performance of the proposed modifications using numerical analysis and identifying the model that is most viable;
- Investigating the performance of the selected modification(s) using an experimental setup and commenting on the results.
2. Literature Review
2.1. Active Cooling
2.2. Passive Cooling
2.2.1. Radiative Cooling
2.2.2. Phase-Change Materials
2.2.3. Liquid-Based Cooling
2.2.4. Air-Based Cooling
3. Proposed Fin Configuration
4. Computational Study
4.1. Simulation Methodology
4.2. Simulation Results
5. Experimental Study
5.1. Experimental Methodology
5.2. Experimental Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tricoire, J.-P. Why Buildings Are the Foundation of an Energy-Efficient Future. 2021. Available online: https://www.weforum.org/agenda/2021/02/why-the-buildings-of-the-future-are-key-to-an-efficient-energy-ecosystem/ (accessed on 10 April 2023).
- IEA. Buildings: Sectorial Overview. September 2022. Available online: https://www.iea.org/reports/buildings (accessed on 11 April 2023).
- Fraunhofer ISE. Photovoltaics Report. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf (accessed on 22 September 2022).
- Li, H.; Zhao, J.; Li, M.; Deng, S.; An, Q.; Wang, F. Performance analysis of passive cooling for photovoltaic modules and estimation of energy-saving potential. Sol. Energy 2019, 181, 70–82. [Google Scholar] [CrossRef]
- CHINT. Comprehensive Guide to Monocrystalline Solar Panel. 2023. Available online: https://chintglobal.com/blog/monocrystalline-solar-panel/ (accessed on 11 April 2023).
- Skoplaki, E.; Palyvos, J.A. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Sol. Energy 2009, 83, 614–624. [Google Scholar] [CrossRef]
- Nazari, S.; Eslami, M. Impact of frame perforations on passive cooling of photovoltaic modules: CFD analysis of various patterns. Energy Convers. Manag. 2021, 239, 114228. [Google Scholar] [CrossRef]
- Assadeg, J.A.; Fudholi, A.; Sopian, K.B. Performance of grid-connected solar photovoltaic power plants in the Middle East and North Africa. Int. J. Electr. Comput. Eng. 2019, 9, 3375–3383. [Google Scholar] [CrossRef]
- Nižetić, S.; Grubišić-Čabo, F.; Marinić-Kragić, I.; Papadopoulos, A.M. Experimental and numerical investigation of a backside convective cooling mechanism on photovoltaic panels. Energy 2016, 111, 211–225. [Google Scholar] [CrossRef]
- Abd-Elhady, M.; Serag, Z.; Kandil, H.A. An innovative solution to the overheating problem of PV panels. Energy Convers. Manag. 2018, 157, 452–459. [Google Scholar] [CrossRef]
- Dida, M.; Boughali, S.; Bechki, D.; Bouguettaia, H. Experimental investigation of a passive cooling system for photovoltaic. Energy Convers. Manag. 2021, 243, 114328. [Google Scholar] [CrossRef]
- Al-Shamani, A.N.; Yazdi, M.H.; Alghoul, M.; Abed, A.M.; Ruslan, M.; Mat, S.; Sopian, K. Nanofluids for improved efficiency in cooling solar collectors—A review. Renew. Sustain. Energy Rev. 2014, 38, 348–367. [Google Scholar] [CrossRef]
- Nižetić, S.; Giama, E.; Papadopoulos, A. Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, Part II: Active cooling techniques. Energy Convers. Manag. 2020, 155, 301–323. [Google Scholar] [CrossRef]
- Vittorini, D.; Cipollone, R. Fin-cooled photovoltaic module modeling–Performances mapping and electric efficiency assessment under real operating conditions. Energy 2019, 167, 159–167. [Google Scholar] [CrossRef]
- Nižetic, S.; Papadopoulos, A.; Giama, E. Comprehensive analysis and general economic-environmental. Energy Convers. Manag. 2017, 149, 334–354. [Google Scholar] [CrossRef]
- Safi, T.S.; Munday, J.N. Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments. Opt. Express 2015, 23, A1120–A1128. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, E.Z.; Sopian, K.; Jarimi, H.; Fazlizan, A.; Elbreki, A.; Hamid, A.S.A.; Rostami, S.; Ibrahim, A. Recent advances in passive cooling methods for photovoltaic performance enhancement. Int. J. Electr. Comput. Eng. 2021, 11, 146–154. [Google Scholar] [CrossRef]
- Hasan, A.; McCormack, S.; Huang, M.; Norton, B. Characterization of phase change materials for thermal control of photovoltaics using Differential Scanning Calorimetry and Temperature History Method. Energy Convers. Manag. 2014, 81, 322–329. [Google Scholar] [CrossRef]
- Okogeri, O.; Stathopoulos, V.N. What about greener phase change materials? A review on biobased phase change materials for thermal energy storage applications. Int. J. Thermofluids 2021, 10, 100081. [Google Scholar] [CrossRef]
- Maiti, S.; Banerjee, S.; Vyas, K.; Patel, P.; Ghosh, P.K. Self regulation of photovoltaic module temperature in V-trough using a metal–wax composite phase change matrix. Sol. Energy 2011, 85, 1805–1816. [Google Scholar] [CrossRef]
- Tina, G.; Rosa-Clot, M.; Rosa-Clot, P.; Scandura, P. Optical and thermal behavior of submerged photovoltaic solar panel: SP2. Energy 2012, 39, 17–26. [Google Scholar] [CrossRef]
- Abdulgafar, S.A.; Omar, O.S.; Yousif, K.M. Improving The Efficiency of Polycrystalline Solar Panel via Water Immersion Method. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3, 8127–8132. [Google Scholar]
- Al-Amri, F.; Maatallah, T.S.; Al-Amri, O.F.; Ali, S.; Ali, S.; Ateeq, I.S.; Zachariah, R.; Kayed, T.S. Innovative technique for achieving uniform temperatures across solar panels using heat pipes and liquid immersion cooling in the harsh climate in the Kingdom of Saudi Arabia. Alex. Eng. J. 2022, 61, 1413–1424. [Google Scholar] [CrossRef]
- Grubišić-Čabo, F.; Nižetić, S.; Kragić, I.M.; Čoko, D. Further progress in the research of fin-based passive cooling. Wiley Int. J. Energy Res. 2019, 43, 3475–3495. [Google Scholar] [CrossRef]
- Grubišić-Čabo, F.; Nižetić, S.; Kragić, I.M.; Čoko, D. Experimental investigation of the passive cooled free-standing. J. Clean. Prod. 2018, 176, 119–129. [Google Scholar] [CrossRef]
- Marinić-Kragić, I.; Nižetić, S.; Grubišić-Čabo, F.; Čoko, D. Analysis and optimization of passive cooling approach for free-standing photovoltaic panel: Introduction of slits. Energy Convers. Manag. 2020, 204, 112277. [Google Scholar] [CrossRef]
- Nižetić, S.; Marinić-Kragić, I.; Grubišić-Čabo, F.; Papadopoulos, A.M.; Xie, G. Analysis of novel passive cooling strategies for free-standing silicon photovoltaic panels. J. Therm. Anal. Calorim. 2020, 141, 163–175. [Google Scholar] [CrossRef]
- Hernandez-Perez, J.; Carrillo, J.; Bassam, A.; Flota-Banuelos, M. A new passive PV heatsink design to reduce efficiency losses: A computational and experimental evaluation. Renew. Energy 2020, 147, 1209–1220. [Google Scholar] [CrossRef]
- Mankani, K.; Chaudhry, H.N.; Calautit, J.K. Optimization of an air-cooled heat sink for cooling of a solar photovoltaic. Energy Build. 2022, 270, 112274. [Google Scholar] [CrossRef]
- ICF. Raw Materials Update. April 2017. Available online: https://www.icf.at/fileadmin/user_upload/News/2017/Issue_78_April_2017/ICF_NL_78-1704.pdf (accessed on 14 April 2023).
- Bahaidarah, H.M.; Baloch, A.A.; Gandhidasan, P. Uniform cooling of photovoltaic panels: A review. Renew. Sustain. Energy Rev. 2016, 57, 1520–1544. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. Lectures in Mathematical Models of Turbulence; Academic Press: London, UK, 1972. [Google Scholar]
- Ekambara, K.; Dhotre, M.T.; Joshi, J.B. CFD simulation of homogeneous reactions in turbulent pipe flows-Tubular non-catalytic reactors. Chem. Eng. J. 2006, 117, 23–29. [Google Scholar] [CrossRef]
Cooling technique | Efficiency increase | Increase in panel power output | Reduction in panel operating temperature |
water | 2.1% to 37.5% | 10% to 35.5% | 0.7 °C to 32 °C |
water (PV/T) | 2% to 22.2% | N/A | 10 °C to 33 °C |
air | 2.6% to 10% | 3% to 15% | 5 °C to 30 °C |
nanofluids | 7% to 19.5% | 20% to 30% | 18 °C to 24 °C |
Cooling technique | Efficiency Increase | Increase in the panel Power output | Reduction in the panel Operating temperature |
PCM | 1.15–21.2% | 4–55% | 0.4–50 °C |
Liquids | 8.5–22% | 8.8–52.6% | 9–50 °C |
Air | 3.2–20% | 7.5–50% | 6–38 °C |
Radiative | 0.4–2.6% | Non | 6–21 °C |
Physics | Flow | Yes |
Compressibility | Incompressible | |
Hydrostatic pressure | No | |
Heat transfer | Yes | |
Auto forced convection | No | |
Radiation | Yes | |
Gravity method | Earth | |
Gravity direction (x, y, z) | 0, −1, 0 | |
Turbulence | Laminar/Turbulent | Turbulent |
Turb. model | k-epsilon | |
Advanced | Humidity | No |
Electrical Ratings at STC (1000 W/m2, AM 1.5 Spectrum, Cell Temperature 25 °C) | |
---|---|
Model | HPS0050 |
Manufacturer | Hollandia Power Solutions |
Type | Monocrystalline Silicon |
Peak Power (Pmax) | 50.0 W |
Power Tolerance | 0~+3% |
Voltage (Vmp) | 18.6 V |
Current (Imp) | 2.69 A |
Open Circuit Voltage (Voc) | 22.7 V |
Short Circuit Current (Isc) | 2.88 A |
Minimum Bypass Diode | 12 A |
Maximum Series Fuse | 10 A |
Measuring Instrument (Model) | Function |
---|---|
EXTECH SDL200 4-channel temperature meter | temperature logger (°C or K) (for k-type thermocouples) |
Testo 480/425 Hotwire thermo-anemometer | measuring wind speed (m/s) and air temperature (°C) |
FLUKE IRR1-SOL | measuring solar irradiance (W/m2), ambient and PV module temperature (°C), array orientation and tilt angles (°) |
FLIR E40bx thermal imaging camera | thermal imaging |
Case | Date | Avg. Face (°C) | Avg. Back (°C) | Avg. Air Vel. (m/s) | Avg. Air Temp. (°C) | Avg. W/m² | Avg. Ground Temp (°C) |
---|---|---|---|---|---|---|---|
No fins | 24/03/2023 | 57.6 | 47.1 | 3.19 | 26.9 | 704 | 37.7 |
Base model | 28/03/2023 | 46.6 | 45.5 | 3.10 | 29.8 | 932 | 38.6 |
4th iteration | 30/03/2023 | 46.3 | 45.5 | 2.83 | 28.0 | 975 | 37.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelaty, T.; Chaudhry, H.N.; Calautit, J.K. Investigation of Cooling Techniques for Roof-Mounted Silicon Photovoltaic Panels in the Climate of the UAE: A Computational and Experimental Study. Energies 2023, 16, 6706. https://doi.org/10.3390/en16186706
Abdelaty T, Chaudhry HN, Calautit JK. Investigation of Cooling Techniques for Roof-Mounted Silicon Photovoltaic Panels in the Climate of the UAE: A Computational and Experimental Study. Energies. 2023; 16(18):6706. https://doi.org/10.3390/en16186706
Chicago/Turabian StyleAbdelaty, Tarek, Hassam Nasarullah Chaudhry, and John Kaiser Calautit. 2023. "Investigation of Cooling Techniques for Roof-Mounted Silicon Photovoltaic Panels in the Climate of the UAE: A Computational and Experimental Study" Energies 16, no. 18: 6706. https://doi.org/10.3390/en16186706
APA StyleAbdelaty, T., Chaudhry, H. N., & Calautit, J. K. (2023). Investigation of Cooling Techniques for Roof-Mounted Silicon Photovoltaic Panels in the Climate of the UAE: A Computational and Experimental Study. Energies, 16(18), 6706. https://doi.org/10.3390/en16186706