Fibre Bragg Grating Sensors for Condition Monitoring of High-Voltage Assets: A Review
Abstract
:1. Introduction
1.1. Fibre Optic Sensors
- Physically small and light in weight;
- Long lifetime;
- General robustness;
- Low attenuation;
- Distributed or multiplexed measurements;
- Electromagnetically passive and thus useful high-voltage systems.
1.2. Fibre Optic Sensor Technologies
1.2.1. Interferometric Sensors
1.2.2. Distributed Sensors
1.2.3. Spectroscopy Sensors
1.2.4. Fibre Bragg Grating (FBG) Sensors
2. Overview of FBG Sensor Technology
2.1. FBG Principle of Operation
2.2. FBG Multiplexing
2.3. FBG Interrogation Techniques
3. FBG Sensors for Condition Monitoring of Transformers
3.1. Temperature
3.2. Partial Discharge
3.2.1. Tunable Laser-Based Interrogation for Improved Sensitivity
3.2.2. Phase-Shifted FBG Sensors for Improved Sensitivity
3.2.3. Acoustic Amplifiers for Improved Sensitivity
3.2.4. PD Location Detection
3.2.5. PD Classification
3.2.6. Outlook on PD Measurement using FBG Sensors
3.3. Oil Assessment
3.3.1. Hydrogen
3.3.2. Moisture
3.3.3. General Ageing
3.3.4. Outlook on Oil Assessment Using FBG Sensors
3.4. Winding Deformation
4. FBG Sensors for Condition Monitoring of Transmission Line Conductors
4.1. Temperature
4.2. Sag
4.3. Icing
4.4. Mechanical Vibrations
4.4.1. Aeolian Vibrations
4.4.2. Galloping
4.5. Fault Detection for Power System Protection
5. FBG Sensors for Condition Monitoring of Composite Insulators
5.1. Structural Faults
5.2. Temperature
5.3. Icing
5.4. Salt Contamination
6. FBG Sensors for Condition Monitoring of Transmission Towers
7. FBG Sensors for Condition Monitoring of Power Cables
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HV | High voltage |
LED | Light emitting diode |
HVDC | High-voltage direct current |
EMI | Electromagnetic interference |
FBG | Fibre Bragg grating |
DTS | Distributed temperature sensor |
PD | Partial discharge |
AE | Acoustic emission |
PS-FBG | Phase-shifted fibre Bragg grating |
PZT | Lead zirconate titanate |
PEEK | Polyether ether ketone |
DGA | Dissolved gas analysis |
PI | Polyimide |
SP-FBG | Side-polished fibre Bragg grating |
OPGW | Optical ground wire |
OPPC | Optical power conductor |
FEA | Finite element analysis |
XLPE | Cross-linked polyethylene |
TRL | Technology readiness level |
References
- Montanari, G.C.; Fabiani, D.; Morshuis, P.; Dissado, L. Why residual life estimation and maintenance strategies for electrical insulation systems have to rely upon condition monitoring. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1375–1385. [Google Scholar] [CrossRef]
- Burillo, D. Chapter 5—Effects of climate change in electric power infrastructures. In Power System Stability; Okedu, K.E., Ed.; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef]
- Culshaw, B. Optical fiber sensor technologies: Opportunities and-perhaps-pitfalls. J. Light. Technol. 2004, 22, 39–50. [Google Scholar] [CrossRef]
- Castrellon-Uribe, J. Chapter 1—Optical fiber sensors: An overview. In Fiber Optic Sensors; Yasin, M., Harun, S.W., Arof, H., Eds.; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Culshaw, B.; Kersey, A. Fiber-Optic Sensing: A Historical Perspective. J. Light. Technol. 2008, 26, 1064–1078. [Google Scholar] [CrossRef]
- Elsherif, M.; Salih, A.E.; Muñoz, M.G.; Alam, F.; AlQattan, B.; Antonysamy, D.S.; Zaki, M.F.; Yetisen, A.K.; Park, S.; Wilkinson, T.D.; et al. Optical Fiber Sensors: Working Principle, Applications, and Limitations. Adv. Photonics Res. 2022, 3, 2100371. [Google Scholar] [CrossRef]
- Mohammed, A.; Hu, B.; Hu, Z.; Djurović, S.; Ran, L.; Barnes, M.; Mawby, P.A. Distributed Thermal Monitoring of Wind Turbine Power Electronic Modules Using FBG Sensing Technology. IEEE Sens. J. 2020, 20, 9886–9894. [Google Scholar] [CrossRef]
- Ukil, A.; Braendle, H.; Krippner, P. Distributed Temperature Sensing: Review of Technology and Applications. IEEE Sens. J. 2012, 12, 885–892. [Google Scholar] [CrossRef]
- Amira, Z.; Mohamed, B.; Tahar, E. Monitoring of temperature in distributed optical sensor: Raman and Brillouin spectrum. Optik 2016, 127, 4162–4166. [Google Scholar] [CrossRef]
- Lobo Ribeiro, A.B.; Eira, N.F.; Sousa, J.M.; Guerreiro, P.T.; Salcedo, J.R. Multipoint Fiber-Optic Hot-Spot Sensing Network Integrated Into High Power Transformer for Continuous Monitoring. IEEE Sens. J. 2008, 8, 1264–1267. [Google Scholar] [CrossRef]
- Hill, K.O.; Fujii, Y.; Johnson, D.C.; Kawasaki, B.S. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett. 1978, 32, 647–649. [Google Scholar] [CrossRef]
- Meltz, G.; Morey, W.W.; Glenn, W.H. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 1989, 14 15, 823–825. [Google Scholar] [CrossRef]
- Hill, K. Photosensitivity in optical fiber waveguides: From discovery to commercialization. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 1186–1189. [Google Scholar] [CrossRef]
- Jin, W.; Lee, T.; Ho, S.; Ho, H.; Lau, K.; Zhou, L.; Zhou, Y. Structural Strain and Temperature Measurements Using Fiber Bragg Grating Sensors. In Guided Wave Optical Components and Devices; Elsevier Inc.: Berkeley, CA, USA, 2006; pp. 389–400. [Google Scholar] [CrossRef]
- Wei, J.; Hao, Y.; Fu, Y.; Yang, L.; Gan, J.; Yang, Z. Detection of Glaze Icing Load and Temperature of Composite Insulators Using Fiber Bragg Grating. Sensors 2019, 19, 1321. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.; Djurovic, S. In-Situ Thermal and Mechanical Fibre Optic Sensing for In-Service Electric Machinery Bearing Condition Monitoring. In Proceedings of the 2019 IEEE International Electric Machines I & Drives Conference (IEMDC), San Diego, CA, USA, 12–15 May 2019; pp. 37–43. [Google Scholar] [CrossRef]
- Mohammed, A.; Djurović, S. FBG array sensor use for distributed internal thermal monitoring in low voltage random wound coils. In Proceedings of the 2017 6th Mediterranean Conference on Embedded Computing (MECO), Bar, Montenegro, 11–15 June 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Mohammed, A.; Djurović, S. FBG Thermal Sensing Ring Scheme for Stator Winding Condition Monitoring in PMSMs. IEEE Trans. Transp. Electrif. 2019, 5, 1370–1382. [Google Scholar] [CrossRef]
- Kersey, A.D.; Berkoff, T.A.; Morey, W.W. High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection. Electron. Lett. 1992, 28, 236–238. [Google Scholar] [CrossRef]
- Wang, G.; Pran, K.; Sagvolden, G.; Havsgård, G.B.; Jensen, A.; Johnson, G. Ship hull structure monitoring using fibre optic sensors. Smart Mater. Struct. 2001, 10, 472. [Google Scholar] [CrossRef]
- Jackson, D.; Lobo Ribeiro, A.; Reekie, L.; Archambault, J. Simple multiplexing scheme for a fiber-optic grating sensor network. Opt. Lett. 1993, 18, 1192. [Google Scholar] [CrossRef]
- N’cho, J.S.; Fofana, I.; Hadjadj, Y.; Beroual, A. Review of Physicochemical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers. Energies 2016, 9, 367. [Google Scholar] [CrossRef]
- CIGRE. Guide on Economics of Transformer Management; Technical Report; CIGRE: Paris, France, 2004. [Google Scholar]
- C57.12.90-2015; IEEE Standard Test Code for Liquid-Immersed Distribution, Power, and Regulating Transformers. IEEE: Piscataway, NJ, USA, 2016; pp. 1–120. [CrossRef]
- C57.104-2019; IEEE Guide for the Interpretation of Gases Generated in Mineral Oil-Immersed Transformers. IEEE: Piscataway, NJ, USA, 2019; pp. 1–98. [CrossRef]
- Ebrahimi, B.M.; Fereidunian, A.; Saffari, S.; Faiz, J. Analytical estimation of short circuit axial and radial forces on power transformers windings. IET Gener. Transm. Distrib. 2014, 8, 250–260. [Google Scholar] [CrossRef]
- CIGRE. Guide for Transformer Maintenance; Technical Report; CIGRE: Paris, France, 2011. [Google Scholar]
- Duan, R. Real-Time Hotspot Tracing and Model Analysis of a Distributed Optical Fiber Sensor Integrated Power Transformer. IEEE Access 2022, 10, 57242–57254. [Google Scholar] [CrossRef]
- Badar, M.; Lu, P.; Wang, Q.; Boyer, T.; Chen, K.P.; Ohodnicki, P.R. Real-Time Optical Fiber-Based Distributed Temperature Monitoring of Insulation Oil-Immersed Commercial Distribution Power Transformer. IEEE Sens. J. 2021, 21, 3013–3019. [Google Scholar] [CrossRef]
- Kim, M.; Lee, J.H.; Koo, J.Y.; Song, M. A study on internal temperature monitoring system for power transformer using pptical fiber Bragg grating sensors. In Proceedings of the 2008 International Symposium on Electrical Insulating Materials (ISEIM 2008), Yokkaichi, Japan, 7–11 September 2008; pp. 163–166. [Google Scholar] [CrossRef]
- Gong, R.; Ruan, J.; Chen, J.; Quan, Y.; Wang, J.; Duan, C. Analysis and Experiment of Hot-Spot Temperature Rise of 110 kV Three-Phase Three-Limb Transformer. Energies 2017, 10, 1079. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Q.; Qin, W.; Liao, T.; Yang, H.; Ma, G. Temperature Monitoring of Distribution Transformer Windings Based on Fiber Bragg Grating Array. In Proceedings of the 2019 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE), Guangzhou, China, 7–10 April 2019; pp. 601–604. [Google Scholar] [CrossRef]
- Chen, W.-G.; Liu, J.; Wang, Y.-Y.; Liang, L.-M.; Zhao, J.-B.; Yue, Y.-F. The Measuring Method for Internal Temperature of Power Transformer Based on FBG Sensors. In Proceedings of the 2008 International Conference on High Voltage Engineering and Application, Chongqing, China, 9–12 November 2008; pp. 672–676. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, S.; Xiao, L.; Li, W. Fiber Bragg grating sensors for temperature monitoring in oil-immersed transformers. In Proceedings of the 2016 15th International Conference on Optical Communications and Networks (ICOCN), Hangzhou, China, 24–27 September 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Wang, C.; Ding, N.; Zhan, J.; Mu, H.; Zhang, G.; Qian, P. Research on application of distributed FBG in on-line temperature sensing of power transformer. In Proceedings of the 22nd International Symposium on High Voltage Engineering (ISH 2021), Xi’an, China, 21–25 November 2021; Volume 2021, pp. 2034–2039. [Google Scholar] [CrossRef]
- Deng, J.G.; Nie, D.X.; Pi, B.X.; Xia, L.; Wei, L. Hot-spot temperature and temperature decay rate measurement in the oil immersed power transformer through FBG based quasi-distributed sensing system. Microw. Opt. Technol. Lett. 2017, 59, 472–475. [Google Scholar] [CrossRef]
- Kuhn, G.G.; Sousa, K.M.; Martelli, C.; Bavastri, C.A.; Silva, J.C.C.D. Embedded FBG Sensors in Carbon Fiber for Vibration and Temperature Measurement in Power Transformer Iron Core. IEEE Sens. J. 2020, 20, 13403–13410. [Google Scholar] [CrossRef]
- Ma, G.; Wang, Y.; Qin, W.; Zhou, H.; Yan, C.; Jiang, J.; Ju, Y. Optical sensors for power transformer monitoring: A review. High Volt. 2021, 6, 367–386. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, S.; Huang, R.; Hou, D.; Huang, W.; Zheng, M. Oil-immersed transformer online hot spot temperature monitoring and accurate life lose calculation based on liber Bragg grating sensor technology. In Proceedings of the 2014 China International Conference on Electricity Distribution (CICED), Shenzhen, China, 23–26 September 2014; pp. 1256–1260. [Google Scholar] [CrossRef]
- Lu, P.; Buric, M.P.; Byerly, K.; Moon, S.R.; Nazmunnahar, M.; Simizu, S.; Leary, A.M.; Beddingfield, R.B.; Sun, C.; Zandhuis, P.; et al. Real-Time Monitoring of Temperature Rises of Energized Transformer Cores With Distributed Optical Fiber Sensors. IEEE Trans. Power Deliv. 2019, 34, 1588–1598. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Zhuang, X.; Xiao, H.; Fan, X.; Wang, J.; Li, X.; Jiang, T. Test and Analysis on Extended Temperature Rise of 110 kV Transformer Based on Distributed Temperature Sensing. IEEE Trans. Power Deliv. 2023, 38, 1030–1041. [Google Scholar] [CrossRef]
- Meitei, S.N.; Borah, K.; Chatterjee, S. Partial Discharge Detection in an Oil-Filled Power Transformer Using Fiber Bragg Grating Sensors: A Review. IEEE Sens. J. 2021, 21, 10304–10316. [Google Scholar] [CrossRef]
- BS EN 60270:2001+A1:2016; High-voltage test techniques. Partial discharge measurements. IEEE: Piscataway, NJ, USA, 2016.
- Lundgaard, L. Partial discharge. XIV. Acoustic partial discharge detection-practical application. IEEE Electr. Insul. Mag. 1992, 8, 34–43. [Google Scholar] [CrossRef]
- Tian, T.; Zhou, X.; Wang, S.; Luo, Y.; Li, X.; He, N.; Ma, Y.; Liu, W.; Shi, R.; Ma, G. A π-Phase-Shifted Fiber Bragg Grating Partial Discharge Sensor toward Power Transformers. Energies 2022, 15, 5849. [Google Scholar] [CrossRef]
- Sarkar, B.; Koley, C.; Roy, N.; Kumbhakar, P. Condition monitoring of high voltage transformers using Fiber Bragg Grating Sensor. Measurement 2015, 74, 255–267. [Google Scholar] [CrossRef]
- Lissak, B.; Arie, A.; Tur, M. Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings. Opt. Lett. 1998, 23, 1930–1932. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Ma, G.; Mao, N.; Zhang, Q.; Zheng, Q.; Li, C.; Zhao, S. Ultrasonic detection coherence of fiber Bragg grating for partial discharge in transformers. In Proceedings of the 2017 IEEE 19th International Conference on Dielectric Liquids (ICDL), Manchester, UK, 25–29 June 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Zheng, Q.; Ma, G.; Jiang, J.; Li, C.; Zhan, H. A comparative study on partial discharge ultrasonic detection using fiber Bragg grating sensor and piezoelectric transducer. In Proceedings of the 2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Ann Arbor, MI, USA, 18–21 October 2015; pp. 282–285. [Google Scholar] [CrossRef]
- Talebi, V.; Soofi, H. Distributed strain sensing, employing apodized π-phase shifted FBG: Application in power transformer oil breakdown detection. Optik 2022, 268, 169781. [Google Scholar] [CrossRef]
- Lima, S.E.U.; Frazao, O.; Farias, R.G.; Araujo, F.M.; Ferreira, L.A.; Santos, J.L.; Miranda, V. Mandrel-Based Fiber-Optic Sensors for Acoustic Detection of Partial Discharges—A Proof of Concept. IEEE Trans. Power Deliv. 2010, 25, 2526–2534. [Google Scholar] [CrossRef]
- Ghorat, M.; Gharehpetian, G.B.; Latifi, H.; Hejazi, M.A.; Bagheri, M. High-Resolution FBG-Based Fiber-Optic Sensor with Temperature Compensation for PD Monitoring. Sensors 2019, 19, 5285. [Google Scholar] [CrossRef] [PubMed]
- Ghorat, M.; Gharehpetian, G.B.; Latifi, H.; Hejazi, M.A.; Layeghi, A. Partial discharge acoustic emission detector using mandrel-connected fiber Bragg grating sensor. Opt. Eng. 2018, 57, 074107. [Google Scholar] [CrossRef]
- Wu, K.; Chen, W.; Zhang, Z.; Song, Y.; Liu, F.; Tian, H. Development of FBG discharge sensor based on surface-mounted sensitization package. In Proceedings of the 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), Chongqing, China, 25–29 September 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Song, Y.; Chen, W.; Zhang, Z.; Liu, F.; Wu, K.; Lei, J. Research on a new fiber bragg grating partial discharge sensor based on coupling cone and diaphragm packaging. In Proceedings of the 22nd International Symposium on High Voltage Engineering (ISH 2021), Xi’an, China, 21–26 November 2021; Volume 2021, pp. 540–544. [Google Scholar] [CrossRef]
- Ilkhechi, H.D.; Samimi, M.H. Applications of the Acoustic Method in Partial Discharge Measurement: A Review. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 42–51. [Google Scholar] [CrossRef]
- C57.127-2018; IEEE Guide for the Detection, Location and Interpretation of Sources of Acoustic Emissions from Electrical Discharges in Power Transformers and Power Reactors. IEEE: Piscataway, NJ, USA, 2019; pp. 1–72. [CrossRef]
- Didouche, S.; Nacer, A.; Ziani, A.; Moulai, H.; Mazighi, K. Iterative method for partial discharges location in power transformers. Electr. Power Syst. Res. 2022, 211, 108225. [Google Scholar] [CrossRef]
- Kozako, M.; Murayama, H.; Hikita, M.; Kashine, K.; Nakamura, I.; Koide, H. New Partial Discharge location method in power transformer based on acoustic wave propagation characteristics using numerical simulation. In Proceedings of the 2012 IEEE International Conference on Condition Monitoring and Diagnosis, Bali, Indonesia, 23–27 September 2012; pp. 854–857. [Google Scholar] [CrossRef]
- Howells, E.; Norton, E. Location of Partial Discharge Sites in On-Line Transformers. IEEE Trans. Power Appar. Syst 1981, PAS-100, 158–162. [Google Scholar] [CrossRef]
- Eleftherion, P. Partial discharge. XXI. Acoustic emission based PD source location in transformers. IEEE Electr. Insul. Mag. 1995, 11, 22–26. [Google Scholar] [CrossRef]
- Mondal, M.; Kumbhar, G. Partial Discharge Localization in a Power Transformer: Methods, Trends, and Future Research. IETE Tech. Rev. 2017, 34, 504–513. [Google Scholar] [CrossRef]
- Ma, G.M.; Zhou, H.Y.; Shi, C.; Li, Y.B.; Zhang, Q.; Li, C.R.; Zheng, Q. Distributed Partial Discharge Detection in a Power Transformer Based on Phase-Shifted FBG. IEEE Sens. J. 2018, 18, 2788–2795. [Google Scholar] [CrossRef]
- Kanakambaran, S.; Sarathi, R.; Srinivasan, B. Locating Partial Discharges in Power Transformers Using Fiber Bragg Gratings; Engineers Australia: Barton, ACT, Australia, 2015; p. 11. [Google Scholar]
- Kanakambaran, S.; Sarathi, R.; Srinivasan, B. Identification and localization of partial discharge in transformer insulation adopting cross recurrence plot analysis of acoustic signals detected using fiber Bragg gratings. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1773–1780. [Google Scholar] [CrossRef]
- Kanakambaran, S.; Sarathi, R.; Srinivasan, B. Robust Classification of Partial Discharges in Transformer Insulation Based on Acoustic Emissions Detected Using Fiber Bragg Gratings. IEEE Sens. J. 2018, 18, 10018–10027. [Google Scholar] [CrossRef]
- Lima, S.E.U.; Frazão, O.; Farias, R.G.; Araújo, F.M.; Ferreira, L.A.; Santos, J.L.; Miranda, V. Fiber fabry-perot sensors for acoustic detection of partial discharges in transformers. In Proceedings of the 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Belem, Brazil, 3–6 November 2009; pp. 307–311. [Google Scholar] [CrossRef]
- Gao, C.; Yu, L.; Xu, Y.; Wang, W.; Wang, S.; Wang, P. Partial Discharge Localization Inside Transformer Windings via Fiber-Optic Acoustic Sensor Array. IEEE Trans. Power Deliv. 2019, 34, 1251–1260. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, H.; Zhang, D.; Han, Y.; Yang, X.; Zheng, X.; Qu, J. Distributed Partial Discharge Locating and Detecting Scheme Based on Optical Fiber Rayleigh Backscattering Light Interference. Sensors 2023, 23, 1828. [Google Scholar] [CrossRef]
- Sun, C.; Ohodnicki, P.R.; Stewart, E.M. Chemical Sensing Strategies for Real-Time Monitoring of Transformer Oil: A Review. IEEE Sens. J. 2017, 17, 5786–5806. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, L.; Wang, G.; Xiang, F.; Qin, Y.; Wang, M.; Yang, M. Optical Fiber Grating Hydrogen Sensors: A Review. Sensors 2017, 17, 577. [Google Scholar] [CrossRef]
- Fisser, M.; Badcock, R.A.; Teal, P.D.; Hunze, A. High-Sensitivity Fiber-Optic Sensor for Hydrogen Detection in Gas and Transformer Oil. IEEE Sens. J. 2019, 19, 3348–3357. [Google Scholar] [CrossRef]
- Ma, G.M.; Li, C.R.; Luo, Y.T.; Mu, R.D.; Wang, L. High sensitive and reliable fiber Bragg grating hydrogen sensor for fault detection of power transformer. Sensors Actuators B Chem. 2012, 169, 195–198. [Google Scholar] [CrossRef]
- Ma, G.M.; Li, C.R.; Mu, R.D.; Jiang, J.; Luo, Y.T. Fiber bragg grating sensor for hydrogen detection in power transformers. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 380–385. [Google Scholar] [CrossRef]
- Ma, G.M.; Jiang, J.; Li, C.R.; Song, H.T.; Luo, Y.T.; Wang, H.B. Pd/Ag coated fiber Bragg grating sensor for hydrogen monitoring in power transformers. Rev. Sci. Instrum. 2015, 86, 045003. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, G.M.; Li, C.R.; Song, H.T.; Luo, Y.T.; Wang, H.B. Highly Sensitive Dissolved Hydrogen Sensor Based on Side-Polished Fiber Bragg Grating. IEEE Photonics Technol. Lett. 2015, 27, 1453–1456. [Google Scholar] [CrossRef]
- Luo, Y.T.; Wang, H.B.; Ma, G.M.; Song, H.T.; Li, C.; Jiang, J. Research on High Sensitive D-Shaped FBG Hydrogen Sensors in Power Transformer Oil. Sensors 2016, 16, 1641. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Chen, Z.; Xie, Y. Research on Long-term Reliability of Pd/Ag Fiber Bragg Grating Hydrogen Sensor. In Proceedings of the ECITech 2022, The 2022 International Conference on Electrical, Control and Information Technology, Kunming, China, 25–27 March 2022; pp. 1–4. [Google Scholar]
- N’cho, J.S.; Fofana, I. Review of Fiber Optic Diagnostic Techniques for Power Transformers. Energies 2020, 13, 1789. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, G. Moisture Detection with Optical Methods. In Optical Sensing in Power Transformers; Wiley Online Library: Hoboken, NJ, USA, 2021; pp. 37–64. [Google Scholar] [CrossRef]
- Ansari, M.A.H.; Martin, D. Feasibility of Optical Fibre Sensors for Moisture Diagnosis in Transformer Insulation. In Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD), Perth, WA, Australia, 23–26 September 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Ansari, M.A.; Martin, D.; Saha, T.K. Investigation of Distributed Moisture and Temperature Measurements in Transformers Using Fiber Optics Sensors. IEEE Trans. Power Deliv. 2019, 34, 1776–1784. [Google Scholar] [CrossRef]
- Ansari, M.A.; Martin, D.; Saha, T.K. Advanced Online Moisture Measurements in Transformer Insulation Using Optical Sensors. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1803–1810. [Google Scholar] [CrossRef]
- Akre, S.; Fofana, I.; Yéo, Z.; Brettschneider, S.; Kung, P.; Sékongo, B. On the Feasibility of Monitoring Power Transformer’s Winding Vibration and Temperature along with Moisture in Oil Using Optical Sensors. Sensors 2023, 23, 2310. [Google Scholar] [CrossRef] [PubMed]
- Kisch, R.J. Using Refractive Index to Monitor Oil Quality in High Voltage Transformers. Master’s Thesis, The University of British Columbia, Vancouver, BC, Canada, 2008. [Google Scholar]
- Onn, B.I.; Arasu, P.T.; Al-Qazwini, Y.; Abas, A.F.; Tamchek, N.; Noor, A.S.M. Fiber Bragg grating sensor for detecting ageing transformer oil. In Proceedings of the 2012 IEEE 3rd International Conference on Photonics, Pulau Pinang, Malaysia, 1–3 October 2012; pp. 110–113. [Google Scholar] [CrossRef]
- Nilakanta Meitei, S.; Borah, K.; Chatterjee, S. Review on monitoring of transformer insulation oil using optical fiber sensors. Results Opt. 2023, 10, 100361. [Google Scholar] [CrossRef]
- Yan, G.; Zhang, A.P.; Ma, G.; Wang, B.; Kim, B.; Im, J.; He, S.; Chung, Y. Fiber-Optic Acetylene Gas Sensor Based on Microstructured Optical Fiber Bragg Gratings. IEEE Photonics Technol. Lett. 2011, 23, 1588–1590. [Google Scholar] [CrossRef]
- Tao, C.; Li, X.; Yang, J.; Shi, Y. Optical fiber sensing element based on luminescence quenching of silica nanowires modified with cryptophane-A for the detection of methane. Sens. Actuators B Chem. 2011, 156, 553–558. [Google Scholar] [CrossRef]
- Tenbohlen, S.; Jagers, J.; Vahidi, F. Standardized survey of transformer reliability: On behalf of CIGRE WG A2.37. In Proceedings of the 2017 International Symposium on Electrical Insulating Materials (ISEIM), Toyohashi, Japan, 11–15 September 2017; Volume 2, pp. 593–596. [Google Scholar] [CrossRef]
- Cheng, Y.; Bi, J.; Chang, W.; Xu, Y.; Pan, X.; Ma, X.; Chang, S. Proposed methodology for online frequency response analysis based on magnetic coupling to detect winding deformations in transformers. High Volt. 2020, 5, 343–349. [Google Scholar] [CrossRef]
- Kuhn, G.G.; de Morais Sousa, K.; da Silva, J.C.C. Dynamic Strain Analysis of Transformer Iron Core with Fiber Bragg Gratings. In Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF); Optica Publishing Group: Washington, DC, USA, 2018; p. JTu2A.74. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Zhao, L.; Wang, J.; Liu, T. Research on a new fiber-optic axial pressure sensor of transformer winding based on fiber Bragg grating. Photonic Sens. 2017, 7, 365–371. [Google Scholar] [CrossRef]
- de Melo, A.G.; Benetti, D.; de Lacerda, L.A.; Peres, R.; Floridia, C.; Silva, A.d.A.; Rosolem, J.B. Static and Dynamic Evaluation of a Winding Deformation FBG Sensor for Power Transformer Applications. Sensors 2019, 19, 4877. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.S.; Rodrigues, A.V.; Viveiros, D.; Linhares, C.; Mendes, H.; Silva, S.O.; Marques, P.V.S.; Tavares, S.M.O.; Frazão, O. Optical Fiber Sensors for Structural Monitoring in Power Transformers. Sensors 2021, 21, 6127. [Google Scholar] [CrossRef]
- Ma, G.; Liu, Y.; Li, Y.; Fan, X.; Xu, C.; Qin, W. Optical Frequency-Response Analysis for Power Transformer. IEEE Trans. Power Deliv. 2021, 36, 1562–1570. [Google Scholar] [CrossRef]
- Gao, S.; Liu, Y.; Li, H.; Sun, L.; Liu, H.; Rao, Q.; Fan, X. Transformer Winding Deformation Detection Based on BOTDR and ROTDR. Sensors 2020, 20, 2062. [Google Scholar] [CrossRef]
- Mahin, A.U.; Islam, S.N.; Ahmed, F.; Hossain, M.F. Measurement and monitoring of overhead transmission line sag in smart grid: A review. IET Gener. Transm. Distrib. 2022, 16, 1–18. [Google Scholar] [CrossRef]
- Chai, Q.; Luo, Y.; Ren, J.; Zhang, J.; Yang, J.; Yuan, L.; Peng, G. Review on fiber-optic sensing in health monitoring of power grids. Opt. Eng. 2019, 58, 072007. [Google Scholar] [CrossRef]
- CIGRE. Sustainability of Overhead Line Conductors and Fittings—Conductor Condition Assessment and Life Extension Volume 1: State of the Art; Technical Report; CIGRE: Paris, France, 2023. [Google Scholar]
- Liu, S.; Xiao, W.; Chen, H.; Bai, H.; Feng, Y.; Fang, X. Temperature Measurements for Transmission Lines Based on Passive Optical Sensing. Appl. Mech. Mater. 2014, 543–547, 1035–1041. [Google Scholar] [CrossRef]
- Barón, F.; Álvarez Botero, G.; Amortegui, F.; Pastor, D.; Varón, M. Temperature measurements on overhead lines using fiber Bragg grating sensors. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, 22–25 May 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Gangopadhyay, T.; Paul, M.; Bjerkan, L. Fiber-optic sensor for real-time monitoring of temperature on high voltage (400KV) power transmission lines. In Proceedings of the 20th International Conference on Optical Fibre Sensors, (OFS-20), Edinburgh, UK, 5–9 October 2009; p. 7503. [Google Scholar] [CrossRef]
- Wei, J.; Wang, Z.; Tian, B.; Tan, Z.; Nie, S.; Li, Y.; Zhang, Y.; Gong, X.; Zhu, Z.; Xiao, R. Temperature Monitoring for Overhead Transmission Line Based on Raman Distributed Optical Fiber Sensing Technology. In Proceedings of the 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), Chongqing, China, 25–29 September 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Luo, J.; Hao, Y.; Ye, Q.; Hao, Y.; Li, L. Development of Optical Fiber Sensors Based on Brillouin Scattering and FBG for On-Line Monitoring in Overhead Transmission Lines. J. Light. Technol. 2013, 31, 1559–1565. [Google Scholar] [CrossRef]
- Fusiek, G.; Niewczas, P. Design of an optical sensor with varied sensitivities for overhead line sag, temperature and vibration monitoring. In Proceedings of the 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Ottawa, ON, Canada, 16–19 May 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, C.; Liu, Q.; Ning, Y.; Cao, Y. New type of fiber optic sensor network for smart grid interface of transmission system. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Wydra, M.; Kisała, P.; Harasim, D.; Kacejko, P. Overhead Transmission Line Sag Estimation Using a Simple Optomechanical System with Chirped Fiber Bragg Gratings. Part 1: Preliminary Measurements. Sensors 2018, 18, 309. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Ichi Iwasaki, J.; Nakamura, K. A Multiplexing LoadMonitoring System of Power Transmission Lines using FiberBragg Grating. In 12th International Conference on Optical Fiber Sensors; Optica Publishing Group: Washington, DC, USA, 1997; p. OThC16. [Google Scholar] [CrossRef]
- Liang, S.; Yang, H.; Miao, X.; Cao, M.; Chang, M. An Overhead Conductor Weighing Sensor Based on Fiber Bragg Grating. Appl. Mech. Mater. 2013, 462–463, 32–38. [Google Scholar] [CrossRef]
- Mao, N.; Ma, G.; Li, C.; Li, Y.; Shi, C.; Du, Y. High sensitive FBG load cell for icing of overhead transmission lines. In Proceedings of the 2017 25th Optical Fiber Sensors Conference (OFS), Jeju, Republic of Korea, 24–28 April 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Guoming, M.; Li, C.; Jiang, J.; Luo, Y.T.; Cheng, Y.C. A novel optical load cell used in icing monitoring on overhead transmission lines. Cold Reg. Sci. Technol. 2012, 71, 67–72. [Google Scholar] [CrossRef]
- Ma, G.M.; Li, C.R.; Quan, J.T.; Jiang, J.; Cheng, Y.C. A Fiber Bragg Grating Tension and Tilt Sensor Applied to Icing Monitoring on Overhead Transmission Lines. IEEE Trans. Power Deliv. 2011, 26, 2163–2170. [Google Scholar] [CrossRef]
- Liu, F.; Guo, L.; Deng, Y.; Wu, C.; Li, J.; Yang, X.; Wu, T.; Chen, H.; Yang, L. Application of Fiber Bragg Grating Device in Icing Monitoring System of Transmission Lines. Appl. Mech. Mater. 2014, 543–547, 1030–1034. [Google Scholar] [CrossRef]
- Zhang, M.; Xing, Y.; Zhang, Z.; Chen, Q. Design and Experiment of FBG-Based Icing Monitoring on Overhead Transmission Lines with an Improvement Trial for Windy Weather. Sensors 2014, 14, 23954–23969. [Google Scholar] [CrossRef]
- Guoming, M.; Li, Y.b.; Mao, N.; Shi, C.; Zhang, B.; Li, C. A Fiber Bragg Grating-Based Dynamic Tension Detection System for Overhead Transmission Line Galloping. Sensors 2018, 18, 365. [Google Scholar] [CrossRef]
- Bjerkan, L. Application of Fiber-Optic Bragg Grating Sensors in Monitoring Environmental Loads of Overhead Power Transmission Lines. Appl. Opt. 2000, 39, 554–560. [Google Scholar] [CrossRef]
- Hang, X.; Zhang, H.; Zhao, Y. Usability of fiber Bragg grating sensors for the fatigue life monitoring of overhead transmission lines. In Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD), Perth, WA, Australia, 23–26 September 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, X. Integrated condition monitoring system of transmission lines based on fiber bragg grating sensor. In Proceedings of the 2016 International Conference on Condition Monitoring and Diagnosis (CMD), Xi’an, China, 25–28 September 2016; pp. 667–670. [Google Scholar] [CrossRef]
- CIGRE. State of the Art of Conductor Galloping; Technical Report; CIGRE: Paris, France, 2007. [Google Scholar]
- Chen, Y.; Zhang, Z.; Chen, X. Novel monitoring method of power transmission line galloping based on fiber Bragg grating sensor. Opt. Eng. 2011, 50, 114403. [Google Scholar] [CrossRef]
- Tan, T.; Duan, C.; Liu, X.; Fan, D.; Ye, Z.; Xie, K.; Chai, Q.; Tian, Y.; Zhang, J. Research on Monitoring the Transmission Line Tension and Galloping Based on FBG Fitting Sensor. IEEE Trans. Instrum. Meas. 2022, 71, 7008108. [Google Scholar] [CrossRef]
- de Nazaré, F.V.B.; Werneck, M.M. Compact Optomagnetic Bragg-Grating-Based Current Sensor for Transmission Lines. IEEE Sens. J. 2015, 15, 100–109. [Google Scholar] [CrossRef]
- Moghadas, A.A.; Shadaram, M. Fiber Bragg Grating Sensor for Fault Detection in Radial and Network Transmission Lines. Sensors 2010, 10, 9407–9423. [Google Scholar] [CrossRef] [PubMed]
- Nasir, M.; Dyśko, A.; Niewczas, P.; Booth, C.; Orr, P.; Fusiek, G. Development of power system differential protection based on optical current measurement. In Proceedings of the 2013 48th International Universities’ Power Engineering Conference (UPEC), Dublin, Ireland, 2–5 September 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Orr, P.; Fusiek, G.; Niewczas, P.; Booth, C.D.; Dyśko, A.; Kawano, F.; Nishida, T.; Beaumont, P. Distributed Photonic Instrumentation for Power System Protection and Control. IEEE Trans. Instrum. Meas. 2015, 64, 19–26. [Google Scholar] [CrossRef]
- Saito, S.; Fujii, Y.; Yokoyama, K.; Ono, Y. The laser current transformer for EHV power transmission lines. IEEE J. Quantum Electron. 1966, 2, 147. [Google Scholar] [CrossRef]
- Silva, R.M.; Martins, H.; Nascimento, I.; Baptista, J.M.; Ribeiro, A.L.; Santos, J.L.; Jorge, P.; Frazão, O. Optical Current Sensors for High Power Systems: A Review. Appl. Sci. 2012, 2, 602–628. [Google Scholar] [CrossRef]
- Saleem, M.Z.; Akbar, M. Review of the Performance of High-Voltage Composite Insulators. Polymers 2022, 14, 431. [Google Scholar] [CrossRef]
- Std 1863–2019; IEEE Guide for Overhead AC Transmission Line Design. IEEE: Piscataway, NJ, USA, 2020; pp. 1–109. [CrossRef]
- Gubanski, S.; Dernfalk, A.; Andersson, J.; Hillborg, H. Diagnostic Methods for Outdoor Polymeric Insulators. IEEE Trans. Dielectr. Electr. Insul. 2007, 14, 1065–1080. [Google Scholar] [CrossRef]
- Burnham, J.; Baker, T.; Bernstorf, A.; de Tourreil, C.; George, J.M.; Gorur, R.; Hartings, R.; Hill, B.; Jagtiani, A.; McQuarrie, T.; et al. IEEE Task Force Report: Brittle fracture in nonceramic insulators. IEEE Trans. Power Deliv. 2002, 17, 848–856. [Google Scholar] [CrossRef]
- Tzimas, A.; Silva, E.D.; Rowland, S.M.; Boumecid, B.; Queen, M.; Michel, M. Asset management frameworks for outdoor composite insulators. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 2044–2054. [Google Scholar] [CrossRef]
- CIGRE. Review of “in Service Diagnostic Testing” of Composite Insulators; Technical Report; CIGRE: Paris, France, 1996. [Google Scholar]
- Luyao, Z.; Te, L.; Xiaoyu, Z.; Weiling, G.; Zhenguo, W.; Shaohe, W. Statistical Analysis of String Fracture and Core Breakdown of Composite Insulators in Zhejiang Province. In Proceedings of the 2019 IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, China, 21–23 November 2019; pp. 1464–1468. [Google Scholar] [CrossRef]
- Chen, W.; Dong, X.; Zhu, X.; Yang, F.; Hu, X. Stress Analysis and Detection of Composite Electrical Insulators with Embedded Fiber Bragg Grating Sensors. Sens. Lett. 2012, 10, 1562–1565. [Google Scholar] [CrossRef]
- Trouillet, A.; Lepley, D.; Mure-Ravaud, A.; Marin, E. Integration of fibre Bragg grating strain sensors into composite electrical insulators. In Proceedings of SPIE—The International Society for Optical Engineering; SPIE: Bellingham, WA, USA, 2004. [Google Scholar] [CrossRef]
- Wan, X.-D.; Nan, J.; Xu, T.; Li, Y.-Q. On-line Monitoring Technology of UHV Composite Insulator Based on FBG Sensor. In Proceedings of the 2019 IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, China, 21–23 November 2019; pp. 2901–2904. [Google Scholar] [CrossRef]
- Deng, H.; Cai, W.; Liu, C.; He, J. The feasibility of the composite insulator with fiber Bragg grating embedded in the rod. In Proceedings of the IEEE PES Innovative Smart Grid Technologies, Europe, Istanbul, Turkey, 12–15 October 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Deng, H.; Cai, W.; Song, Y.; Liu, J.; Redman, C.; Zhuang, Q. Fiber Bragg grating monitors for thermal and stress of the composite insulators in transmission lines. Glob. Energy Interconnect. 2018, 1, 382–390. [Google Scholar] [CrossRef]
- Cao, H.; Hao, Y.; Zhang, Z.; Wei, J.; Yang, L. System and Method of Quasi-Distributed Fiber Bragg Gratings Monitoring Brittle Fracture Process of Composite Insulators. IEEE Trans. Instrum. Meas. 2021, 70, 6009110. [Google Scholar] [CrossRef]
- Wang, J.; Liang, X.; Gao, Y. Failure analysis of decay-like fracture of composite insulator. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 2503–2511. [Google Scholar] [CrossRef]
- Chen, W.; Tang, M. Monitoring on internal temperature of composite insulator with embedding fiber Bragg grating for early diagnosis. In Proceedings of the 2017 25th Optical Fiber Sensors Conference (OFS), Jeju, Republic of Korea, 24–28 April 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Salem, A.A.; Abd-Rahman, R.; Al-Gailani, S.A.; Kamarudin, M.S.; Ahmad, H.; Salam, Z. The Leakage Current Components as a Diagnostic Tool to Estimate Contamination Level on High Voltage Insulators. IEEE Access 2020, 8, 92514–92528. [Google Scholar] [CrossRef]
- Hao, Y.; Bi, J.; Wang, Q.; Yang, L. Interface temperature evolution exposed to arc discharges occurred on the uniform moist pollution layer of composite insulators based on interface fibre Bragg gratings. High Volt. 2022, 7, 763–770. [Google Scholar] [CrossRef]
- Hao, Y.; Bi, J.; Wang, Q.; Wei, J.; Chen, Y.; Yang, L. Method of quasi-distributed interface fiber Bragg gratings monitoring dry band arc on the moist pollution layer of composite insulators. Electr. Power Syst. Res. 2022, 209, 107956. [Google Scholar] [CrossRef]
- Hao, Y.; Fu, Y.; Wei, J.; Yang, L.; Mao, G.; Yang, Z.; Li, L. Internal Temperature Detections of Contaminated Silicone Rubber Under Discharge Conditions Based on Fiber Bragg Gratings. IEEE Access 2019, 7, 161167–161174. [Google Scholar] [CrossRef]
- Wei, J.; Hao, Y.; Fu, Y.; Yang, L.; Gan, J.; Li, H. Experimental Study on Glaze Icing Detection of 110 kV Composite Insulators Using Fiber Bragg Gratings. Sensors 2020, 20, 1834. [Google Scholar] [CrossRef]
- Wei, J.; Hao, Y.; Fu, Y.; Yang, L.; Gan, J.; Yang, Z. Feasibility Study on Detecting Glaze Icing Load of Composite Insulators by Using Fiber Bragg Grating. In Proceedings of the 2019 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE), Guangzhou, China, 7–10 April 2019; pp. 499–503. [Google Scholar] [CrossRef]
- Hao, Y.; Huang, L.; Wei, J.; Liang, W.; Pan, R.; Yang, L. The Detecting System and Method of Quasi-Distributed Fiber Bragg Grating for Overhead Transmission Line Conductor Ice and Composite Insulator Icing Load. IEEE Trans. Power Deliv. 2022, 38, 1799–1809. [Google Scholar] [CrossRef]
- Hao, Y.; Huang, L.; Wei, J.; Pan, R.; Zhang, W.; Yang, L. Interface quasi-distributed fibre Bragg grating positioning detection of glaze icing load on composite insulators. IET Sci. Meas. Technol. 2022, 16, 316–325. [Google Scholar] [CrossRef]
- Douar, M.A.; Beroual, A.; Souche, X. Degradation of various polymeric materials in clean and salt fog conditions: Measurements of AC flashover voltage and assessment of surface damages. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 391–399. [Google Scholar] [CrossRef]
- Ma, G.M.; Jiang, J.; Mu, R.D.; Li, C.R.; Luo, Y.T. High Sensitive FBG Sensor for Equivalent Salt Deposit Density Measurement. IEEE Photonics Technol. Lett. 2015, 27, 177–180. [Google Scholar] [CrossRef]
- Du, Y.; Ma, G.M.; Zhao, S.J.; Zhou, H.Y.; Liu, S.P.; Li, C.R.; Zheng, Q. A high humidity sensitive Fiber Bragg Grating for contamination measurement. In Proceedings of the 2017 IEEE Electrical Insulation Conference (EIC), Baltimore, MD, USA, 11–14 June 2017; pp. 21–25. [Google Scholar] [CrossRef]
- Prasad Rao, N.; Samuel Knight, G.; Mohan, S.; Lakshmanan, N. Studies on failure of transmission line towers in testing. Eng. Struct. 2012, 35, 55–70. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, Q. Failure analysis of transmission tower subjected to strong wind load. J. Constr. Steel Res. 2019, 160, 271–279. [Google Scholar] [CrossRef]
- Albermani, F.; Kitipornchai, S.; Chan, R. Failure analysis of transmission towers. Eng. Fail. Anal. 2009, 16, 1922–1928. [Google Scholar] [CrossRef]
- Xie, K.; Lv, Z.; Zheng, X.; Tan, T.; Zhang, H.; Meng, Y.; Chai, Q.; Zhang, J.; Yang, J.; Yuan, L. Transmission line galloping induced dynamic strain measurement of an angle brace based power transmission tower by FBG sensors. In Proceedings of the 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, USA, 1–17 May 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, L.; Ruan, J.; du, Z.; Huang, D.; Deng, Y. Transmission line tower failure warning based on FBG strain monitoring and prediction model. Electr. Power Syst. Res. 2023, 214, 108827. [Google Scholar] [CrossRef]
- Xinbo, H.; Zhao, L.; Chen, Z.; Liu, C. An online monitoring technology of tower foundation deformation of transmission lines. Struct. Health Monit. 2018, 18, 147592171877457. [Google Scholar] [CrossRef]
- Nan, Y.; Xie, W.; Min, L.; Cai, S.; Ni, J.; Yi, J.; Luo, X.; Wang, K.; Nie, M.; Wang, C.; et al. Real-Time Monitoring of Wind-Induced Vibration of High-Voltage Transmission Tower Using an Optical Fiber Sensing System. IEEE Trans. Instrum. Meas. 2020, 69, 268–274. [Google Scholar] [CrossRef]
- Wang, L.; Liu, C.; Zhu, X.; Xu, Z.; Zhu, W.; Zhao, L. Active Vibration-Based Condition Monitoring of a Transmission Line. Actuators 2021, 10, 309. [Google Scholar] [CrossRef]
- Cao, Y.; Xue, Z.; Zhang, C.; Jia, Y.; Lu, Q.; Jiang, C. Design and Application of Online Landslide Monitoring System for Transmission Lines Corridor Based on the Optical Fiber Sensing Technology. Appl. Mech. Mater. 2014, 556–562, 3160–3163. [Google Scholar] [CrossRef]
- Deng, C.; Cao, Y.; Xue, Z.; Bo, X.; Li, W.; Shi, Y. A case study of landslide monitoring system for a transmission tower in Maoxian, Sichuan China. In Proceedings of the 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN), Guangzhou, China, 6–8 May 2017; pp. 1516–1519. [Google Scholar] [CrossRef]
- Duan, C.; Zhang, H.; Li, Z.; Tian, Y.; Chai, Q.; Yang, J.; Yuan, L.; Zhang, J.; Xie, K.; Lv, Z. FBG Smart Bolts and Their Application in Power Grids. IEEE Trans. Instrum. Meas. 2020, 69, 2515–2521. [Google Scholar] [CrossRef]
- Ren, L.; Feng, T.; Ho, M.; Jiang, T.; Song, G. A smart “shear sensing” bolt based on FBG sensors. Measurement 2018, 122, 240–246. [Google Scholar] [CrossRef]
- Vahedy, V. Polymer insulated high voltage cables. IEEE Electr. Insul. Mag. 2006, 22, 13–18. [Google Scholar] [CrossRef]
- CIGRE. Condition Evaluation and Lifetime Strategy of HV Cable Systems; Technical Report; CIGRE: Paris, France, 2023. [Google Scholar]
- Goehlich, L.; Donazzi, F.; Gaspari, R. Monitoring of HV cables offers improved reliability and economy by means of ‘power sensors’. Power Eng. J. 2002, 16, 103–110. [Google Scholar] [CrossRef]
- Jie, X.; Zhi-bin, L.; Qi-tao, H.; Chang, L. A new packaged FBG sensor for underground cable temperature monitoring. In Proceedings of the 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 25–26 March 2017; pp. 1789–1793. [Google Scholar] [CrossRef]
- Gan, W.; Wang, Y. Application of the distributed optical fiber grating temperature sensing technology in high-voltage cable. In Proceedings of the 2011 International Conference on Electronic & Mechanical Engineering and Information Technology, Harbin, China, 12–14 August 2011; Volume 9, pp. 4538–4541. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, M.; Wang, D.D.; Zhang, S.; Li, C.; Li, Y.; Li, X. On-Line Monitoring of Cable Trench and Cable Pit by Using Metal Armored FBG Temperature Sensors. Int. J. Smart Grid Clean Energy 2013, 2, 119–124. [Google Scholar] [CrossRef]
- Ghaderi, A.; Mingotti, A.; Lama, F.; Peretto, L.; Tinarelli, R. Effects of Temperature on MV Cable Joints Tan Delta Measurements. IEEE Trans. Instrum. Meas. 2019, 68, 3892–3898. [Google Scholar] [CrossRef]
- Kim, H.; Lee, M.; Jung, W.S.; Oh, S.H. Temperature monitoring techniques of power cable joints in underground utility tunnels using a fiber Bragg grating. ICT Express 2022, 8, 626–632. [Google Scholar] [CrossRef]
- Kawai, T.; Takinami, N.; Chino, T.; Amano, K.; Watanabe, K.; Nakamura, Y.; Shiseki, N. A new approach to cable fault location using fiber optic technology. I. IEEE Trans. Power Deliv. 1995, 10, 85–91. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Hao, Y.; Yao, K.; Li, H.; Jia, F.; Shi, Q.; Yue, D.; Cheng, Y. The 500kV Oil-filled Submarine Cable Temperature Monitoring System Based on BOTDA Distributed Optical Fiber Sensing Technology. In Proceedings of the 2020 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD), Xi’an, China, 15–17 October 2020; pp. 180–183. [Google Scholar] [CrossRef]
- Wu, X.; Li, R.; Ni, H.; Ding, P.; Li, X.; Zhou, X.; Cheng, Y.; Yu, H. Integrated Detection of Temperature and Partial Discharge on Cables Based on FBG. In Proceedings of the 2019 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE), Guangzhou, China, 7–10 April 2019; pp. 385–389. [Google Scholar] [CrossRef]
- kim, h.; Park, S.W.; Yeo, C.; Kang, H.S.; Park, H.J. Thermal analysis of 22.9-kV crosslinked polyethylene cable joint based on partial discharge using fiber Bragg grating sensors. Opt. Eng. 2021, 60, 034101. [Google Scholar] [CrossRef]
- Du, C.; Kong, D.; Xu, C. Development of a Fault Detection Instrument for Fiber Bragg Grating Sensing System on Airplane. Micromachines 2022, 13, 882. [Google Scholar] [CrossRef]
- Ralf, A. Optical Current Sensors for High Power Systems: A Review. Elektrotech. Inftech. 2021, 130, 646–647. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramnarine, V.; Peesapati, V.; Djurović, S. Fibre Bragg Grating Sensors for Condition Monitoring of High-Voltage Assets: A Review. Energies 2023, 16, 6709. https://doi.org/10.3390/en16186709
Ramnarine V, Peesapati V, Djurović S. Fibre Bragg Grating Sensors for Condition Monitoring of High-Voltage Assets: A Review. Energies. 2023; 16(18):6709. https://doi.org/10.3390/en16186709
Chicago/Turabian StyleRamnarine, Veeresh, Vidyadhar Peesapati, and Siniša Djurović. 2023. "Fibre Bragg Grating Sensors for Condition Monitoring of High-Voltage Assets: A Review" Energies 16, no. 18: 6709. https://doi.org/10.3390/en16186709
APA StyleRamnarine, V., Peesapati, V., & Djurović, S. (2023). Fibre Bragg Grating Sensors for Condition Monitoring of High-Voltage Assets: A Review. Energies, 16(18), 6709. https://doi.org/10.3390/en16186709