Bellman–Genetic Hybrid Algorithm Optimization in Rural Area Microgrids
Abstract
:1. Introduction
1.1. Motivation
1.2. Literature Review
- A 100 kWp photovoltaic array harnessing sustainable energy;
- A 60 kWp wind turbine installation harnessing sustainable energy;
- A 125 kW electrochemical storage system serving for storage purposes;
- A 30 kW gas turbine serving as an additional source;
- A 220 V/50 Hz electrical grid operating in a single-phase configuration.
2. Microgrid Overview
2.1. Overview of Distributed Energy Resources
- Photovoltaic Characterization:
- Wind Turbine Characterization:
- Gas Turbine Characterization:
- Energy Storage System Characterization:
- Grid Characterization:
2.2. Optimization Problem
- Ensure the SMG power balance without any suspension;
- Minimize electricity costs;
- Reduce GHG emissions;
- Maximize the use of renewables;
- Fulfill all technical constraints.
Objective Function (Cost Function)
- Gas Turbine Energy Cost:
- Grid Energy Cost:
- Battery bank cost:
- Renewables energy cost:
- Equality and Inequality Constraints:
2.3. Optimization Problem Solving
2.3.1. Genetic Algorithm Application
2.3.2. Validation Approaches for Genetic Algorithm
Rule-Based Management Strategy
Bellman Algorithm Application
- Active power dispatching: discretization (SOC is first discretized by a 10% step);
- Active power dispatching: discretization;
3. Simulation and Results
3.1. Simulation Context—Lamhiriz Village
- 29 December: this particular date was selected because it represents a day with moderate renewables production.
- 29 November: represents the day with the maximum renewables production in the year 2019.
- 25 August: represents the day with the minimum renewables production.
3.2. Simulation for a Random Load Profile
3.2.1. Genetic Algorithm Optimization Results
3.2.2. Validation of Genetic Algorithm Results via RBMS and Bellman Algorithm Comparisons
Rule-Based Management
Bellman Optimization Results
Comparison of Energy Cost, GHG Emissions, and Computation Time
3.3. Hybridization of Bellman and GA Optimization
3.3.1. Methodology for Hybridization
3.3.2. Results of Bellman and GA Hybridization
3.3.3. Hybridization of Bellman and GA Optimization: Simulation for Lamhiriz Profile
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ashok, S. Optimised model for community-based hybrid energy system. Renew. Energy 2007, 10, 1155–1164. [Google Scholar] [CrossRef]
- Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart Grid—The New and Improved Power Grid: A Survey. IEEE Commun. Surv. Tutor. 2012, 14, 944–980. [Google Scholar] [CrossRef]
- Hledik, R. How Green Is the Smart Grid? Electr. J. 2009, 22, 29–41. [Google Scholar] [CrossRef]
- Momoh, J.A. Smart grid design for efficient and flexible power networks operation and control. In Proceedings of the 2009 IEEE/PES Power Systems Conference and Exposition, Seattle, WA, USA, 15–18 March 2009; pp. 1–8. [Google Scholar]
- Yan, C.; Wang, F.; Pan, Y.; Shan, K.; Kosonen, R. A multi-timescale cold storage system within energy flexible buildings for power balance management of smart grids. Renew. Energy 2020, 161, 626–634. [Google Scholar] [CrossRef]
- Azaroual, M.; Ouassaid, M.; Maaroufi, M. Optimal Control for Energy Dispatch of A Smart Grid Tied PV-Wind-Battery Hybrid Power System. In Proceedings of the 2019 Third International Conference on Intelligent Computing in Data Sciences (ICDS), Marrakech, Morocco, 28–30 October 2019; pp. 1–7. [Google Scholar]
- Boulal, A.; Chakir, H.E.; Drissi, M.; Griguer, H.; Ouadi, H. Optimal Management of Energy Flows in a Multi-Source Grid. In Proceedings of the 2018 Renewable Energies, Power Systems & Green Inclusive Economy (REPS-GIE), Casablanca, Morocco, 23–24 April 2018; pp. 1–6. [Google Scholar]
- Wei, L. Energy drive and management of smart grids with high penetration of renewable sources of wind unit and solar panel. Int. J. Electr. Power Energy Syst. 2021, 7, 106846. [Google Scholar] [CrossRef]
- Shi, Z.; Yao, W.; Li, Z.; Zeng, L.; Zhao, Y.; Zhang, R.; Tang, Y.; Wen, J. Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions. Appl. Energy 2020, 278, 115733. [Google Scholar] [CrossRef]
- Tan, K.M.; Babu, T.S.; Ramachandaramurthy, V.K.; Kasinathan, P.; Solanki, S.G.; Raveendran, S.K. Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration. J. Energy Storage 2021, 39, 102591. [Google Scholar] [CrossRef]
- Liu, W.-J.; Chi, M.; Liu, Z.-W.; Guan, Z.-H.; Chen, J.; Xiao, J.-W. Distributed optimal active power dispatch with energy storage units and power flow limits in smart grids. Int. J. Electr. Power Energy Syst. 2019, 105, 420–428. [Google Scholar] [CrossRef]
- Gupta, S.; Maulik, A.; Das, D.; Singh, A. Coordinated stochastic optimal energy management of grid-connected microgrids considering demand response, plug-in hybrid electric vehicles, and smart transformers. Renew. Sustain. Energy Rev. 2022, 155, 111861. [Google Scholar] [CrossRef]
- Suresh, G.; Prasad, D.; Gopila, M. An efficient approach based power flow management in smart grid system with hybrid renewable energy sources. Renew. Energy Focus 2021, 39, 110–122. [Google Scholar] [CrossRef]
- Barakat, S.; Ibrahim, H.; Elbaset, A.A. Multi-objective optimization of grid-connected PV-wind hybrid system considering reliability, cost, and environmental aspects. Sustain. Cities Soc. 2020, 60, 102178. [Google Scholar] [CrossRef]
- Shi, Y.; Tuan, H.D.; Savkin, A.V.; Lin, C.-T.; Zhu, J.G.; Poor, H.V. Distributed model predictive control for joint coordination of demand response and optimal power flow with renewables in smart grid. Appl. Energy 2021, 290, 116701. [Google Scholar] [CrossRef]
- Gheouany, S.; Ouadi, H.; Giri, F.; El Bakali, S. Experimental validation of multi-stage optimal energy management for a smart microgrid system under forecasting uncertainties. Energy Convers. Manag. 2023, 291, 117309. [Google Scholar] [CrossRef]
- Crespo Del Granado, P.; Pang, Z.; Wallace, S.W. Synergy of smart grids and hybrid distributed generation on the value of energy storage. Appl. Energy 2016, 170, 476–488. [Google Scholar] [CrossRef]
- Et-Taoussi, M.; Ouadi, H.; Chakir, H.E. Hybrid optimal management of active and reactive power flow in a smart microgrid with photovoltaic generation. Microsyst. Technol. 2019, 25, 4077–4090. [Google Scholar] [CrossRef]
- Keshta, H.E.; Malik, O.P.; Saied, E.M.; Bendary, F.M.; Ali, A.A. Energy management system for two islanded interconnected micro-grids using advanced evolutionary algorithms. Electr. Power Syst. Res. 2021, 192, 106958. [Google Scholar] [CrossRef]
- Canova, A.; Chicco, G.; Genon, G.; Mancarella, P. Emission characterization and evaluation of natural gas-fueled cogeneration microturbines and internal combustion engines. Energy Convers. Manag. 2008, 49, 2900–2909. [Google Scholar] [CrossRef]
- Beltran, H.; Swierczynski, M.; Aparicio, N.; Belenguer, E.; Teodorescu, R.; Rodriguez, P. Lithium ion batteries ageing analysis when used in a PV power plant. In Proceedings of the 2012 IEEE International Symposium on Industrial Electronics, Dallas, TX, USA, 27–30 November 2012; pp. 1604–1609. [Google Scholar]
- Zahraoui, F.Z.; Chakir, H.E.; Ouadi, H. Cost Reduction in Smart Grid Considering Greenhouse Gas Emissions Using Genetic Algorithm. In Advanced Technologies for Humanity; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; p. 10. [Google Scholar]
- Shine, K.P.; Fuglestvedt, J.S.; Hailemariam, K.; Stuber, N. Alternatives to the Global Warming Potential for Comparing Climate Impacts of Emissions of Greenhouse Gases. Clim. Chang. 2005, 68, 281–302. [Google Scholar] [CrossRef]
- Kanchev, H. Gestion des Flux Énergétiques Dans un Système Hybride de Sources D’énergie Renouvelable: Optimisation de la Planification Opérationnelle et Ajustement d’un Micro Réseau Électrique Urbain. Ph.D. Thesis, Technical University of Sofia, Sofia, Bulgaria, 2014. [Google Scholar]
- EDF—Devenons l’énergie Qui Change Tout. Available online: https://www.edf.fr/ (accessed on 25 January 2022).
- Rigo-Mariani, R.; Sareni, B.; Roboam, X.; Turpin, C. Optimal power dispatching strategies in smart-microgrids with storage. Renew. Sustain. Energy Rev. 2014, 40, 649–658. [Google Scholar] [CrossRef]
- Official Website of ONEE. Available online: http://www.one.org.ma/ (accessed on 19 June 2023).
- Riffonneau, Y.; Bacha, S.; Barruel, F.; Ploix, S. Optimal Power Flow Management for Grid Connected PV Systems with Batteries. IEEE Trans. Sustain. Energy 2011, 2, 309–320. [Google Scholar] [CrossRef]
- Delaille, A. Développement de Méthodes D’évaluation de L’état de Charge et de L’état de Santé des Batteries Utilisées Dans les Systèmes Photovoltaïques. Ph.D. Thesis, University Pierre et Marie Curie, Paris, France, 2006. [Google Scholar]
- Boicea, A.-V.; Chicco, G.; Mancarella, P. Optimal Operation of a Microturbine Cluster with Partial-Load Efficiency and Emission Characterization. In Proceedings of the IEEE Bucharest PowerTech, Bucharest, Romania, 28 June–2 July 2009; pp. 1–8. [Google Scholar]
- Gheouany, S.; Ouadi, H.; El Bakali, S. Hybrid-integer algorithm for a multi-objective optimal home energy management system. Clean Energy 2023, 7, 375–388. [Google Scholar] [CrossRef]
- Holand, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1975; ISBN 9780262275552. [Google Scholar]
- Risi, B.-G.; Riganti-Fulginei, F.; Laudani, A. Modern Techniques for the Optimal Power Flow Problem: State of the Art. Energies 2022, 15, 6387. [Google Scholar] [CrossRef]
- Eisenmann, A.; Streubel, T.; Rudion, K. Power Quality Mitigation via Smart Demand-Side Management Based on a Genetic Algorithm. Energies 2022, 15, 1492. [Google Scholar] [CrossRef]
- Ullah, K.; Ali, S.; Khan, T.A.; Khan, I.; Jan, S.; Shah, I.A.; Hafeez, G. An Optimal Energy Optimization Strategy for Smart Grid Integrated with Renewable Energy Sources and Demand Response Programs. Energies 2020, 13, 5718. [Google Scholar] [CrossRef]
- Boulal, A.; Chakir, H.E.; Drissi, M.; Ouadi, H. Energy Bill Reduction by Optimizing Both Active and Reactive Power in an Electrical Microgrid. IREE 2020, 15, 456. [Google Scholar] [CrossRef]
- Chakir, H.E.; Hamid, O.; Fouad, G. Managing a hybrid energy smart grid with a renewable energy source. Asian J. Control 2019, 21, 2060–2073. [Google Scholar] [CrossRef]
- Pazouki, S.; Haghiafm, M.R. Market based operation of a hybrid system including wind turbine, solar cells, storage device and interruptable load. In Proceedings of the 18th Electric Power Distribution Conference, Kermanshah, Iran, 30 April–May 2013; pp. 1–7. [Google Scholar]
- Zahraoui, F.; Eddine Chakir, H.; Et-Taoussi, M.; Ouadi, H. Smart Grid Cost Optimization: Comparing Bellman and Genetic Algorithms. In Proceedings of the 9th International Renewable and Sustainable Energy Conference (IRSEC), Casablanca Morocco, 23–27 November 2021; pp. 1–6. [Google Scholar]
- Singh, N.; Elamvazuthi, I.; Nallagownden, P.; Ramasamy, G.; Jangra, A. Routing Based Multi-Agent System for Network Reliability in the Smart Microgrid. Sensors 2020, 20, 2992. [Google Scholar] [CrossRef]
- El Barkouki, B.; Laamim, M.; Rochd, A.; Chang, J.; Benazzouz, A.; Ouassaid, M.; Kang, M.; Jeong, H. An Economic Dispatch for a Shared Energy Storage System Using MILP Optimization: A Case Study of a Moroccan Microgrid. Energies 2023, 16, 4601. [Google Scholar] [CrossRef]
- Redouane, A.; Acouetey, P.; Hasnaoui, A.E.; Harraki, I.E. Feasibility Study of Energy Hybrid Systems for Villages of the Southern Moroccan Coastline. In Proceedings of the 6th International Renewable and Sustainable Energy Conference (IRSEC), Rabat, Morocco, 5–8 December 2018; pp. 1–6. [Google Scholar]
- Renewables.ninja. Available online: https://www.renewables.ninja/ (accessed on 11 May 2023).
- Jrhilifa, I.; Ouadi, H.; Jilbab, A. Multi-horizon Short-Term Load Consumption Forecasting Using Deep Learning Models. In International Conference on Advanced Intelligent Systems for Sustainable Development; Springer: Cham, Switzerland, 2023; Volume 714. [Google Scholar]
- Mounir, N.; Ouadi, H.; Jrhilifa, I. Short-term electric load forecasting using an EMD-BI-LSTM approach for smart grid energy management system. Energy Build. 2023, 288, 113022. [Google Scholar] [CrossRef]
- Hassanat, A.; Prasath, V.; Abbadi, M.; Abu-Qdari, S.; Faris, H. An Improved Genetic Algorithm with a New Initialization Mechanism Based on Regression Techniques. Information 2018, 9, 167. [Google Scholar] [CrossRef]
GA Options | Selected Option |
---|---|
Selection strategy | Stochastic uniform |
Mutation strategy | Adaptive feasible |
Crossover strategy | Scattered |
Non-linear constraints strategy | Augmented Lagrangian |
Scaling function | Rank |
Selection strategy | Stochastic uniform |
Mutation strategy | Adaptive feasible |
Population size | 1000 |
Crossover fraction | 70% |
Stall generations | 50 |
Function tolerance | 10−6 |
Elite count | 50 |
Selection strategy | Stochastic uniform |
Mutation strategy | Adaptive feasible |
Simulation Time (s) | |
---|---|
Rule-Based Management | 2 |
GA management | 600 for 200 generations |
Bellman Management | 1950 |
Optimization Strategy | Power Cost (c€) | GHG Equivalent Emission (kg) | |
---|---|---|---|
Moderate Renewables Generation Day | GA | 342.9242 | 316.8 |
Hybrid GA | 331.9803 | 316.80 | |
Maximum Renewables Generation Day | GA management | 192.4991 | 208.4713377 |
Hybrid GA | 186.5361 | 84.0004243 | |
Minimum Renewables Generation Day | GA management | 414.3854 | 475.91 |
Hybrid GA | 403.7089 | 372.3391267 |
Simulation Time (s) | |
---|---|
GA management | 600 for 200 generations |
Improved GA Management | 450 for 200 generations |
Power Cost (c€) | GHG Equivalent Emission (kg) | Simulation Time (s) | |
---|---|---|---|
Improved GA Management | 192.7954 | 40.26 | 500 for 200 generations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahraoui, F.Z.; Et-taoussi, M.; Chakir, H.E.; Ouadi, H.; Elbhiri, B. Bellman–Genetic Hybrid Algorithm Optimization in Rural Area Microgrids. Energies 2023, 16, 6897. https://doi.org/10.3390/en16196897
Zahraoui FZ, Et-taoussi M, Chakir HE, Ouadi H, Elbhiri B. Bellman–Genetic Hybrid Algorithm Optimization in Rural Area Microgrids. Energies. 2023; 16(19):6897. https://doi.org/10.3390/en16196897
Chicago/Turabian StyleZahraoui, Fatima Zahra, Mehdi Et-taoussi, Houssam Eddine Chakir, Hamid Ouadi, and Brahim Elbhiri. 2023. "Bellman–Genetic Hybrid Algorithm Optimization in Rural Area Microgrids" Energies 16, no. 19: 6897. https://doi.org/10.3390/en16196897
APA StyleZahraoui, F. Z., Et-taoussi, M., Chakir, H. E., Ouadi, H., & Elbhiri, B. (2023). Bellman–Genetic Hybrid Algorithm Optimization in Rural Area Microgrids. Energies, 16(19), 6897. https://doi.org/10.3390/en16196897