Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples
Abstract
:1. Introduction
2. Aspects of Biogas Production in Relation to the Type of Substrate Used
2.1. Manure and Animal Slurry
- (a)
- Ultrasonic pretreatment (0.14456 kWhh/kg total solids (TSs), 0.11386 kWhh);
- (b)
- Co-fermentation with crude glycerin (Gly) from the biodiesel industry (6%);
- (c)
- Pretreatment in (0.14456 kWhh/kg TS; 0.09452 kWhh), applied to both substrates prior to anaerobic co-fermentation. The reactor used for this purpose was an induction bed reactor (IBR) with an available volume of 1.25 m3. CH4 production from CM was enhanced by low-energy ultrasound pretreatment (0.14456 kWhh/kg TS) (0.29 to 0.46 m3 CH4/kg volatile solids (VSs added)) and by co-fermentation with Gly (0.29 to 0.44 m3 CH4/kg vs. added). The best results were achieved when the CM + Gly mixture was pretreated with US (up to 0.59 m3 CH4/kg vs. added) [39].
2.2. Agricultural Crops
2.3. Municipal Waste and Sewage Sludge
3. Status of Biogas Plants in Europe
4. Conclusions
- (1)
- The share of consumption of substrates for the production of agricultural biogas in 2021 is as follows: stillage 18.98%, manure 16.41%, agricultural and food industry waste 16.61% and fruit and vegetable processing residues 16.20%;
- (2)
- The production of electricity using biogas from sewage treatment plants accounted for 31.86% of total electricity generated (values for Poland in 2018), compared to biogas from other sources (mainly biogas from the agri-food industry) and landfill biogas, accounting for 23%;
- (3)
- The generation capacity of biogas from treatment plants was 337 GWh of electricity, accounting for 28.83% of the total capacity, compared to about 622 GWh from biogas from other sources (mainly agri-food biogas) and about 170 GWh from landfill biogas, accounting for 14.5%;
- (4)
- Production of heat from purified biogas in Poland amounted to approx. 44.48 GWhh, accounting for 16.4%, compared to approx. 218.23 GWhh from biogas from other sources (mainly agricultural and food biogas) and approx. 8.61 GWhh from landfill biogas, accounting for 3.2%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montt, G.; Fraga, F.; Harsdorff, M. The Future of Work in a Changing Natural Environment: Climate Change, Degradation and Sustainability; International Labour Office: Geneva, Switzerland, 2018. [Google Scholar]
- Abdel-Shafy, H.I.; Mansour, M.S.M. Solid Waste Issue: Sources, Composition, Disposal, Recycling, and Valorization. Egypt. J. Pet. 2018, 27, 1275–1290. [Google Scholar] [CrossRef]
- Baus, D. Overpopulation and the Impact on the Environment; City University of New York: New York, NY, USA, 2017. [Google Scholar]
- Deng, Y.; Xu, J.; Liu, Y.; Mancl, K. Biogas as a Sustainable Energy Source in China: Regional Development Strategy Application and Decision Making. Renew. Sustain. Energy Rev. 2014, 35, 294–303. [Google Scholar] [CrossRef]
- Surendra, K.C.; Takara, D.; Hashimoto, A.G.; Khanal, S.K. Biogas as a Sustainable Energy Source for Developing Countries: Opportunities and Challenges. Renew. Sustain. Energy Rev. 2014, 31, 846–859. [Google Scholar] [CrossRef]
- Ignatowicz, K.; Piekarski, J.; Kogut, P. Influence of Selected Substrate Dosage on the Process of Biogas Installation Start-Up in Real Conditions. Energies 2021, 14, 5948. [Google Scholar] [CrossRef]
- Uliasz-Misiak, B. Wpływ geologicznego składowania CO2 na środowisko. Gospod. Surowcami Miner. 2011, 27, 129–143. [Google Scholar]
- Szurlej, A.; Janusz, P. Gospodarka gazem ziemnym na rynku amerykańskim i europejskim. Miner. Resour. Manag. Tom 2013, 29, 77–94. [Google Scholar]
- Kogut, P.; Piekarski, J.; Ignatowicz, K. Start-up of Biogas Plant with Inoculating Sludge Application. Rocz. Ochr. Sr. 2014, 16, 534–545. [Google Scholar]
- Refai, S. Development of Efficient Tools for Monitoring and Improvement of Biogas Production. Ph.D. Thesis, Universitäts-und Landesbibliothek Bonn, Bonn, Germany, 2016. [Google Scholar]
- Nielsen, J.B.; Al Seadi, T.; Oleskowicz-Popiel, P. The Future of Anaerobic Digestion and Biogas Utilization. Bioresour. Technol. 2009, 100, 5478–5484. [Google Scholar] [CrossRef]
- Abbasi, T.; Tauseef, S.M.; Abbasi, S.A. A Brief History of Anaerobic Digestion and “Biogas.” In Biogas Energy; Springer: New York, NY, USA, 2012; pp. 11–23. ISBN 978-1-4614-1040-9. [Google Scholar]
- Gao, M.; Wang, D.; Wang, Y.; Wang, X.; Feng, Y. Opportunities and Challenges for Biogas Development: A Review in 2013–2018. Curr. Pollut. Rep. 2019, 5, 25–35. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mofijur, M.; Tarannum, K.; Chowdhury, A.T.; Rafa, N.; Nuzhat, S.; Kumar, P.S.; Vo, D.-V.N.; Lichtfouse, E.; Mahlia, T.M.I. Biogas Upgrading, Economy and Utilization: A Review. Environ. Chem. Lett. 2021, 19, 4137–4164. [Google Scholar] [CrossRef]
- Thiruselvi, D.; Kumar, P.S.; Kumar, M.A.; Lay, C.-H.; Aathika, S.; Mani, Y.; Jagadiswary, D.; Dhanasekaran, A.; Shanmugam, P.; Sivanesan, S.; et al. A Critical Review on Global Trends in Biogas Scenario with Its Up-Gradation Techniques for Fuel Cell and Future Perspectives. Int. J. Hydrog. Energy 2020, 46, 16734–16750. [Google Scholar] [CrossRef]
- Sarker, S.; Lamb, J.J.; Hjelme, D.R.; Lien, K.M. A Review of the Role of Critical Parameters in the Design and Operation of Biogas Production Plants. Appl. Sci. 2019, 9, 1915. [Google Scholar] [CrossRef] [Green Version]
- Stolze, Y.; Bremges, A.; Maus, I.; Pühler, A.; Sczyrba, A.; Schlüter, A. Targeted in situ metatranscriptomics for selected taxa from mesophilic and thermophilic biogas plants. Microb. Biotechnol. 2017, 11, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Heerenklage, J.; Rechtenbach, D.; Atamaniuk, I.; Alassali, A.; Raga, R.; Koch, K.; Kuchta, K. Development of a method to produce standardised and storable inocula for biomethane potential tests-Preliminary steps. Renew. Energy 2019, 143, 753–761. [Google Scholar] [CrossRef]
- Nsair, A.; Onen Cinar, S.; Alassali, A.; Abu Qdais, H.; Kuchta, K. Operational Parameters of Biogas Plants: A Review and Evaluation Study. Energies 2020, 13, 3761. [Google Scholar] [CrossRef]
- Lenort, R.; Stas, D.; Wicher, P.; Holman, D.; Ignatowicz, K. Comparative Study of Sustainable Key Performance Indicators in Metallurgical Industry. Rocz. Ochr. Sr. 2017, 19, 36–51. [Google Scholar]
- Żyłka, R.; Dąbrowski, W.; Malinowski, P.; Karolinczak, B. Modeling of Electric Energy Consumption during Dairy Wastewater Treatment Plant Operation. Energies 2020, 13, 3769. [Google Scholar] [CrossRef]
- Banasik, P.; Białowiec, A.; Czekała, W.; Chomiuk, D.; Dach, J.; Filipiak, I.; Fugol, M.; Kacała, M.; Kowalczyk-Juśko, A.; Kolasiński, M.; et al. Raport Biogaz w Polsce. Poland. Available online: https://magazynbiomasa.pl/?s=raport+Biogaz (accessed on 25 October 2022).
- Public Information Bulletin of the National Agricultural Support Center, Poland. Available online: https://bip.kowr.gov.pl/informacje-publiczne/odnawialne-zrodla-energii/biogaz-rolniczy/dane-dotyczace-dzialalnosci-wytworcow-biogazu-rolniczego-w-latach-2011-2021 (accessed on 25 October 2022).
- Kougias, P.G.; Angelidaki, I. Biogas and Its Opportunities—A Review. Front. Environ. Sci. Eng. 2018, 12, 14. [Google Scholar] [CrossRef]
- Borja, R. 2.55—Biogas Production. In Comprehensive Biotechnology, 2nd ed.; Moo-Young, M., Ed.; Academic Press: Burlington, ON, Canada, 2011; pp. 785–798. ISBN 978-0-08-088504-9. [Google Scholar]
- Sawyerr, N.; Trois, C.; Workneh, T.; Okudoh, V. An Overview of Biogas Production: Fundamentals, Applications and Future Research. Int. J. Energy Econ. Policy 2019, 9, 105–116. [Google Scholar]
- Weiland, P. Biogas Production: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef]
- Al-Addous, M.; Alnaief, M.; Class, C.; Nsair, A.; Kuchta, K.; Alkasrawi, M. Technical possibilities of biogas production from Olive and Date Waste in Jordan. BioResources 2017, 12, 9383–9395. [Google Scholar] [CrossRef]
- Dareioti, M.A.; Kornaros, M. Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: Effect of hydraulic retention time. Bioresour. Technol. 2015, 175, 553–562. [Google Scholar] [CrossRef]
- Schmidt, T.; Ziganshin, A.M.; Nikolausz, M.; Scholwin, F.; Nelles, M.; Kleinsteuber, S.; Pröter, J. Effects of the reduction of the hydraulic retention time to 1.5 days at constant organic loading in CSTR, ASBR, and fixed-bed reactors—Performance and methanogenic community composition. Biomass Bioenergy 2014, 69, 241–248. [Google Scholar] [CrossRef]
- Guide to Biogas—From Production to Use. Pdf—Energypedia. Available online: https://energypedia.info/wiki/File:Guide_to_Biogas-_From_Production_to_Use.pdf (accessed on 24 January 2022).
- Morken, J.; Gjetmundsen, M.; Fjørtoft, K. Determination of Kinetic Constants from the Co-Digestion of Dairy Cow Slurry and Municipal Food Waste at Increasing Organic Loading Rates. Renew. Energy 2017, 117, 46–51. [Google Scholar] [CrossRef]
- Rusanowska, P.; Zieliński, M.; Dudek, M.; Dębowski, M. Mechanical Pretreatment of Lignocellulosic Biomass for Methane Fermentation in Innovative Reactor with Cage Mixing System. J. Ecol. Eng. 2018, 19, 219–224. [Google Scholar] [CrossRef]
- Tišma, M.; Planinić, M.; Bucić-Kojić, A.; Panjičko, M.; Zupančič, G.D.; Zelić, B. Corn Silage Fungal-Based Solid-State Pretreatment for Enhanced Biogas Production in Anaerobic Co-Digestion with Cow Manure. Bioresour. Technol. 2018, 253, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Comino, E.; Rosso, M.; Riggio, V. Development of a Pilot Scale Anaerobic Digester for Biogas Production from Cow Manure and Whey Mix. Bioresour. Technol. 2009, 100, 5072–5078. [Google Scholar] [CrossRef] [PubMed]
- Herwintono; Winaya, A.; Khotimah, K.; Hidayati, A. Improvement of Biogas Quality Product from Dairy Cow Manure Using NaOH and Ca(OH)2 Absorbents on Horizontal Tube Filtration System of Mobile Anaerobic Digester. Energy Rep. 2020, 6, 319–324. [Google Scholar] [CrossRef]
- Cavinato, C.; Fatone, F.; Bolzonella, D.; Pavan, P. Thermophilic Anaerobic Co-Digestion of Cattle Manure with Agro-Wastes and Energy Crops: Comparison of Pilot and Full Scale Experiences. Bioresour. Technol. 2009, 101, 545–550. [Google Scholar] [CrossRef]
- Kaparaju, P.; Luostarinen, S.; Kalmari, E.; Kalmari, J.; Rintala, J. Co-Digestion of Energy Crops and Industrial Confectionery by-Products with Cow Manure: Batch-Scale and Farm-Scale Evaluation. Water Sci. Technol. 2002, 45, 275–280. [Google Scholar] [CrossRef]
- Ormaechea, P.; Castrillón, L.; Suárez-Peña, B.; Megido, L.; Fernández-Nava, Y.; Negral, L.; Marañón, E.; Rodríguez-Iglesias, J. Enhancement of Biogas Production from Cattle Manure Pretreated and/or Co-Digested at Pilot-Plant Scale. Characterization by SEM. Renew. Energy 2018, 126, 897–904. [Google Scholar] [CrossRef]
- Ferrer, I.; Gamiz, M.; Almeida, M.; Ruiz, A. Pilot Project of Biogas Production from Pig Manure and Urine Mixture at Ambient Temperature in Ventanilla (Lima, Peru). Waste Manag. 2009, 29, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Asam, Z.-Z.; Poulsen, T.G.; Nizami, A.-S.; Rafique, R.; Kiely, G.; Murphy, J.D. How Can We Improve Biomethane Production per Unit of Feedstock in Biogas Plants? Appl. Energy 2011, 88, 2013–2018. [Google Scholar] [CrossRef]
- De Vries, J.W.; Corré, W.J.; Dooren, H.J.C. Environmental Assessment of Untreated Manure Use, Manure Digestion and Co-Digestion with Silage Maize; Wageningen UR Livestock Research: Wageningen, The Netherlands, 2010; ISSN 1570–8616. [Google Scholar]
- Zhang, Y.; Jiang, Y.; Wang, S.; Wang, Z.; Liu, Y.; Hu, Z.; Zhan, X. Environmental Sustainability Assessment of Pig Manure Mono- and Co-Digestion and Dynamic Land Application of the Digestate. Renew. Sustain. Energy Rev. 2020, 137, 110476. [Google Scholar] [CrossRef]
- Xie, S.; Lawlor, P.G.; Frost, P.; Dennehy, C.D.; Hu, Z.; Zhan, X. A Pilot Scale Study on Synergistic Effects of Co-Digestion of Pig Manure and Grass Silage. Int. Biodeterior. Biodegrad. 2017, 123, 244–250. [Google Scholar] [CrossRef]
- Kapłan, M.; Klimek, K.; Syrotyuk, S.; Konieczny, R.; Jura, B.; Smoliński, A.; Szymenderski, J.; Budnik, K.; Anders, D.; Dybek, B.; et al. Raw Biogas Desulphurization Using the Adsorption-Absorption Technique for a Pilot Production of Agricultural Biogas from Pig Slurry in Poland. Energies 2021, 14, 5929. [Google Scholar] [CrossRef]
- Wałowski, G. Development of Biogas and Biorafinery Systems in Polish Rural Communities. J. Water Land Dev. 2021, 49, 156–168. [Google Scholar] [CrossRef]
- Liberti, F.; Pistolesi, V.; Mouftahi, M.; Hidouri, N.; Bartocci, P.; Massoli, S.; Zampilli, M.; Fantozzi, F. An Incubation System to Enhance Biogas and Methane Production: A Case Study of an Existing Biogas Plant in Umbria, Italy. Processes 2019, 7, 925. [Google Scholar] [CrossRef] [Green Version]
- Nsair, A.; Önen Cinar, S.; Abu Qdais, H.; Kuchta, K. Optimizing the Performance of a Large Scale Biogas Plant by Controlling Stirring Process: A Case Study. Energy Convers. Manag. 2019, 198, 111931. [Google Scholar] [CrossRef]
- Mönch-Tegeder, M.; Lemmer, A.; Oechsner, H. Enhancement of Methane Production with Horse Manure Supplement and Pretreatment in a Full-Scale Biogas Process. Energy 2014, 73, 523–530. [Google Scholar] [CrossRef]
- Piekutin, J.; Puchlik, M.; Haczykowski, M.; Dyczewska, K. The Efficiency of the Biogas Plant Operation Depending on the Substrate Used. Energies 2021, 14, 3157. [Google Scholar] [CrossRef]
- Stan, C.; Collaguazo, G.; Streche, C.; Apostol, T.; Cocarta, D.M. Pilot-Scale Anaerobic Co-Digestion of the OFMSW: Improving Biogas Production and Startup. Sustainability 2018, 10, 1939. [Google Scholar] [CrossRef] [Green Version]
- Podkówka, W. Kukurydza Jako Substrat Do Produkcji Biogazu. Kukurydza 2006, 12, 26–29. [Google Scholar]
- Thorin, E.; Lindmark, J.; Nordlander, E.; Odlare, M.; Dahlquist, E.; Kastensson, J.; Leksell, N.; Pettersson, C.-M. Performance Optimization of the Växtkraft Biogas Production Plant. Appl. Energy 2012, 97, 503–508. [Google Scholar] [CrossRef] [Green Version]
- Lindmark, J.; Leksell, N.; Schnürer, A.; Thorin, E. Effects of Mechanical Pre-Treatment on the Biogas Yield from Ley Crop Silage. Appl. Energy 2012, 97, 498–502. [Google Scholar] [CrossRef]
- Nges, I.A.; Björn, A.; Björnssona, L. Stable Operation during Pilot-Scale Anaerobic Digestion of Nutrient-Supplemented Maize/Sugar Beet Silage. Bioresour. Technol. 2012, 118, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Novakovic, J.; Kontogianni, N.; Barampouti, E.M.; Mai, S.; Moustakas, K.; Malamis, D.; Loizidou, M. Towards Upscaling the Valorization of Wheat Straw Residues: Alkaline Pretreatment Using Sodium Hydroxide, Enzymatic Hydrolysis and Biogas Production. Environ. Sci. Pollut. Res. 2020, 28, 24486–24498. [Google Scholar] [CrossRef]
- Ciccoli, R.; Sperandei, M.; Petrazzuolo, F.; Broglia, M.; Chiarini, L.; Correnti, A.; Farneti, A.; Pignatelli, V.; Tabacchioni, S. Anaerobic Digestion of the above Ground Biomass of Jerusalem Artichoke in a Pilot Plant: Impact of the Preservation Method on the Biogas Yield and Microbial Community. Biomass Bioenergy 2017, 108, 190–197. [Google Scholar] [CrossRef]
- Abdurahman, N.H.; Azhari, N.H.; Rosli, Y.M. Ultrasonic Membrane Anaerobic System (UMAS) for Palm Oil Mill Effluent (POME) Treatment. Int. Perspect. Water Qual. Manag. Pollut. Control 2013, 1, 36–40. [Google Scholar]
- Nazmus, S.; Mamunur, R. Biogas Production Optimization from POME by Using Anaerobic Digestion Process. J. Appl. Sci. Process Eng. 2022, 6, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Lozowicka, B.; Kaczynski, P.; Szabunko, J.; Ignatowicz, K.; Warentowicz, D.; Lozowick, J. New rapid analysis of two classes of pesticides in food wastewater by quechers-liquid chromatography/mass spectrometry. J. Ecol. Eng. 2016, 17, 97–105. [Google Scholar] [CrossRef]
- Park, Y.G. Study for the Bio-CNG Recovery of Methane Gas in the Anaerobic Co-Digestion Using Malaysian POME (Palm Oil Mill Effluent). Biotechnol. Bioprocess Eng. 2020, 26, 435–446. [Google Scholar] [CrossRef]
- Kong, Z.; Wu, J.; Rong, C.; Wang, T.; Li, L.; Luo, Z.; Ji, J.; Hanaoka, T.; Sakemi, S.; Ito, M.; et al. Large Pilot-Scale Submerged Anaerobic Membrane Bioreactor for the Treatment of Municipal Wastewater and Biogas Production at 25 °C. Bioresour. Technol. 2020, 319, 124123. [Google Scholar] [CrossRef]
- Chen, C.; Sun, M.; Liu, Z.; Zhang, J.; Xiao, K.; Zhang, X.; Song, G.; Chang, J.; Liu, G.; Wang, H.; et al. Robustness of Granular Activated Carbon-Synergized Anaerobic Membrane Bioreactor for Pilot-Scale Application over a Wide Seasonal Temperature Change. Water Res. 2020, 189, 116552. [Google Scholar] [CrossRef]
- Zahedi, S.; Ferrari, F.; Blandin, G.; Balcazar, J.L.; Pijuan, M. Enhancing Biogas Production from the Anaerobic Treatment of Municipal Wastewater by Forward Osmosis Pretreatment. J. Clean. Prod. 2021, 315, 128140. [Google Scholar] [CrossRef]
- Baba, Y.; Tada, C.; Watanabe, R.; Fukuda, Y.; Chida, N.; Nakai, Y. Anaerobic Digestion of Crude Glycerol from Biodiesel Manufacturing Using a Large-Scale Pilot Plant: Methane Production and Application of Digested Sludge as Fertilizer. Bioresour. Technol. 2013, 140, 342–348. [Google Scholar] [CrossRef]
- Ebunilo, P.O.; Aliu, S.A.; Orhorhoro, E.K. Performance Study of a Biogas Pilot Plant Using Domestic Wastes from Benin Metropolis. Int. J. Therm. Environ. Eng. 2015, 10, 135–141. [Google Scholar]
- Liebetrau, J.; Gromke, J.D.; Denysenko, V. IEA Bionergy Task 37—Germany Country Report 2020. Germany. Available online: http://task37.ieabioenergy.com/country-reports.html (accessed on 12 December 2021).
- Théobald, O. IEA Bionergy Task 37—France Country Report 2019. Available online: http://task37.ieabioenergy.com/ (accessed on 12 December 2021).
- Lukehurst, C.; Banks, C. IEA Bionergy Task 37—United Kingdom Country Report 2019. Available online: http://task37.ieabioenergy.com/ (accessed on 12 December 2021).
- Baier, U. IEA Bionergy Task 37—Switzerland Country Report 2019. Switzerland. pp. 55–58. Available online: http://task37.ieabioenergy.com/ (accessed on 12 December 2021).
- Bochmann, G. IEA Bionergy Task 37—Austria Country Report 2019. Austria. Available online: http://task37.ieabioenergy.com/country-reports.html (accessed on 12 December 2021).
- Ammenberg, J.; Gustafsson, M.; Eklund, M. IEA Bionergy Task 37—Sweden Country Report 2019. Available online: http://task37.ieabioenergy.com/ (accessed on 12 December 2021).
- Dumont, M.; Siemers, W. IEA Bionergy Task 37—Netherlands Country Report 2019. The Netherlands. Available online: http://task37.ieabioenergy.com/country-reports.html (accessed on 12 December 2021).
- Al Saedi, T.; Lorenzen, J. IEA Bioenergy Task 37—Denmark Country Report 2019. Denmark. Available online: http://task37.ieabioenergy.com/country-reports.html (accessed on 12 December 2021).
- Oil and Gas Institute—National Research Institute Poland the Agricultural Biogas Plants in Poland—2014. Poland. Available online: https://www.globalmethane.org/documents/Poland-Ag-Biogas-Plants-April-2014.pdf (accessed on 27 November 2021).
- Lying, K.-A. IEA Bionergy Task 37—Norway Country Report 2020. Norway. Available online: http://task37.ieabioenergy.com/country-reports.html (accessed on 12 December 2021).
- Gostomczyk, W. State and Prospects for the Development of the Biogas Market in the EU and Poland—Economic Approach. Sci. J. Wars. Univ. Life Sci. Probl. World Agric. 2017, 17, 48–64. [Google Scholar] [CrossRef]
- Available online: https://kib.pl/wp-content/uploads/2020/07/Biala-Ksiega-Biometanu.pdf (accessed on 14 November 2022).
- United Nations Development Programme. Available online: https://www.undp.org/sustainable-development-goals (accessed on 23 January 2022).
Country | Feedstock | Year | Use of Biogas | Quantity of Energy GWh∙Year−1 |
---|---|---|---|---|
Austria | Manure and organic wastes | 2019 | Electricity, vehicle fuel and flare | 564.52 |
Denmark | Sewage sludge, biowaste, agriculture, industrial and landfills | 2019 | Heat, transport, process, grid injection and electricity | 1763 |
France | Wastewater treatment plant, biowaste, agricultural, industrial and landfill | 2017 | Electricity and vehicle fuel | 3933 |
Germany | Agriculture, biowaste, sewage sludge and landfill | 2020 | Electricity, heat, vehicle fuel and flare | 52,158 |
The Netherlands | Landfill, sewage sludge, codigestion and others (mainly municipal waste) | 2019 | Electricity and heat | 3720.83 (only co-digestive ones, 95) |
Norway | Mostly sewage sludge and food waste | 2020 | Heat, electricity, flare and vehicle fuel | 922 |
Poland | Agriculture, manure and others | 2019 | Electricity and heat | 477 306,396 mln m3 in 2019 |
Sweden | Sewage sludge, biowaste, agriculture, industrial and landfills | 2018 | Electricity, heat, automotive fuel, industrial use, other uses and flare | 2044 |
Switzerland | Agriculture, biowaste, industrial and wastewater treatment plants (WWTPs) | 2018 | Electricity, heat and biomethane | 1409 |
United Kingdom | Agriculture, biowaste, industry, WTPP and landfills | 2018 | Electricity, heat and biomethane | 1511 MWe-equivalent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignatowicz, K.; Filipczak, G.; Dybek, B.; Wałowski, G. Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples. Energies 2023, 16, 798. https://doi.org/10.3390/en16020798
Ignatowicz K, Filipczak G, Dybek B, Wałowski G. Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples. Energies. 2023; 16(2):798. https://doi.org/10.3390/en16020798
Chicago/Turabian StyleIgnatowicz, Katarzyna, Gabriel Filipczak, Barbara Dybek, and Grzegorz Wałowski. 2023. "Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples" Energies 16, no. 2: 798. https://doi.org/10.3390/en16020798
APA StyleIgnatowicz, K., Filipczak, G., Dybek, B., & Wałowski, G. (2023). Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples. Energies, 16(2), 798. https://doi.org/10.3390/en16020798