Overview of Numerical Simulation of Solid-State Anaerobic Digestion Considering Hydrodynamic Behaviors, Phenomena of Transfer, Biochemical Kinetics and Statistical Approaches
Abstract
:1. Introduction
1.1. Anaerobic Digestion for Biogas Production
1.2. Solid-State Anaerobic Digestion
1.3. Scientific Hurdles of SSAD
- -
- the solid feedstock leads to inefficient mixing and thus makes the medium heterogeneous in SSAD reactors;
- -
- the pretreatment technology of lignocellulosic waste is largely studies by the scientific community but much less explored on real scale;
- -
- the pumping of the solid inputs into SSAD reactors is not as easy as LSAD due to the special rheological properties of solid substrates (non-Newtonian media);
- -
- the mass transfer between microorganisms and solid substrates is limited by the weak liquid/solid contact (i.e., inoculum/substrate);
- -
- the management of local inhibitions requires hydrodynamic information in reactors,
- -
- few robust monitoring tools are available for real-time monitoring of physico-chemical and operational parameters for accurate control;
- -
- there is a lack of dynamic modeling tools considering different transfer phenomena and the biodegradation of OM more adapted to SSAD reactors.
1.4. Modeling of SSAD Processes
1.5. Objectives of the Paper
2. Theoretical Approaches Considering Different Phenomena
2.1. Different Phenomena Involved in SSAD
2.1.1. Biokinetics of Anaerobic Digestion
2.1.2. Phenomena of Transfer (Mass and Heat)
- Physico-chemical balances
- -
- -
- It also influences poorly soluble compounds (like CH4 and H2) can reach a concentration of 80 times that of thermodynamic equilibrium [26].
- Mass balances and hydrodynamics behaviors
2.2. Theoretical Models
2.2.1. Perfect Mixed Systems
- Biochemical dynamic modeling (ADM1 and its derivatives)
Authors | Substrates | Reactor Mode | Hydrolysis Kinetics | Major Biokinetics | Special Consideration | Mass Transfer |
---|---|---|---|---|---|---|
Kalyuzhnyi et al. (2000) [50] | / | N.A. | First-order kinetic | Equilibrium-based kinetics | pH, gas/liquid equilibrium | Diffusion |
Martin (2000) [51] | / | N.A. | Expansion of reaction shells | Rate proportional to volume of shells | / | / |
Martin et al. (2003) [52] | / | N.A. | Taking place in acetogenic zone | Reaction front mechanism | 7 mobile zones | Diffusion |
Bollon et al. (2011) [44] | OFMSW gAcetate | Batch | First-order kinetics | Modified ADM1 | gas/liquid equilibrium of CH4, CO2 and H2 | / |
Namuli et al. (2011) [53] | Dairy farm waste | N.A. | Stoichiometric model | ADM1 | Density, CHNSO, VS, ash, N, P and K contents | / |
Fdez-Güelfo et al. (2011, 2012) [54,55] | OFMSW | Semi-continuous | / | Modified Monod-type equation | Non-biodegradable substrate concentration | / |
Abbassi-Guendouz et al. (2012) [45] | Cardboard | Batch | First-order kinetics | Modified ADM1 | Kinetic parameters adjusted by TS | / |
Xu et al. (2014) [56] | Corn stover | Batch | First-order kinetic with inhibition | Modified Gompertz | Adjustment of Gompertz parameter | Diffusion |
Liotta et al. (2015) [47] | Food waste gRice straw | Batch | First-order kinetic | Modified ADM1 | Kinetic parameters adjusted by TS | / |
Poggio et al. (2016) [57] | Green waste gFood waste | Batch and semi-continuous | First-order kinetic | ADM1 | CHNSO contents, Nitrogen, COD | / |
Attar and Haugen (2019) [49] | Sewage sludge | / | / | Modified AM2 | Liquid level change, temperature | / |
Lafratta et al. (2021) [58] | Sewage sludge gDog food | Continuous | First-order kinetic | First-order kinetics | First-order kinetics for all biochemical reactions | / |
- Stoichiometric model combined with ADM1
- Two-particles model
- Reaction front model
- Simplified Monod model
- Mass diffusion model combined with empirical equation
- First-order dynamic model
2.2.2. Heterogeneous Systems
- Distributed model
- Spatio-temporal model
- Mobile-Immobile model
- Gradostat models
- Plug flow simulation
3. Statistical Approaches
3.1. Empirical Non-Linear Regression Models
3.1.1. Logistical Model
- -
- Only biomass concentration induces methane production.
- -
- Biomass growth is limited by factors such as hydrolysis rate and substrate availability.
- -
- Inhibition and death of microorganisms are not taken into account.
- -
- The proportion of liquid adsorbed on the solid substrate and present in the capillaries is not accessible to microorganisms and solutes.
3.1.2. General Kinetic Model
3.1.3. Non-Linear Regression Models
3.2. Advanced Statistical Models
4. Discussion and Perspectives
4.1. Limitations of Current Modeling Methodology
4.1.1. Modeling Approaches
- Theoretical models
- Empirical and advanced statistical models
4.1.2. Mathematical Model Implementation
4.1.3. Calibration, Validation and Outcomes of Models
4.1.4. Difficulty in Multiscale Modeling
4.2. Lack in Knowledge of SSAD Reactors
4.2.1. Evolution of Media
4.2.2. Biomass and Processes Characterization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AD | Anaerobic digestion |
ADM1 | Anaerobic digestion model No. 1 |
ANN | Artificial neural network |
BMP | Biochemical methane potential |
BOD | Biological oxygen demand |
COD | Chemical oxygen demand |
DM | Dry matter |
EML | Extreme machine leaning |
EPS | Extracellular polymeric substances |
GHG | Greenhouse gas |
LSAD | Liquid-state anaerobic digestion |
MIM | Mobile-Immobile water model |
ODE | Ordinary differential equation |
OFMSW | Organic fraction of municipal solid waste |
OM | Organic matter |
PDE | Partial differential equation |
RF | Random forest |
TAN | Total ammonia |
TS | Total solids |
TN | Total nitrogen |
SRT | Sludge retention time |
SSAD | Solid-state anaerobic digestion |
UASB | Upflow anaerobic sludge blanket |
VFA | Volatile fatty acids |
VS | Volatile solids |
WWTP | Wastewater treatment plant |
Appendix A
Appendix A.1. Detailed Biokinetics of Anaerobic Digestion and the Modeling
Appendix A.2. First Order Kinetics
Kinetic Model | Mathematical Expression | References |
---|---|---|
First order model | Dennehy et al. (2016) [128] | |
Gompertz model | Velázquez-Marti et al. (2019) [131] | |
Dual pooled model | Dennehy et al. (2016) [128] |
Appendix A.3. Biokinetics Modeling without Inhibition
Appendix A.4. Biokinetics Modeling with Inhibition
References
- Pavičić, J.; Novak Mavar, K.; Brkić, V.; Simon, K. Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe. Energies 2022, 15, 2940. [Google Scholar] [CrossRef]
- Zamri, M.F.M.A.; Hasmady, S.; Akhiar, A.; Ideris, F.; Shamsuddin, A.H.; Mofijur, M.; Fattah, I.M.R.; Mahlia, T.M.I. A Comprehensive Review on Anaerobic Digestion of Organic Fraction of Municipal Solid Waste. Renew. Sustain. Energy Rev. 2021, 137, 110637. [Google Scholar] [CrossRef]
- André, L.; Pauss, A.; Ribeiro, T. Solid Anaerobic Digestion: State-of-Art, Scientific and Technological Hurdles. Bioresour. Technol. 2018, 247, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, O.P.; Visvanathan, C. Bio-Energy Recovery from High-Solid Organic Substrates by Dry Anaerobic Bio-Conversion Processes: A Review. Rev. Environ. Sci. Biotechnol. 2013, 12, 257–284. [Google Scholar] [CrossRef]
- Jha, A.K.; Li, J.; Nies, L.; Zhang, L. Research Advances in Dry Anaerobic Digestion Process of Solid Organic Wastes. Afr. J. Biotechnol. 2011, 10, 14242–14253. [Google Scholar] [CrossRef]
- Ajayi-Banji, A.; Rahman, S. A Review of Process Parameters Influence in Solid-State Anaerobic Digestion: Focus on Performance Stability Thresholds. Renew. Sustain. Energy Rev. 2022, 167, 112756. [Google Scholar] [CrossRef]
- Fagbohungbe, M.O.; Dodd, I.C.; Herbert, B.M.J.; Li, H.; Ricketts, L.; Semple, K.T. High Solid Anaerobic Digestion: Operational Challenges and Possibilities. Environ. Technol. Innov. 2015, 4, 268–284. [Google Scholar] [CrossRef]
- Kothari, R.; Pandey, A.K.; Kumar, S.; Tyagi, V.V.; Tyagi, S.K. Different Aspects of Dry Anaerobic Digestion for Bio-Energy: An Overview. Renew. Sustain. Energy Rev. 2014, 39, 174–195. [Google Scholar] [CrossRef]
- Xu, F.; Li, Y.; Wang, Z.-W. Mathematical Modeling of Solid-State Anaerobic Digestion. Prog. Energy Combust. Sci. 2015, 51, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Franca, L.S.; Bassin, J.P. The Role of Dry Anaerobic Digestion in the Treatment of the Organic Fraction of Municipal Solid Waste: A Systematic Review. Biomass Bioenergy 2020, 143, 105866. [Google Scholar] [CrossRef]
- Hernández-Shek, M.A.; André, L.; Peultier, P.; Pauss, A.; Ribeiro, T. Immersion Effect on the Anaerobic Degradation and the Rheological Properties of Straw-Cattle Manure (SCM) at 440 L Batch Pilot Scale Reactor. Waste Biomass Valor. 2021, 12, 6741–6758. [Google Scholar] [CrossRef]
- Langer, S.; Schropp, D.; Bengelsdorf, F.R.; Othman, M.; Kazda, M. Dynamics of Biofilm Formation during Anaerobic Digestion of Organic Waste. Anaerobe 2014, 29, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Rocamora, I.; Wagland, S.T.; Villa, R.; Simpson, E.W.; Fernández, O.; Bajón-Fernández, Y. Dry Anaerobic Digestion of Organic Waste: A Review of Operational Parameters and Their Impact on Process Performance. Bioresour. Technol. 2020, 299, 122681. [Google Scholar] [CrossRef] [PubMed]
- Meenakshisundaram, S.; Fayeulle, A.; Léonard, E.; Ceballos, C.; Liu, X.; Pauss, A. Combined Biological and Chemical/Physicochemical Pretreatment Methods of Lignocellulosic Biomass for Bioethanol and Biomethane Energy Production—A Review. Appl. Microbiol. 2022, 2, 716–734. [Google Scholar] [CrossRef]
- Wade, M.J. Not Just Numbers: Mathematical Modelling and Its Contribution to Anaerobic Digestion Processes. Processes 2020, 8, 888. [Google Scholar] [CrossRef]
- Emebu, S.; Pecha, J.; Janáčová, D. Review on Anaerobic Digestion Models: Model Classification & Elaboration of Process Phenomena. Renew. Sustain. Energy Rev. 2022, 160, 112288. [Google Scholar] [CrossRef]
- Goel, R.; Mino, T.; Satoh, H.; Matsuo, T. Comparison of Hydrolytic Enzyme Systems in Pure Culture and Activated Sludge under Different Electron Acceptor Conditions. Water Sci. Technol. 1998, 37, 335–343. [Google Scholar] [CrossRef]
- Sanders, W.T.M.; Geerink, M.; Zeeman, G.; Lettinga, G. Anaerobic Hydrolysis Kinetics of Particulate Substrates. Water Sci. Technol. 2000, 41, 17–24. [Google Scholar] [CrossRef]
- Zhang, B.; He, P.-J.; Lü, F.; Shao, L.-M.; Wang, P. Extracellular Enzyme Activities during Regulated Hydrolysis of High-Solid Organic Wastes. Water Res. 2007, 41, 4468–4478. [Google Scholar] [CrossRef]
- Batstone, D.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.; Pavlostathis, S.; Rozzi, A.; Sanders, W.; Siegrist, H.; Vavilin, V. Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef]
- Myint, M.; Nirmalakhandan, N.; Speece, R.E. Anaerobic Fermentation of Cattle Manure: Modeling of Hydrolysis and Acidogenesis. Water Res. 2007, 41, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Amani, T.; Nosrati, M.; Sreekrishnan, T.R. Anaerobic Digestion from the Viewpoint of Microbiological, Chemical, and Operational Aspects—A Review. Environ. Rev. 2010, 18, 255–278. [Google Scholar] [CrossRef]
- Fyferling, M. Transfert D’oxygène en Condition de Culture Microbienne Intensive. Ph.D. Thesis, INSA, Toulouse, France, 2007. [Google Scholar]
- Smith, S.A.; Stöckle, C.O. Self-Consistent Liquid-to-Gas Mass Transfer Calculations. Bioresour. Technol. 2010, 101, 9361–9365. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; André, L.; Mercier-Huat, M.; Grosmaître, J.-M.; Pauss, A.; Ribeiro, T. Accurate Estimation of Bicarbonate and Acetic Acid Concentrations with Wider Ranges in Anaerobic Media Using Classical FOS/TAC Titration Method. Appl. Sci. 2021, 11, 11843. [Google Scholar] [CrossRef]
- Pauss, A.; Andre, G.; Perrier, M.; Guiot, S.R. Liquid-to-Gas Mass Transfer in Anaerobic Processes: Inevitable Transfer Limitations of Methane and Hydrogen in the Biomethanation Process. Appl. Environ. Microbiol. 1990, 56, 1636–1644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vavilin, V.A.; Vasiliev, V.B.; Rytov, S.V. Modelling of Gas Pressure Effects on Anaerobic Digestion. Bioresour. Technol. 1995, 52, 25–32. [Google Scholar] [CrossRef]
- Guo, X.; Luo, L.; Ma, Y.; Zhang, S. Sorption of Polycyclic Aromatic Hydrocarbons on Particulate Organic Matters. J. Hazard. Mater. 2010, 173, 130–136. [Google Scholar] [CrossRef]
- Shi, X.; Ji, L.; Zhu, D. Investigating Roles of Organic and Inorganic Soil Components in Sorption of Polar and Nonpolar Aromatic Compounds. Environ. Pollut. 2010, 158, 319–324. [Google Scholar] [CrossRef]
- Albers, C.N.; Banta, G.T.; Hansen, P.E.; Jacobsen, O.S. The Influence of Organic Matter on Sorption and Fate of Glyphosate in Soil—Comparing Different Soils and Humic Substances. Environ. Pollut. 2009, 157, 2865–2870. [Google Scholar] [CrossRef]
- Davis, T.A.; Volesky, B.; Mucci, A. A Review of the Biochemistry of Heavy Metal Biosorption by Brown Algae. Water Res. 2003, 37, 4311–4330. [Google Scholar] [CrossRef]
- Bollon, J. Etude Des Mécanismes Physiques et de Leur Influence Sur La Cinétique de Méthanisation En Voie Sèche: Essais Expérimentaux et Modélisation. Ph.D. Thesis, INSA, Lyon, France, 2012. [Google Scholar]
- Shen, D.-S.; Liu, X.-W.; He, Y.-H. Studies on Adsorption, Desorption and Biodegradation of Pentachlorophenol by the Anaerobic Granular Sludge in an Upflow Anaerobic Sludge Blanket (UASB) Reactor. J. Hazard. Mater. 2005, 125, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Hawari, A.H.; Mulligan, C.N. Biosorption of Lead(II), Cadmium(II), Copper(II) and Nickel(II) by Anaerobic Granular Biomass. Bioresour. Technol. 2006, 97, 692–700. [Google Scholar] [CrossRef] [PubMed]
- Zayed, G.; Winter, J. Inhibition of Methane Production from Whey by Heavy Metals—Protective Effect of Sulfide. Appl. Microbiol. Biotechnol. 2000, 53, 726–731. [Google Scholar] [CrossRef]
- Murto, M.; Björnsson, L.; Mattiasson, B. Impact of Food Industrial Waste on Anaerobic Co-Digestion of Sewage Sludge and Pig Manure. J. Environ. Manag. 2004, 70, 101–107. [Google Scholar] [CrossRef] [PubMed]
- van Rensburg, P.; Musvoto, E.V.; Wentzel, M.C.; Ekama, G.A. Modelling Multiple Mineral Precipitation in Anaerobic Digester Liquor. Water Res. 2003, 37, 3087–3097. [Google Scholar] [CrossRef]
- van Langerak, E.P.A.; Gonzalez-Gil, G.; van Aelst, A.; van Lier, J.B.; Hamelers, H.V.M.; Lettinga, G. Effects of High Calcium Concentrations on the Development of Methanogenic Sludge in Upflow Anaerobic Sludge Bed (UASB) Reactors. Water Res. 1998, 32, 1255–1263. [Google Scholar] [CrossRef]
- Batstone, D.J.; Keller, J.; Steyer, J.P. A Review of ADM1 Extensions, Applications, and Analysis: 2002–2005. Water Sci. Technol. 2006, 54, 1–10. [Google Scholar] [CrossRef]
- Batstone, D.J.; Puyol, D.; Flores-Alsina, X.; Rodríguez, J. Mathematical Modelling of Anaerobic Digestion Processes: Applications and Future Needs. Rev. Environ. Sci. Biotechnol. 2015, 14, 595–613. [Google Scholar] [CrossRef]
- Weinrich, S.; Nelles, M. Systematic Simplification of the Anaerobic Digestion Model No. 1 (ADM1)—Model Development and Stoichiometric Analysis. Bioresour. Technol. 2021, 333, 125124. [Google Scholar] [CrossRef] [PubMed]
- Arzate, J.A.; Kirstein, M.; Ertem, F.C.; Kielhorn, E.; Ramirez Malule, H.; Neubauer, P.; Cruz-Bournazou, M.N.; Junne, S. Anaerobic Digestion Model (AM2) for the Description of Biogas Processes at Dynamic Feedstock Loading Rates. Chem. Ing. Tech. 2017, 89, 686–695. [Google Scholar] [CrossRef]
- Sari, T. Best Operating Conditions for Biogas Production in Some Simple Anaerobic Digestion Models. Processes 2022, 10, 258. [Google Scholar] [CrossRef]
- Bollon, J.; Le-hyaric, R.; Benbelkacem, H.; Buffiere, P. Development of a Kinetic Model for Anaerobic Dry Digestion Processes: Focus on Acetate Degradation and Moisture Content. Biochem. Eng. J. 2011, 56, 212–218. [Google Scholar] [CrossRef]
- Abbassi-Guendouz, A.; Brockmann, D.; Trably, E.; Dumas, C.; Delgenès, J.-P.; Steyer, J.-P.; Escudié, R. Total Solids Content Drives High Solid Anaerobic Digestion via Mass Transfer Limitation. Bioresour. Technol. 2012, 111, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Vavilin, V.A.; Mazéas, L.; Lemunier, M.; Duquennoi, C.; He, P.-J.; Bouchez, T. Anaerobic Biodegradation of Cellulosic Material: Batch Experiments and Modelling Based on Isotopic Data and Focusing on Aceticlastic and Non-Aceticlastic Methanogenesis. Waste Manag. 2009, 29, 1828–1837. [Google Scholar] [CrossRef]
- Liotta, F.; Chatellier, P.; Esposito, G.; Fabbricino, M.; Frunzo, L.; van Hullebusch, E.D.; Lens, P.N.; Pirozzi, F. Modified Anaerobic Digestion Model No.1 for Dry and Semi-Dry Anaerobic Digestion of Solid Organic Waste. Environ. Technol. 2015, 36, 870–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, G.; Frunzo, L.; Panico, A.; d’Antonio, G. Mathematical Modelling of Disintegration-Limited Co-Digestion of OFMSW and Sewage Sludge. Water Sci. Technol. 2008, 58, 1513–1519. [Google Scholar] [CrossRef] [PubMed]
- Attar, S.; Haugen, F. Dynamic Model Adaptation to an Anaerobic Digestion Reactor of a Water Resource Recovery Facility. MIC J. 2019, 40, 143–160. [Google Scholar] [CrossRef] [Green Version]
- Kalyuzhnyi, S.; Veeken, A.; Hamelers, B. Two-Particle Model of Anaerobic Solid State Fermentation. Water Sci. Technol. 2000, 41, 43–50. [Google Scholar] [CrossRef]
- Martin, D.J. A Novel Mathematical Model of Solid-State Digestion. Biotechnol. Lett. 2000, 22, 91–94. [Google Scholar] [CrossRef]
- Martin, D.J.; Potts, L.G.A.; Heslop, V.A. Reaction Mechanisms in Solid-State Anaerobic Digestion: 1. The Reaction Front Hypothesis. Process Saf. Environ. Prot. 2003, 81, 171–179. [Google Scholar] [CrossRef]
- Namuli, R.; Laflamme, C.; Pillay, P. A Computer Program for Modeling the Conversion of Organic Waste to Energy. Energies 2011, 4, 1973–2001. [Google Scholar] [CrossRef] [Green Version]
- Fdez.-Güelfo, L.A.; Álvarez-Gallego, C.; Sales Márquez, D.; Romero García, L.I. Dry-Thermophilic Anaerobic Digestion of Simulated Organic Fraction of Municipal Solid Waste: Process Modeling. Bioresour. Technol. 2011, 102, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Fdez-Güelfo, L.A.; Álvarez-Gallego, C.; Sales, D.; Romero García, L.I. Dry-Thermophilic Anaerobic Digestion of Organic Fraction of Municipal Solid Waste: Methane Production Modeling. Waste Manag. 2012, 32, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Wang, Z.-W.; Tang, L.; Li, Y. A Mass Diffusion-Based Interpretation of the Effect of Total Solids Content on Solid-State Anaerobic Digestion of Cellulosic Biomass. Bioresour. Technol. 2014, 167, 178–185. [Google Scholar] [CrossRef]
- Poggio, D.; Walker, M.; Nimmo, W.; Ma, L.; Pourkashanian, M. Modelling the Anaerobic Digestion of Solid Organic Waste—Substrate Characterisation Method for ADM1 Using a Combined Biochemical and Kinetic Parameter Estimation Approach. Waste Manag. 2016, 53, 40–54. [Google Scholar] [CrossRef] [Green Version]
- Lafratta, M.; Thorpe, R.B.; Ouki, S.K.; Shana, A.; Germain, E.; Willcocks, M.; Lee, J. Development and Validation of a Dynamic First Order Kinetics Model of a Periodically Operated Well-Mixed Vessel for Anaerobic Digestion. Chem. Eng. J. 2021, 426, 131732. [Google Scholar] [CrossRef]
- Hernández-Shek, M.A.; Mathieux, M.; André, L.; Peultier, P.; Pauss, A.; Ribeiro, T. Quantifying Porosity Changes in Solid Biomass Waste Using a Disruptive Approach of Water Retention Curves (WRC) for Dry Anaerobic Digestion. Bioresour. Technol. Rep. 2020, 12, 100585. [Google Scholar] [CrossRef]
- Hmissi, M.; Shayeb, H. Développement et Validation d’un Modèle Hydrodynamique d’un Réacteur Anaérobie à lit Fixe à Flux Ascendant. Ph.D. Thesis, Ecole Nationale d’Ingénieurs de Tunis, Tunis, Tunisia, 2018. [Google Scholar]
- Vavilin, V.A.; Schelkanov, M.Y.; Lokshina, L.Y.; Rytov, S.V.; Jokela, J.; Salmine, E.; Rintala, J. A Comparative Analysis of a Balance between the Rates of Polymer Hydrolysis and Acetoclastic Methanogenesis during Anaerobic Digestion of Solid Waste. Water Sci. Technol. 2002, 45, 249–254. [Google Scholar] [CrossRef]
- Vavilin, V.A.; Rytov, S.V.; Lokshina, L.Y.; Pavlostathis, S.G.; Barlaz, M.A. Distributed Model of Solid Waste Anaerobic Digestion: Effects of Leachate Recirculation and PH Adjustment. Biotechnol. Bioeng. 2003, 81, 66–73. [Google Scholar] [CrossRef]
- Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.; Angelidaki, I. Anaerobic Digestion of Solid Material: Multidimensional Modeling of Continuous-Flow Reactor with Non-Uniform Influent Concentration Distributions. Biotechnol. Bioeng. 2007, 97, 354–366. [Google Scholar] [CrossRef]
- Eberl, H.J. Simulation of Chemical Reaction Fronts in Anaerobic Digestion of Solid Waste. In International Conference on Computational Science and Its Applications; Springer: Berlin/Heidelberg, Germany, 2003; pp. 503–512. [Google Scholar]
- Eberl, H.J. The Role of Spatio-Temporal Effects in Anaerobic Digestion of Solid Waste. Nonlinear Anal. Theory Methods Appl. 2005, 63, e1497–e1505. [Google Scholar] [CrossRef]
- Coutu, A.; Hernández-Shek, M.A.; Mottelet, S.; Guérin, S.; Rocher, V.; Pauss, A.; Ribeiro, T. A Coupling Model for Solid-State Anaerobic Digestion in Leach-Bed Reactors: Mobile-Immobile Water and Anaerobic Digestion Model. Bioresour. Technol. Rep. 2022, 17, 100961. [Google Scholar] [CrossRef]
- Lovitt, R.W.; Wimpenny, J.W.T.Y. 1981 Physiological Behaviour of Escherichia Coli Grown in Opposing Gradients of Oxidant and Reductant in the Gradostat. Microbiology 2021, 127, 269–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monod, J. Technique, Theory and Applications of Continuous Culture. Ann. Inst. Pasteur 1950, 79, 390–410. [Google Scholar]
- Novick, A.; Szilard, L. Experiments with the Chemostat on Spontaneous Mutations of Bacteria. Proc. Natl. Acad. Sci. USA 1950, 36, 708–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapaport, A. Some Non-Intuitive Properties of Simple Extensions of the Chemostat Model. Ecol. Complex. 2018, 34, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Panaro, D.B.; Mattei, M.R.; Esposito, G.; Steyer, J.P.; Capone, F.; Frunzo, L. A Modelling and Simulation Study of Anaerobic Digestion in Plug-Flow Reactors. Commun. Nonlinear Sci. Numer. Simul. 2022, 105, 106062. [Google Scholar] [CrossRef]
- Pommier, S.; Chenu, D.; Quintard, M.; Lefebvre, X. A Logistic Model for the Prediction of the Influence of Water on the Solid Waste Methanization in Landfills. Biotechnol. Bioeng. 2007, 97, 473–482. [Google Scholar] [CrossRef]
- Fernández, J.; Pérez, M.; Romero, L.I. Kinetics of Mesophilic Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste: Influence of Initial Total Solid Concentration. Bioresour. Technol. 2010, 101, 6322–6328. [Google Scholar] [CrossRef]
- Wang, X.; Yang, G.; Li, F.; Feng, Y.; Ren, G.; Han, X. Evaluation of Two Statistical Methods for Optimizing the Feeding Composition in Anaerobic Co-Digestion: Mixture Design and Central Composite Design. Bioresour. Technol. 2013, 131, 172–178. [Google Scholar] [CrossRef]
- Mu, Y.; Yu, H.-Q.; Wang, G. A Kinetic Approach to Anaerobic Hydrogen-Producing Process. Water Res. 2007, 41, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- Altaş, L. Inhibitory Effect of Heavy Metals on Methane-Producing Anaerobic Granular Sludge. J. Hazard. Mater. 2009, 162, 1551–1556. [Google Scholar] [CrossRef] [PubMed]
- Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; van ’t Riet, K. Modeling of the Bacterial Growth Curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, W.; Xu, X.; Yang, F.; Li, C.; Zhou, M. Performance Enhancement by Rumen Cultures in Anaerobic Co-Digestion of Corn Straw with Pig Manure. Biomass Bioenergy 2018, 115, 120–129. [Google Scholar] [CrossRef]
- Jackowiak, D.; Bassard, D.; Pauss, A.; Ribeiro, T. Optimisation of a Microwave Pretreatment of Wheat Straw for Methane Production. Bioresour. Technol. 2011, 102, 6750–6756. [Google Scholar] [CrossRef]
- Degueurce, A.; Trémier, A.; Peu, P. Dynamic Effect of Leachate Recirculation on Batch Mode Solid State Anaerobic Digestion: Influence of Recirculated Volume, Leachate to Substrate Ratio and Recirculation Periodicity. Bioresour. Technol. 2016, 216, 553–561. [Google Scholar] [CrossRef]
- Kainthola, J.; Kalamdhad, A.S.; Goud, V.V. Optimization of Process Parameters for Accelerated Methane Yield from Anaerobic Co-Digestion of Rice Straw and Food Waste. Renew. Energy 2020, 149, 1352–1359. [Google Scholar] [CrossRef]
- Mortezaei, Y.; Amani, T.; Elyasi, S. High-Rate Anaerobic Digestion of Yogurt Wastewater in a Hybrid EGSB and Fixed-Bed Reactor: Optimizing through Response Surface Methodology. Process Saf. Environ. Prot. 2018, 113, 255–263. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, P.; Kumar, P.; Singh, J. Anaerobic Digestion of Azolla Pinnata Biomass Grown in Integrated Industrial Effluent for Enhanced Biogas Production and COD Reduction: Optimization and Kinetics Studies. Environ. Technol. Innov. 2020, 17, 100627. [Google Scholar] [CrossRef]
- Lee, J.T.E.; Wang, Q.; Lim, E.Y.; Liu, Z.; He, J.; Tong, Y.W. Optimization of Bioaugmentation of the Anaerobic Digestion of Axonopus Compressus Cowgrass for the Production of Biomethane. J. Clean. Prod. 2020, 258, 120932. [Google Scholar] [CrossRef]
- Kainthola, J.; Kalamdhad, A.S.; Goud, V.V. Optimization of Methane Production during Anaerobic Co-Digestion of Rice Straw and Hydrilla Verticillata Using Response Surface Methodology. Fuel 2019, 235, 92–99. [Google Scholar] [CrossRef]
- Jiménez, J.; Guardia-Puebla, Y.; Romero-Romero, O.; Cisneros-Ortiz, M.E.; Guerra, G.; Morgan-Sagastume, J.M.; Noyola, A. Methanogenic Activity Optimization Using the Response Surface Methodology, during the Anaerobic Co-Digestion of Agriculture and Industrial Wastes. Microbial Community Diversity. Biomass Bioenergy 2014, 71, 84–97. [Google Scholar] [CrossRef]
- Leonzio, G. Fluid Dynamic Study of Anaerobic Digester: Optimization of Mixing and Geometric Configuration by Using Response Surface Methodology and Factorial Design. Renew. Energy 2019, 136, 769–780. [Google Scholar] [CrossRef]
- Kashi, S.; Satari, B.; Lundin, M.; Horváth, I.S.; Othman, M. Application of a Mixture Design to Identify the Effects of Substrates Ratios and Interactions on Anaerobic Co-Digestion of Municipal Sludge, Grease Trap Waste, and Meat Processing Waste. J. Environ. Chem. Eng. 2017, 5, 6156–6164. [Google Scholar] [CrossRef]
- Rao, P.V.; Baral, S.S. Experimental Design of Mixture for the Anaerobic Co-Digestion of Sewage Sludge. Chem. Eng. J. 2011, 172, 977–986. [Google Scholar] [CrossRef]
- Coutu, A.; Mottelet, S.; Guérin, S.; Rocher, V.; Pauss, A.; Ribeiro, T. Methane Yield Optimization Using Mix Response Design and Bootstrapping: Application to Solid-State Anaerobic Co-Digestion Process of Cattle Manure and Damp Grass. Bioresour. Technol. Rep. 2022, 17, 100883. [Google Scholar] [CrossRef]
- Motte, J.-C.; Escudié, R.; Bernet, N.; Delgenes, J.-P.; Steyer, J.-P.; Dumas, C. Dynamic Effect of Total Solid Content, Low Substrate/Inoculum Ratio and Particle Size on Solid-State Anaerobic Digestion. Bioresour. Technol. 2013, 144, 141–148. [Google Scholar] [CrossRef]
- Strömberg, S.; Nistor, M.; Liu, J. Early Prediction of Biochemical Methane Potential through Statistical and Kinetic Modelling of Initial Gas Production. Bioresour. Technol. 2015, 176, 233–241. [Google Scholar] [CrossRef]
- Angelidaki, I.; Alves, M.; Bolzonella, D.; Borzacconi, L.; Campos, J.L.; Guwy, A.J.; Kalyuzhnyi, S.; Jenicek, P.; van Lier, J.B. Defining the Biomethane Potential (BMP) of Solid Organic Wastes and Energy Crops: A Proposed Protocol for Batch Assays. Water Sci. Technol. 2009, 59, 927–934. [Google Scholar] [CrossRef] [Green Version]
- Hamed, M.M.; Khalafallah, M.G.; Hassanien, E.A. Prediction of Wastewater Treatment Plant Performance Using Artificial Neural Networks. Environ. Model. Softw. 2004, 19, 919–928. [Google Scholar] [CrossRef]
- Sinha, S.; Bose, P.; Jawed, M.; John, S.; Tare, V. Application of Neural Network for Simulation of Upflow Anaerobic Sludge Blanket (UASB) Reactor Performance. Biotechnol. Bioeng. 2002, 77, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Güçlü, D.; Yılmaz, N.; Ozkan-Yucel, U.G. Application of Neural Network Prediction Model to Full-Scale Anaerobic Sludge Digestion. J. Chem. Technol. Biotechnol. 2011, 86, 691–698. [Google Scholar] [CrossRef]
- Mahanty, B.; Zafar, M.; Park, H.-S. Characterization of Co-Digestion of Industrial Sludges for Biogas Production by Artificial Neural Network and Statistical Regression Models. Environ. Technol. 2013, 34, 2145–2153. [Google Scholar] [CrossRef] [PubMed]
- Olatunji, K.O.; Madyira, D.M.; Ahmed, N.A.; Adeleke, O.; Ogunkunle, O. Modeling the Biogas and Methane Yield from Anaerobic Digestion of Arachis Hypogea Shells with Combined Pretreatment Techniques Using Machine Learning Approaches. Waste Biomass Valor. 2022. [Google Scholar] [CrossRef]
- Xu, F.; Wang, Z.-W.; Li, Y. Predicting the Methane Yield of Lignocellulosic Biomass in Mesophilic Solid-State Anaerobic Digestion Based on Feedstock Characteristics and Process Parameters. Bioresour. Technol. 2014, 173, 168–176. [Google Scholar] [CrossRef]
- Seo, K.W.; Seo, J.; Kim, K.; Ji Lim, S.; Chung, J. Prediction of Biogas Production Rate from Dry Anaerobic Digestion of Food Waste: Process-Based Approach vs. Recurrent Neural Network Black-Box Model. Bioresour. Technol. 2021, 341, 125829. [Google Scholar] [CrossRef]
- Pei, Z.; Liu, S.; Jing, Z.; Zhang, Y.; Wang, J.; Liu, J.; Wang, Y.; Guo, W.; Li, Y.; Feng, L.; et al. Understanding of the Interrelationship between Methane Production and Microorganisms in High-Solid Anaerobic Co-Digestion Using Microbial Analysis and Machine Learning. J. Clean. Prod. 2022, 373, 133848. [Google Scholar] [CrossRef]
- Pererva, Y.; Miller, C.D.; Sims, R.C. Existing Empirical Kinetic Models in Biochemical Methane Potential (BMP) Testing, Their Selection and Numerical Solution. Water 2020, 12, 1831. [Google Scholar] [CrossRef]
- Bernard, O.; Hadj-Sadok, Z.; Dochain, D.; Genovesi, A.; Steyer, J.-P. Dynamical Model Development and Parameter Identification for an Anaerobic Wastewater Treatment Process. Biotechnol. Bioeng. 2001, 75, 424–438. [Google Scholar] [CrossRef]
- Godfrey, K.R.; Stefano, I.I. Identifiability of Model Parameters. In Proceedings of the IFORS Symposium on Identification and System Parameter Estimation, York, UK, 3–7 July 1985. [Google Scholar]
- Pohjanpalo, H. System Identifiability Based on the Power Series Expansion of the Solution. Math. Biosci. 1978, 41, 21–33. [Google Scholar] [CrossRef]
- Walter, E.; Pronzato, L. On the Identifiability and Distinguishability of Nonlinear Parametric Models. Math. Comput. Simul. 1996, 42, 125–134. [Google Scholar] [CrossRef]
- Casti, J.L. (Ed.) 4 Reachability and Controllability. In Mathematics in Science and Engineering; Nonlinear System Theory; Elsevier: Amsterdam, The Netherlands, 1985; Volume 175, pp. 110–149. [Google Scholar]
- Pastor-Poquet, V.; Papirio, S.; Harmand, J.; Steyer, J.-P.; Trably, E.; Escudié, R.; Esposito, G. Assessing Practical Identifiability during Calibration and Cross-Validation of a Structured Model for High-Solids Anaerobic Digestion. Water Res. 2019, 164, 114932. [Google Scholar] [CrossRef]
- Dochain, D.; Vanrolleghem, P.A. Dynamical Modelling & Estimation in Wastewater Treatment Processes; IWA Publishing: London, UK, 2001; ISBN 978-1-900222-50-1. [Google Scholar]
- Nimmegeers, P. Identifiability of Large-Scale Non-Linear Dynamic Network Models Applied to the ADM1-Case Study. Math. Biosci. 2017, 288, 21–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmberg, A. On the Practical Identifiability of Microbial Growth Models Incorporating Michaelis-Menten Type Nonlinearities. Math. Biosci. 1982, 62, 23–43. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, C.; Liu, Y.; Bailey, V.L. Multiscale Investigation on Biofilm Distribution and Its Impact on Macroscopic Biogeochemical Reaction Rates. Water Resour. Res. 2017, 53, 8698–8714. [Google Scholar] [CrossRef]
- Zhai, H. Multiscale Computational Modeling of Biofilm. arXiv 2022, arXiv:2206.03895. [Google Scholar]
- Yu, L.; Ma, J.; Chen, S. Numerical Simulation of Mechanical Mixing in High Solid Anaerobic Digester. Bioresour. Technol. 2011, 102, 1012–1018. [Google Scholar] [CrossRef]
- Wu, B. CFD Simulation of Mixing for High-Solids Anaerobic Digestion. Biotechnol. Bioeng. 2012, 109, 2116–2126. [Google Scholar] [CrossRef]
- Shewani, A.; Horgue, P.; Pommier, S.; Debenest, G.; Lefebvre, X.; Gandon, E.; Paul, E. Assessment of Percolation through a Solid Leach Bed in Dry Batch Anaerobic Digestion Processes. Bioresour. Technol. 2015, 178, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Conti, F.; Saidi, A.; Goldbrunner, M. CFD Modelling of Biomass Mixing in Anaerobic Digesters of Biogas Plants. Environ. Clim. Technol. 2019, 23, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.; Schenk, C.; Keicher, R.; Schmidt, D.; Schulz, V.; Velten, K. Optimization of an Externally Mixed Biogas Plant Using a Robust CFD Method. Comput. Electron. Agric. 2020, 171, 105294. [Google Scholar] [CrossRef] [Green Version]
- Coutu, A.; André, L.; Guérin, S.; Rocher, V.; Pauss, A.; Ribeiro, T. Transport and Retention Modeling of the Liquid Phase through a Stratified Porous Leach-Bed. Application for Solid-State Anaerobic Co-Digestion of Cattle Manure and Roadside Grass. Bioresour. Technol. Rep. 2022, 18, 101114. [Google Scholar] [CrossRef]
- André, L.; Durante, M.; Pauss, A.; Lespinard, O.; Ribeiro, T.; Lamy, E. Quantifying Physical Structure Changes and Non-Uniform Water Flow in Cattle Manure during Dry Anaerobic Digestion Process at Lab Scale: Implication for Biogas Production. Bioresour. Technol. 2015, 192, 660–669. [Google Scholar] [CrossRef]
- Hernandez-Shek, M.A.; Mottelet, S.; Peultier, P.; Pauss, A.; Ribeiro, T. Development of Devices for the Determination of the Rheological Properties of Coarse Biomass Treated by Dry Anaerobic Digestion. Bioresour. Technol. Rep. 2021, 15, 100686. [Google Scholar] [CrossRef]
- Hernandez-Shek, M.A.; Peultier, P.; Pauss, A.; Ribeiro, T. Rheological Evolution of Straw-Cattle Manure (SCM) Treated by Dry Anaerobic Digestion in Batch and in Continuous Pilot Reactors. Waste Manag. 2022, 144, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Smith, L.H.; McCarty, P.L. Methane Fermentation of Selected Lignocellulosic Materials. Biomass 1990, 21, 239–255. [Google Scholar] [CrossRef]
- Peres, C.S.; Sanchez, C.R.; Matumoto, C.; Schmidell, W. Anaerobic Biodegradability of the Organic Components of Municipal Solid Wastes (OFMSW). Water Sci. Technol. 1992, 25, 285–293. [Google Scholar] [CrossRef]
- Pavlostathis, S.G.; Giraldo-Gomez, E. Kinetics of Anaerobic Treatment. Water Sci. Technol. 1991, 24, 35–59. [Google Scholar] [CrossRef]
- Siriwongrungson, V.; Zeng, R.J.; Angelidaki, I. Homoacetogenesis as the Alternative Pathway for H2 Sink during Thermophilic Anaerobic Degradation of Butyrate under Suppressed Methanogenesis. Water Res. 2007, 41, 4204–4210. [Google Scholar] [CrossRef]
- Kouas, M. Caractérisation Cinétique de la Biodégradation de Substrats Solides et Application à L’optimisation et à la Modélisation de la Co-Digestion. Ph.D. Thesis, Université de Montpellier, Montpellier, France, 2018. [Google Scholar]
- Dennehy, C.; Lawlor, P.G.; Croize, T.; Jiang, Y.; Morrison, L.; Gardiner, G.E.; Zhan, X. Synergism and Effect of High Initial Volatile Fatty Acid Concentrations during Food Waste and Pig Manure Anaerobic Co-Digestion. Waste Manag. 2016, 56, 173–180. [Google Scholar] [CrossRef]
- Kafle, G.K.; Kim, S.H. Sludge Exchange Process on Two Serial CSTRs Anaerobic Digestions: Process Failure and Recovery. Bioresour. Technol. 2011, 102, 6815–6822. [Google Scholar] [CrossRef] [PubMed]
- El-Mashad, H.M.; Zhang, R. Biogas Production from Co-Digestion of Dairy Manure and Food Waste. Bioresour. Technol. 2010, 101, 4021–4028. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-Martí, B.; Meneses-Quelal, O.W.; Gaibor-Chavez, J.; Niño-Ruiz, Z. Review of Mathematical Models for the Anaerobic Digestion Process. In Anaerobic Digestion; InTech Open: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Valentini, A.; Garuti, G.; Rozzi, A.; Tilche, A. Anaerobic Degradation Kinetics of Particulate Organic Matter: A New Approach. Water Sci. Technol. 1997, 36, 239–246. [Google Scholar] [CrossRef]
- Mora-Naranjo, N.; Meima, J.A.; Haarstrick, A.; Hempel, D.C. Modelling and Experimental Investigation of Environmental Influences on the Acetate and Methane Formation in Solid Waste. Waste Manag. 2004, 24, 763–773. [Google Scholar] [CrossRef]
- Vavilin, V.A.; Shchelkanov, M.Y.; Rytov, S.V. Effect of Mass Transfer on Concentration Wave Propagation during Anaerobic Digestion of Solid Waste. Water Res. 2002, 36, 2405–2409. [Google Scholar] [CrossRef]
- Veeken, A.; Hamelers, B. Effect of Temperature on Hydrolysis Rates of Selected Biowaste Components. Bioresour. Technol. 1999, 69, 249–254. [Google Scholar] [CrossRef]
- Xie, S.; Lawlor, P.G.; Frost, J.P.; Hu, Z.; Zhan, X. Effect of Pig Manure to Grass Silage Ratio on Methane Production in Batch Anaerobic Co-Digestion of Concentrated Pig Manure and Grass Silage. Bioresour. Technol. 2011, 102, 5728–5733. [Google Scholar] [CrossRef]
- Vavilin, V.A.; Fernandez, B.; Palatsi, J.; Flotats, X. Hydrolysis Kinetics in Anaerobic Degradation of Particulate Organic Material: An Overview. Waste Manag. 2008, 28, 939–951. [Google Scholar] [CrossRef]
- Carrera-Chapela, F.; Donoso-Bravo, A.; Jeison, D.; Díaz, I.; Gonzalez, J.A.; Ruiz-Filippi, G. Development, Identification and Validation of a Mathematical Model of Anaerobic Digestion of Sewage Sludge Focusing on H2S Formation and Transfer. Biochem. Eng. J. 2016, 112, 13–19. [Google Scholar] [CrossRef]
- Karim, K.; Thoma, G.J.; Al-Dahhan, M.H. Gas-Lift Digester Configuration Effects on Mixing Effectiveness. Water Res. 2007, 41, 3051–3060. [Google Scholar] [CrossRef]
Studied Parameter | References |
---|---|
Pretreatment | Jin et al., 2018 [78] |
Liquid recirculation conditions | Degueurce et al., 2016 [80] |
Carbon/Nitrogen ratio | Kainthola et al., 2020 [81] |
pH | Mortezaei et al., 2018 [82] |
Biomass inoculation | Kumar et al., 2020 [83], Lee et al., 2020 [84] |
Reactor geometry | Leonzio et al., 2019 [87] |
Substrate composition | Kashi et al., 2017 [88] |
Substrate composition and liquid recirculation conditions | Coutu et al., 2022 [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Coutu, A.; Mottelet, S.; Pauss, A.; Ribeiro, T. Overview of Numerical Simulation of Solid-State Anaerobic Digestion Considering Hydrodynamic Behaviors, Phenomena of Transfer, Biochemical Kinetics and Statistical Approaches. Energies 2023, 16, 1108. https://doi.org/10.3390/en16031108
Liu X, Coutu A, Mottelet S, Pauss A, Ribeiro T. Overview of Numerical Simulation of Solid-State Anaerobic Digestion Considering Hydrodynamic Behaviors, Phenomena of Transfer, Biochemical Kinetics and Statistical Approaches. Energies. 2023; 16(3):1108. https://doi.org/10.3390/en16031108
Chicago/Turabian StyleLiu, Xiaojun, Arnaud Coutu, Stéphane Mottelet, André Pauss, and Thierry Ribeiro. 2023. "Overview of Numerical Simulation of Solid-State Anaerobic Digestion Considering Hydrodynamic Behaviors, Phenomena of Transfer, Biochemical Kinetics and Statistical Approaches" Energies 16, no. 3: 1108. https://doi.org/10.3390/en16031108
APA StyleLiu, X., Coutu, A., Mottelet, S., Pauss, A., & Ribeiro, T. (2023). Overview of Numerical Simulation of Solid-State Anaerobic Digestion Considering Hydrodynamic Behaviors, Phenomena of Transfer, Biochemical Kinetics and Statistical Approaches. Energies, 16(3), 1108. https://doi.org/10.3390/en16031108