Design of New Test System for Proton Exchange Membrane Fuel Cell
Abstract
:1. Introduction
2. Design of Test System
2.1. Gas Control Module
2.1.1. Gases Supply System
2.1.2. Temperature and Humidity Control System
2.1.3. Hydrogen Cycling System
2.1.4. Back Pressure Control System
2.2. Safety Alarm Module
3. Design of Control System
3.1. PLC Technology
3.2. LabVIEW Technology
3.3. OPC Technology
4. Test System Test
4.1. Start/Stop Test
4.2. Gas Tightness Test
4.3. Humidification Effect Test
5. Fuel Cell Performance Investigation and System Evaluation
6. Conclusions
- Data acquisition and output instruction. The input module and output module of PLC S7-200 combined with the LabVIEW software of the upper computer were used to collect and save multichannel data.
- Hydrogen recycling. Under the premise of ensuring system security, the maximization of energy utilization could be realized.
- Accurate control of humidity. The relative humidity of inlet gas with a margin of error of less than 0.7% was achieved by the PLC programming PID technology combined with the mass flow controller and temperature and humidity sensor.
- Back-pressure control. The controller of the mass flow rate and pressure sensor worked together to control the back pressure.
- The as-developed test system demonstrated good test and control performances during the fuel cell performance experiment.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, C.; Zhang, H. Review of the development of first-generation redox flow batteries: Iron-chromium system. ChemSusChem 2022, 15, e202101798. [Google Scholar] [CrossRef]
- Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, L.; Wang, H.; Hou, Z.; et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Zhao, X.; Sun, Y.; Wang, L.; Wang, H.; Dang, D.; Chi, B.; Liu, H.; Hensen, E.; Lou, X.; et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Daniel, L.; Bonakdarpour, A.; Wilkinson, D. Upgrading the state-of-the-art electrocatalysts for PEM fuel cell applications. Adv. Mater. Interfaces 2022, 9, 2200349. [Google Scholar] [CrossRef]
- Liu, G.; Hou, F.; Pen, S.; Wang, X.; Fang, B. Process and challenges of stainless steel based bipolar plates for proton exchange membrane fuel cells. Int. J. Miner. Metall. Mater. 2022, 29, 1099–1119. [Google Scholar] [CrossRef]
- Xia, Y.; Lei, H.; Wen, X.; Wang, Z.; Hu, G.; Fang, B. Enhanced ageing performance of sulfonic acid-grafted Pt/C catalysts. Micromachines 2022, 13, 1825. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Daniel, L.; Bonakdarpour, A.; Govindarajan, R.; Sharman, J.; Wilkinson, D. Dense Pt nanowire electrocatalysts for improved fuel cell performance using a graphitic carbon nitride-decorated hierarchical nanocarbon support. Small 2021, 17, 2102288. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chen, M.; Fang, B.; Liu, G. Ordered SnO2@C flake array as catalyst support for improved electrocatalytic activity and cathode durability in PEMFCs. Nanomaterials 2020, 10, 2412. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Long, W.; Wang, L.; Yuan, R.; Ignaszak, A.; Fang, B.; Wilkinson, D. Unlocking the door to highly active ORR catalysts for PEMFC applications: Polyhedron-engineered Pt-based nanocrystals. Energy Environ. Sci. 2018, 11, 258–275. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, B.; Li, H.; Bi, X.; Wang, H. Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells. Prog. Mater. Sci. 2016, 82, 445–498. [Google Scholar] [CrossRef]
- Kim, J.; Fang, B.; Kim, M.; Yoon, S.; Bae, T.; Ranade, D.; Yu, J. Facile synthesis of bimodal porous silica and multimodal porous carbon as an anode catalyst support in polymer exchange membrane fuel cell. Electrochim. Acta 2010, 55, 7628–7633. [Google Scholar] [CrossRef]
- Fang, B.; Chaudhari, N.; Kim, M.; Kim, J.; Yu, J. Homogeneous deposition of platinum nanoparticles on carbon black for proton exchange membrane fuel cell. J. Am. Chem. Soc. 2009, 131, 15330–15338. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Fang, B.; Song, M.; Yu, J. Topological transformation of thioether-bridged organosilicas into nanostructured functional materials. Chem. Mater. 2012, 24, 2256–2264. [Google Scholar] [CrossRef]
- Kim, M.; Fang, B.; Chaudhari, N.; Song, M.; Bae, T.; Yu, J. A highly efficient synthesis approach of supported Pt-Ru catalyst for direct methanol fuel cell. Electrochim. Acta 2010, 55, 4543–4550. [Google Scholar] [CrossRef]
- Debe, M. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51. [Google Scholar] [CrossRef]
- Sanchez, D.; Diaz, D.; Hiesgen, R.; Wehl, I.; Friedrich, K. Oscillations of PEM fuel cells at low cathode humidification. Electroanal. Chem. 2010, 649, 219–231. [Google Scholar] [CrossRef] [Green Version]
- Amadane, Y.; Mounir, H. Performance improvement of a PEMFC with dead-end anode by using CFD-Taguchi approach. Electroanal. Chem. 2022, 904, 115909. [Google Scholar] [CrossRef]
- Gatto, I.; Carbone, A.; Sacca, A.; Oassalacqua, E.; Oldani, C.; Merlo, L.; Aebastian, D.; Arico, A.; Baglio, V. Increasing the stability of membrane-electrode assemblies based on Aquivion® membranes under automotive fuel cell conditions by using proper catalysts and ionomers. Electroanal. Chem. 2019, 842, 59–65. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Q.; Shen, S.; Yan, X.; Zhu, F.; Cheng, X.; Zhang, J. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells. Sci. Rep. 2017, 7, 43447. [Google Scholar] [CrossRef] [Green Version]
- Mohsin, M.; Raza, R.; Mohsin-ul-Mulk, M.; Yousaf, A.; Hacker, V. Electrochemical characterization of polymer electrolyte membrane fuel cells and polarization curve analysis. Int. J. Hydrogen Energy 2020, 45, 24093–24107. [Google Scholar] [CrossRef]
- Yousefkhani, M.; Ghadamian, H.; Daneshvar, K.; Alizadeh, N.; Troconis, B. Investigation of the Fuel Utilization Factor in PEM Fuel Cell Considering the Effect of Relative Humidity at the Cathode. Energies 2020, 13, 6117. [Google Scholar] [CrossRef]
- Zhao, J.; Tu, Z.; Chan, S. Carbon corrosion mechanism and mitigation strategies in a proton exchange membrane fuel cell (PEMFC): A review. J. Power Sources 2021, 488, 229434. [Google Scholar] [CrossRef]
- Fan, L.; Zhao, J.; Luo, X.; Tu, Z. Comparison of the performance and degradation mechanism of PEMFC with Pt/C and Pt black catalyst. Int. J. Hydrogen Energy 2022, 47, 5418–5428. [Google Scholar] [CrossRef]
- Kuo, T.; Weng, F.; Cheng, C. Optimization of Fuel Cell Self-Humidifying System Design and SUSD Control Strategies. Int. J. Electrochem. Sci. 2022, 17, 22068. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, D.; Li, B.; Wang, F.; Ma, J. The Design and Development of a PEMFC Testing System. Adv. Mater. Res. 2012, 503–504, 1484–1487. [Google Scholar] [CrossRef]
- Chen, X.; Yang, C.; Sun, Y.; Liu, Q.; Wan, Z.; Kong, X.; Tu, Z.; Wang, X. Water management and structure optimization study of nickel metal foam as flow distributors in proton exchange membrane fuel cell. Appl. Energy 2022, 309, 118448. [Google Scholar] [CrossRef]
- Cheng, H. Design of Hydrogen Fuel Cell Test System Based on PLC and ECU. Ind. Contrl. Comput. 2022, 35, 21–23+25. [Google Scholar]
- Liu, Z.; Jiang, K.; Ye, T.; Fan, W.; Lu, G. Development and experimental study of high-power proton exchange membrane fuel cell test system. J. Jilin Univ. 2022, 52, 2025–2033. [Google Scholar]
- Peng, Y.; Peng, F.; Liu, Z.; Li, Q.; Cheng, W. Design of fuel cell test system based on PLC and LabVIEW. J. Chin. Power Sources 2016, 40, 575–579. [Google Scholar]
- Rosli, R.; Sulong, A.; Daud, W.; Zulkifley, M.; Rosli, M.; Majlan, E.; Haque, M.; Radzuan, N. The design and development of an HT-PEMFC test cell and test station. Int. J. Hydrogen Energy 2019, 44, 30763–30771. [Google Scholar] [CrossRef]
- Cheng, B.; Wang, J.; Tu, Z.; Pan, M.; Shen, J.; Liu, Z.; Liu, W. Study on Operating Characteristics of PEM Fuel Cell Based on High Hydrogen Utilization. J. Eng. Thermophys. 2016, 37, 372–377. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Lei, H.; Wu, X.; Hu, G.; Pan, H.; Fang, B. Design of New Test System for Proton Exchange Membrane Fuel Cell. Energies 2023, 16, 833. https://doi.org/10.3390/en16020833
Xia Y, Lei H, Wu X, Hu G, Pan H, Fang B. Design of New Test System for Proton Exchange Membrane Fuel Cell. Energies. 2023; 16(2):833. https://doi.org/10.3390/en16020833
Chicago/Turabian StyleXia, Yuzhen, Hangwei Lei, Xiaojun Wu, Guilin Hu, Hao Pan, and Baizeng Fang. 2023. "Design of New Test System for Proton Exchange Membrane Fuel Cell" Energies 16, no. 2: 833. https://doi.org/10.3390/en16020833
APA StyleXia, Y., Lei, H., Wu, X., Hu, G., Pan, H., & Fang, B. (2023). Design of New Test System for Proton Exchange Membrane Fuel Cell. Energies, 16(2), 833. https://doi.org/10.3390/en16020833