Roadway Embedded Smart Illumination Charging System for Electric Vehicles
Abstract
:1. Introduction
2. Methods
2.1. Photovoltaic Solar System
2.2. Light Emitting Diodes (LEDs)
2.3. Energy-Harvestable 2D Nanomaterials
2.3.1. Sample Preparation
2.3.2. Structural Characterization
2.3.3. Piezoelectric Characterization
2.4. Fabrication and Testing of Electrically Conductive Glass Fiber Reinforced Polymer
2.5. Power Delivery Circuit Design
3. Lab-Scale Proof-Of-Concept Design of the Proposed Smart Charging System
3.1. Solar Panel Configuration
3.2. MPPT Circuit for Solar Panels and Communication and Sensing Circuit for LEDs
4. Performance Analysis and Findings
4.1. Harvested Voltage from EH2N
4.2. Mechanical and Electrical Measurements of GFRP
4.3. Test Results for the Lab-Scale Prototype
4.3.1. Stationary Tests Comparison of Indoors and Outdoors Settings
4.3.2. Stationary Tests with Indoor Setting and Artificial LEDs
4.3.3. Test of the Lab-Scale Prototype under Motion with Indoor Settings and Artificial LEDs
5. Discussion: Recommended Strategy
5.1. System Embedded in Infrastructure
5.2. System for EVs
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dept. of Transportation. Sustainability in Roadway Design and Construction Guidance Document; CDOT Environmental Programs Branch: Denver, CO, USA, 2013. [Google Scholar]
- Newman, P.; Hargroves, K.; Desha, C.; Whistler, L.; Farr, A.; Wilson, K.; Beauson, J.; Matan, A.; Surawski, L. Reducing the Environmental Impact of Road Construction. 2012. Available online: https://sbenrc.com.au/app/uploads/2013/11/SBEnrc-Project-1.3-Briefing-Report-Reducing-energy-intensity-of-road-construction.pdf (accessed on 3 January 2021).
- Konstantinou, T.; Gkartzonikas, C.; Gkritza, K. Public acceptance of electric roadways: The case of Los Angeles, California. Int. J. Sustain. Transp. 2021, 22, 1–25. [Google Scholar] [CrossRef]
- US. Environmental Protection Agency. Global, Regional, and National Fossil-Fuel CO2 Emissions; EPA: Washington, DC, USA, 2017. [Google Scholar]
- Moon, H.; Youngjun Park, S.; Jeong, C.; Lee, J. Forecasting electricity demand of electric vehicles by analyzing consumers’ charging patterns. Transp. Res. Part D Transp. Environ. 2018, 62, 64–79, ISSN 1361–9209. [Google Scholar] [CrossRef]
- Shepero, M. Modeling and Forecasting of Electric Vehicle Charging, Solar Power Production, and Residential Load: Perspectives into the Future Urban and Rural Energy Systems. Ph.D. Dissertation, Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Civil and Industrial Engineering, Civil Engi-neering and Built Environment, Uppsala, Sweden, 2020. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-416754 (accessed on 3 January 2021).
- Gerossier, A.; Girard, R.; Kariniotakis, G. Modeling and Forecasting Electric Vehicle Consumption Profiles. Energies 2019, 12, 1341. [Google Scholar] [CrossRef] [Green Version]
- Konstantelos, I.; Giannelos, S.; Strbac, G. Strategic Valuation of Smart Grid Technology Options in Distribution Networks. IEEE Trans. Power Syst. 2017, 32, 1293–1303. [Google Scholar] [CrossRef] [Green Version]
- van der Weijde, A.; Hobbs, B. Planning electricity transmission to accommodate renewables: Using two-stage programming to evaluate flexibility and the cost of disregarding uncertainty. Energy Econ. 2012, 34, 2089–2101. [Google Scholar] [CrossRef]
- Taljegard, M.; Göransson, L.; Odenberger, M.; Johnsson, F. Impacts of electric vehicles on the electricity generation portfolio–A Scandinavian-German case study. Appl. Energy 2019, 235, 1637–1650. Available online: http://www.sciencedirect.com/science/article/pii/S0306261918316970 (accessed on 4 January 2021). [CrossRef]
- Borozan, S.; Giannelos, S.; Strbac, G. Strategic network expansion planning with electric vehicle smart charging concepts as investment options. Adv. Appl. Energy 2022, 5, 100077, ISSN 2666-7924. [Google Scholar] [CrossRef]
- Trieu, M.; Jadun, P.; Logan, J.; McMillan, C.; Muratori, M.; Steinberg, D.; Vimmerstedt, L.; Jones, R.; Haley, B.; Nelson, B. Electrification Futures Study: Scenarios of Electric Technology Adoption and Power Consumption for the United States; National Renewable Energy Laboratory: Golden, CO, USA, 2018; NREL/TP-6A20–71500. Available online: https://www.nrel.gov/docs/fy18osti/71500.pdf (accessed on 4 January 2021).
- Yuksel, T.; Michalek, J.J. Effects of Regional Temperature on Electric Vehicle Efficiency, Range, and Emissions in the United States. Environ. Sci. Technol. 2015, 49, 3974–3980. [Google Scholar] [CrossRef]
- Gerssen-Gondelach, S.; Faaij, A. Performance of batteries for electric vehicles on short and longer term. J. Power Sources 2012, 212, 111. [Google Scholar] [CrossRef]
- Etacheri, V.; Marom, R.; Elazari Salitra, R.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243. [Google Scholar] [CrossRef]
- Zhou, Y.; Gohlke, D.; Rush, L.; Kelly, J.; Dai, Q. Lithium-Ion Battery Supply Chain for E-Drive Vehicles in the United States: 2010–2020; Argonne National Lab: Lemont, IL, USA, 2021. [Google Scholar]
- Ahmed, S.; Bloom, I.; Jansen, A.N.; Tanim, T.; Dufek, E.J.; Pesaran, A.; Burnham, A.; Cason, R.B.; Dias, F.; Hardy, K.; et al. Enabling fast charging–A battery technology gap assessment. J. Power Sources 2017, 367, 250–262, ISSN 0378–7753. [Google Scholar] [CrossRef]
- Mastoi, M.S.; Zhuang, S.; Munir, H.M.; Haris, M.; Hassan, M.; Usman, M.; Bukhari, S.S.H.; Ro, J.-S. An in-depth analysis of electric vehicle charging station infrastructure, policy implications, and future trends. Energy Rep. 2022, 8, 11504–11529, ISSN 2352–4847. [Google Scholar] [CrossRef]
- Li, S.; Mi, C.C. Wireless Power Transfer for Electric Vehicle Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 4–17. [Google Scholar] [CrossRef]
- Will Electric Cars soon Have Solar Roofs? Toyota and Tesla Say Yes, ThinkProgress.org. Available online: https://thinkprogress.org/prius-solar-roof-breakthrough-2b929f467061/ (accessed on 9 March 2018).
- André, K.; Aristeidis, K.; Robert, M.; Joannopoulos, J.D.; Peter, F.; Marin, S. Wireless Power Transfer via Strongly Coupled Magnetic Resonances. J. Sci. P 2007, 317, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Sample, A.; Meyer, D.; Smith, J. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron. 2011, 58, 544–554. [Google Scholar] [CrossRef]
- Cannon, B.; Hoburg, J.; Stancil, D.; Goldstein, S. Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Trans. Power Electron. 2009, 24, 1819–1825. [Google Scholar] [CrossRef] [Green Version]
- Kurs, A.; Moffatt, R.; Soljacic, M. Simultaneous mid-range power transfer to multiple devices. Appl. Phys. Lett. 2010, 96, 044102-1–044102-3. [Google Scholar] [CrossRef]
- Cheon, S.; Kim, Y.-H.; Kang, S.-Y.; Lee, M.L.; Lee, J.-M.; Zyung, T. Circuit-Model-Based Analysis of a Wireless Energy-Transfer System via Coupled Magnetic Resonances. IEEE Trans. Ind. Electron. 2011, 58, 2906–2914. [Google Scholar] [CrossRef]
- Chen, K.; Zhao, Z. Analysis of the Double-Layer Printed Spiral Coil for Wireless Power Transfer. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 114–121. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Z.; Chen, K. Frequency Decrease Analysis of Resonant Wireless Power Transfer. IEEE Trans. Power Electron. 2014, 29, 1058–1063. [Google Scholar] [CrossRef]
- Nagatsuka, Y.; Ehara, N.; Kaneko, Y.; Abe, S.; Yasuda, T. Compact contactless power transfer system for electric vehicles. In Proceedings of the 2010 International Power Electronics Conference-ECCE ASIA, Sapporo, Japan, 21–24 June 2010; pp. 807–813. [Google Scholar] [CrossRef]
- Lee, S.; Huh, J.; Park, C.; Choi, N.S.; Cho, G.H.; Rim, C.T. On-Line Electric Vehicle using inductive power transfer system. In Proceedings of the 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 12–16 September 2010; pp. 1598–1601. [Google Scholar] [CrossRef]
- Huh, J.; Lee, W.; Cho, G.H.; Lee, B.; Rim, C.T. Characterization of novel Inductive Power Transfer Systems for On-Line Electric Vehicles. In Proceedings of the 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, USA, 6–11 March 2011; pp. 1975–1979. [Google Scholar] [CrossRef]
- Ning, P.; Miller, J.M.; Onar, O.C.; White, C.P.; Marlino, L.D. A compact wireless charging system development. In Proceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21 March 2013; pp. 3045–3050. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Li, S.; Li, W.; Mi, C.C. Feasibility study on bipolar pads for efficient wireless power chargers. In Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014, Fort Worth, TX, USA, 16–20 March 2014; pp. 1676–1682. [Google Scholar] [CrossRef]
- Caughill, P. This high-tech, solar-powered car may be the future of travel. 2017. Available online: https://futurism.com/this-futuristic-solar-powered-car-may-be-the-future-of-travel/ (accessed on 22 March 2018).
- Lufčić, M.; Maras, M.; Vukelić, M. Energy saving design and materials in road transport. In Proceedings of the REACT Conference, Beograd, Serbia, 3–4 May 2011; Available online: http://bib.irb.hr/prikazi-rad?rad=540022 (accessed on 20 March 2018).
- Ranjan, R. Solar Power Roads: Revitalising Solar Highways, Electrical Power and Smart Grids. Int. J. Eng. Res. Gen. Sci. 2015, 3, 380–385. [Google Scholar]
- Bobes-Jesus, V.; Pascual-Munoz, P.; Castro-Fresno, D.; Rodriguez-Hernandez, J. Asphalt solar collectors: A literature review. Appl. Energy 2013, 102, 962–970. [Google Scholar] [CrossRef]
- Larsson, O.; Thelandersson, S. Estimating extreme values of thermal gradients in concrete structures. Mater. Struct. 2011, 44, 1491–1500. [Google Scholar] [CrossRef]
- Navarro, G.; Rojas, C. Piezoelectric Power Generating Tire Apparatus. U.S. Patent US20170084817A1, 23 March 2017. [Google Scholar]
- Kumar, A.; Sumathi, S. Renewable energy source piezo electric harvesters in car tyres. In Proceedings of the 2015 Online International Conference on Green Engineering and Technologies, Coimbatore, India, 27 November 2015. [Google Scholar]
- Allouhi, A.; Rehman, S.; Buker, M.S.; Said, Z. Up-to-date literature review on Solar PV systems: Technology progress, market status and R&D. J. Clean. Prod. 2022, 362, 132339. [Google Scholar] [CrossRef]
- Benda, V.; Černá, L. PV cells and modules–State of the art, limits and trends. Heliyon 2020, 6, e05666. [Google Scholar] [CrossRef]
- Babics, M.; De Bastiani, M.; Balawi, A.H.; Ugur, E.; Aydin, E.; Subbiah, A.S.; Liu, J.; Xu, L.; Azmi, R.; Allen, T.G.; et al. Unleashing the Full Power of Perovskite/Silicon Tandem Modules with Solar Trackers. ACS Energy Lett. 2022, 7, 1604–1610. [Google Scholar] [CrossRef]
- Lee, K.; Um, H.-D.; Choi, D.; Park, J.; Kim, N.; Kim, H.; Seo, K. The Development of Transparent Photovoltaics. Cell Rep. Phys. Sci. 2020, 1, 100143. [Google Scholar] [CrossRef]
- Solid-State Lighting: Comparing LEDs to Traditional Light Sources. Available online: https://www.eere.energy.gov (accessed on 22 March 2018).
- Lifetime of White LEDs; US Department of Energy: Washington, DC, USA, 2012.
- Wang, F.-K.; Lu, Y.-C. Useful lifetime analysis for high-power white LEDs. Microelectron. Reliab. 2014, 54, 1307–1315. [Google Scholar] [CrossRef]
- In Depth: Advantages of LED Lighting. Available online: https://www.energy.ltgovernors.com (accessed on 22 March 2018).
- Available online: https://www.samsung.com/led/lighting/mid-power-leds/5630-leds/lm561c/# (accessed on 24 December 2022).
- Anton, S.; Erturk, E.; Kong, N.; Ha, D.; Inman, D. Self-charging structures using piezoceramics and thin-film batteries. In Proceedings of the ASME Conf. Smart Mater., Adaptive Struct. Intell. Syst., Oxnard, CA, USA, 21–23 September 2009; pp. 1–11. [Google Scholar]
- Wu, W.; Wang, L.; Li, Y.; Zhang, F.; Lin, L.; Niu, S.; Chenet, D.; Zhang, X.; Hao, Y.; Heinz, T.F.; et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, Y.; Xiao, J.; Liu, M.; Xiong, S.; Wong, Z.J.; Ye, Z.; Ye, Y.; Yin, X.; Zhang, X. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 2015, 10, 151. [Google Scholar] [CrossRef]
- Buscema, M.; Barkelid, M.; Zwiller, V.; van der Zant, H.S.J.; Steele, G.A.; Castellanos-Gomez, A. Large and Tunable Photothermoelectric Effect in Single-Layer MoS2. Nano Lett. 2013, 13, 358–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed]
- US Composites. Epoxy Resins. Available online: https://www.uscomposites.com/products.html (accessed on 14 December 2022).
- ACP Composites. Available online: https://www.acpcomposites.com/ (accessed on 14 December 2022).
- Large Scale Testing. MTS Machine. Available online: http://taha.unm.edu/research-2/large-scale-testing/ (accessed on 14 December 2022).
- Sharma, C.; Jain, A. Maximum Power Point Tracking Techniques: A Review. Int. J. Recent Res. Electr. Electron. Eng. (IJRREEE) 2014, 1, 25–33. [Google Scholar]
- Texas Instruments bq24800EVM Controller Evaluation Module (EVM). Available online: https://www.mouser.com/new/texas-instruments/ti-bq24800evm-evaluation-module/?gclid=Cj0KCQiAqOucBhDrARIsAPCQL1azXxb4u4TLWfXbhWx6ZCgRUkclK6akYwdhBbbbP9mFyQpdkneMLwoaApBCEALw_wcB (accessed on 14 December 2022).
- HC-05 Bluetooth Module. Available online: https://www.electronicwings.com/sensors-modules/bluetooth-module-hc-05- (accessed on 14 December 2022).
- Matlab Mathworks. Available online: https://www.mathworks.com/products/matlab.html (accessed on 14 December 2022).
Manufactuerer | Power Rating | Vmp | Iop | Price | Generation |
---|---|---|---|---|---|
EcoWorthy® | 10 W | 17.3 V | 0.58 A | $21.16 | First |
Renogy® | 30 W | 17.5 V | 1.71 A | $59.99 | First |
SunKingdom® | 13 W | 12.0 V | 1.08 A | $33.99 | First + Second |
Zerodis® | 4.5 W | 18.0 V | 0.25 A | $29.99 | Second |
EcoWorthy® | 5.0 W | 17.9 V | 0.28 A | $20.73 | Second |
Lensun® | 20 W | 18.0 V | 1.11 A | $79.00 | First + Second |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez, D.; Sebastian, A.; Raby, P.; Genedy, M.; Ahn, E.C.; Taha, M.M.R.; Dessouky, S.; Ahmed, S. Roadway Embedded Smart Illumination Charging System for Electric Vehicles. Energies 2023, 16, 835. https://doi.org/10.3390/en16020835
Fernandez D, Sebastian A, Raby P, Genedy M, Ahn EC, Taha MMR, Dessouky S, Ahmed S. Roadway Embedded Smart Illumination Charging System for Electric Vehicles. Energies. 2023; 16(2):835. https://doi.org/10.3390/en16020835
Chicago/Turabian StyleFernandez, Daniel, Ann Sebastian, Patience Raby, Moneeb Genedy, Ethan C. Ahn, Mahmoud M. Reda Taha, Samer Dessouky, and Sara Ahmed. 2023. "Roadway Embedded Smart Illumination Charging System for Electric Vehicles" Energies 16, no. 2: 835. https://doi.org/10.3390/en16020835
APA StyleFernandez, D., Sebastian, A., Raby, P., Genedy, M., Ahn, E. C., Taha, M. M. R., Dessouky, S., & Ahmed, S. (2023). Roadway Embedded Smart Illumination Charging System for Electric Vehicles. Energies, 16(2), 835. https://doi.org/10.3390/en16020835