On the Integration of CO2 Capture Technologies for an Oil Refinery
Abstract
:1. Introduction
- There is no regulatory or legal framework regulating the achievement of carbon neutrality and control over CO2 emissions by industry.
- There is no regulatory framework for regulating industrial safety on the issue of CO2 in subsoil use.
- For projects related to the capture, transport, and storage of CO2 to be effective, it is necessary to develop an economic model for state support of and compensation for costs to the owners of enterprises involved in the implementation of capture, transport, and storage technologies.
2. Methodology
2.1. Process Description of СО2 Capture Plant
2.2. Technical Indicators
3. Case Study
3.1. Development Scenarios
- Technologies that contribute to the maintenance (or even restoration) of profitable production at existing conventional fields, often already largely depleted (increasing CCS).
- Technologies for the extraction of oil from unconventional fields and the development of unconventional oils (heavy, high-viscosity, and super-viscous oil; oil sands and bitumen; oil of low-permeability rocks, including shale; oil of the Bazhenov formation; and other hard-to-recover reserves).
- Technologies for oil production in offshore fields.
3.2. Cost Estimation for CO2 Capture Plants
4. Results and Conclusion
Russian CO2 Capture Projects in the Oil and Gas Industries
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MW | Megawatt |
PSA | Pressure Swing Adsorption |
VPSA | Vacuum Pressure Swing Adsorption |
ASU | Air Separation Unit |
BAT | Best Available Technique |
CCP | CO2 Capture Project |
CCS | Carbon Capture and Storage |
FCC | Fluid Catalytic Cracker |
References
- Adams, T.; MacDowell, N. Off-design point modelling of a 420MW CCGT power plant integrated with an amine-based post-combustion CO2 capture and compression process. Appl. Energy 2016, 178, 681–702. [Google Scholar] [CrossRef]
- Chaffee, A.L.; Knowles, G.P.; Liang, Z.; Zhang, J.; Xiao, P.; Webley, P.A. CO2 capture by adsorption: Materials and process development. Int. J. Greenh. Gas Control 2007, 1, 11–18. [Google Scholar] [CrossRef]
- Ben-Mansour, R.; Habib, M.A.; Bamidele, O.E.; Basha, M.; Qasem, N.A.A.; Peedikakkal, A.; Laoui, T.; Ali, M. Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations—A review. Appl. Energy 2016, 161, 225–255. [Google Scholar] [CrossRef]
- Dumée, L.; Scholes, C.; Stevens, G.; Kentish, S. Purification of aqueous amine solvents used in post combustion CO2 capture: A review. Int. J. Greenh. Gas Control 2012, 10, 443–455. [Google Scholar] [CrossRef]
- Daniel, G.F.; James, F.E.; Hepburn, I. Standard Reference Data System. The Laboratory Consists of the Following Centers: Thermophysics Division Center for Chemical Engineering; The National Engineering Laboratory, National Institute of Standards and Technology: Boulder, CO, USA, 1989; p. 496. Available online: https://www.govinfo.gov/content/pkg/GOVPUB-C13 c19f48b42b2c70c3422cda30d301b8b2/pdf/GOVPUB-C13-c19f48b42b2c70c3422cda30d301b8b2.pdf (accessed on 20 October 2022).
- Mac Dowell, N.; Fennell, P.S.; Shah, N.; Maitland, G.C. The role of CO2 capture and utilization in mitigating climate change. Nat. Clim. Chang. 2017, 7, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, I.; Goryachev, A.; Digdaya, I.A.; Li, X.; Atwater, H.A.; Vermaas, D.A.; Xiang, C. Coupling electrochemical CO2 conversion with CO2 capture. Nat. Catal. 2021, 4, 952–958. [Google Scholar] [CrossRef]
- Hedin, N.; Andersson, L.; Bergström, L.; Yan, J. Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption. Appl. Energy 2013, 104, 418–433. [Google Scholar] [CrossRef]
- International Energy Agency. Recovery Plan for Europe. 2021. Available online: https://ec.europa.eu/info/strategy/recovery-plan-europe_en (accessed on 20 October 2022).
- International Energy Agency. Special Report on Carbon Capture Utilisation and Storage CCUS in Clean Energy Transitions. 2020. Available online: https://www.iea.org/reports/ccus-in-clean-energy-transitions (accessed on 20 October 2022).
- Isaeva, V.I.; Kustov, L.M.; Beletskaya, I.P. Metal organic frameworks (MOF) as CO2 adsorbents. Russ. J. Org. Chem. 2014, 50, 1551–1555. [Google Scholar] [CrossRef]
- Jiang, L.; Gonzalez-Diaz, A.; Ling-Chin, J.; Roskilly, A.P.; Smallbone, A.J. Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption. Appl. Energy 2019, 245, 1–15. [Google Scholar] [CrossRef]
- Jiang, L.; Roskilly, A.P.; Wang, R.Z. Performance exploration of temperature swing adsorption technology for carbon dioxide capture. Energy Convers. Manag. 2018, 165, 396–404. [Google Scholar] [CrossRef]
- Knudsen, J.N.; Bade, O.M.; MAnheden RBjorklund Gorset, O.; Woodhouse, S. Novel Concept for Emission Control in Post Combustion Capture. Energy Procedia 2013, 37, 1804–1813. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Ditaranto, M.; Yan, J. Carbon capture with low energy penalty: Supplementary fired natural gas combined cycles. Appl. Energy 2012, 97, 164–169. [Google Scholar] [CrossRef]
- Li, H.; Ditaranto, M.; Berstad, D. Technologies for increasing CO2 concentration in exhaust gas from natural gas-fired power production with post-combustion, amine-based CO2 capture. Energy 2011, 2, 1124–1133. [Google Scholar] [CrossRef] [Green Version]
- Pan, M.; Aziz, F.; Li, B.; Perry, S.; Zhang, N.; Bulatov, I.; Smith, R. Application of optimal design methodologies in retrofitting natural gas combined cycle power plants with CO2 capture. Appl. Energy 2016, 161, 695–706. [Google Scholar] [CrossRef]
- Naef, A.A.; Qasem, R.B.-M. Energy and productivity efficient vacuum pressure swing adsorption process to separate CO2 from CO2/N2 mixture using Mg-MOF-74: A CFD simulation. Appl. Energy 2018, 209, 190–202. [Google Scholar] [CrossRef]
- Bade, O.M.; Knudsen, J.N.; Gorset, O.; Askestad, I. Controlling Amine Mist Formation in CO2 Capture from Residual Catalytic Cracker (RCC) Flue Gas. Energy Procedia 2014, 63, 884–892. [Google Scholar] [CrossRef] [Green Version]
- Patel, N.C.; Teja, A.S. A new cubic equation of state for fluids and fluid mixtures. Chem. Eng. Sci. 1982, 3, 463–473. [Google Scholar] [CrossRef]
- Perspectives for the Energy Transition. Investment Needs for a Low-Carbon Energy System. 2017. Available online: https://www.irena.org/publications/2017/Mar/Perspectives-for-the-energy-transition-Investment-needs-for-a-low-carbon-energy-system (accessed on 20 October 2022).
- Raganati, F.; Ammendola, P.; Chirone, R. CO2 adsorption on fine activated carbon in a sound assisted fluidized bed: Effect of sound intensity and frequency, CO2 partial pressure and fluidization velocity. Appl. Energy 2014, 113, 1269–1282. [Google Scholar] [CrossRef]
- Renato, P. Cabral, Niall Mac Dowell. A novel methodological approach for achieving £/MWh cost reduction of CO2 capture and storage (CCS) processes. Appl. Energy 2017, 205, 529–539. [Google Scholar] [CrossRef]
- Zhao, R.; Zhao, L.; Deng, S.; Song, C.; He, J.; Shao, Y.; Li, S. A comparative study on CO2 capture performance of vacuum-pressure swing adsorption and pressure-temperature swing adsorption based on carbon pump cycle. Energy 2017, 137, 495–509. [Google Scholar] [CrossRef]
- Zhao, R.; Liu, L.; Zhao, L.; Deng, S.; Li, H. Thermodynamic analysis on carbon dioxide capture by Electric Swing Adsorption (ESA) technology. J. CO2 Util. 2018, 26, 388–396. [Google Scholar] [CrossRef]
- Sultanbekov, R.; Islamov, S.; Mardashov, D.; Beloglazov, I.; Hemmingsen, T. Research of the Influence of Marine Residual Fuel Composition on Sedimentation Due to Incompatibility. J. Mar. Sci. Eng. 2021, 9, 1067. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Park, S.-J. A review on solid adsorbents for carbon dioxide capture. J. Ind. Eng. Chem. 2016, 23, 1–11. [Google Scholar] [CrossRef]
- Vinod Kumar Singh, E. Anil Kumar. Measurement and analysis of adsorption isotherms of CO2 on activated carbon. Appl. Therm. Eng. 2016, 97, 77–86. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, C.; Snape, C.E.; Irons, R.; Stebbing, S.; Alderson, T.; Fitzgerald, D.; Liu, H. Process simulations of post-combustion CO2 capture for coal and natural gas-fired power plants using a polyethyleneimine/silica adsorbent. Int. J. Greenh. Gas Control 2017, 58, 276–289. [Google Scholar] [CrossRef]
- World Economic Outlook Update. 2019. Available online: https://www.imf.org/en/Publications/WEO/Issues/2019/01/11/weo-update-january-2019 (accessed on 20 October 2022).
- Wenbin, Z.; Hao, L.; Yuan, S.; Janis, C.; Chenggong, S.; Colin, E.S. Parametric study on the regeneration heat requirement of an amine-based solid adsorbent process for post-combustion carbon capture. Appl. Energy 2016, 168, 394–405. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Wang, L.W.; Wang, R.Z.; Ma, K.Q.; Jiang, L. Study on consolidated activated carbon: Choice of optimal adsorbent for refrigeration application. Int. J. Heat Mass Transf. 2013, 67, 867–876. [Google Scholar] [CrossRef]
- Litvinenko, V.; Bowbrik, I.; Naumov, I.; Zaitseva, Z. Global guidelines and require-ments for professional competencies of natural resource extraction engineers: Implications for ESG principles and sustainable development goals. J. Clean. Prod. 2022, 338, 130530. [Google Scholar] [CrossRef]
- Sultanbekov, R.; Beloglazov, I.; Islamov, S.; Ong, M.C. Exploring of the Incompatibility of Marine Residual Fuel: A Case Study Using Machine Learning Methods. Energies 2021, 14, 8422. [Google Scholar] [CrossRef]
- Tcvetkov, P.; Cherepovitsyn, A.; Fedoseev, S. The Changing Role of CO2 in the Transition to a Circular Economy: Review of Carbon Sequestration Projects. Sustainability 2019, 11, 5834. [Google Scholar] [CrossRef]
- Smyshlyaeva, K.I.; Rudko, V.A.; Povarov, V.G.; Shaidulina, A.A.; Efimov, I.; Gabdulkhakov, R.R.; Pyagay, I.N.; Speight, J.G. Influence of Asphaltenes on the Low-Sulphur Residual Marine Fuels’ Stability. J. Mar. Sci. Eng. 2021, 9, 1235. [Google Scholar] [CrossRef]
- Abanades, J.C.; Criado, Y.A.; Fernández, J.R. An air CO2 capture system based on the passive carbonation of large Ca(OH)2 structures. Sustain. Energy Fuels 2020, 4, 3409–3417. [Google Scholar] [CrossRef] [Green Version]
- Gunderson, R.; Stuart, D.; Petersen, B. The fossil fuel industry’s framing of carbon capture and storage: Faith in innovation, value instrumentalization, and status quo maintenance. J. Clean. Prod. 2020, 252, 119767. [Google Scholar] [CrossRef]
- Stephens, J.; Markusson, N.O. Technological optimism in climate mitigation: The case of carbon capture and storage. In The Oxford Handbook of Energy and Society; Debra, J.D., Matthias, G., Eds.; Oxford University Press: Oxford, UK, 2018; pp. 503–517. [Google Scholar]
- Krüger, T. Conflicts over carbon capture and storage in international climate governance. Energy Policy 2017, 100, 58–67. [Google Scholar] [CrossRef]
- Keith, D.W.; Holmes, G.; Angelo, D.S.; Heidel, K. A Process for Capturing CO2 from the Atmosphere. Joule 2018, 2, 1573–1594. [Google Scholar] [CrossRef] [Green Version]
- Rubin, E.S.; Davison, J.E.; Herzog, H.J. Herzog The cost of CO2 capture and storage. Int. J. Greenh. Gas Control 2015, 40, 378–400. [Google Scholar] [CrossRef]
- Guandalini, G.; Romano, M.C.; Ho, M.; Wiley, D.; Rubin, E.S.; Abanades, J.C. A sequential approach for the economic evaluation of new CO2 capture technologies for power plants. Int. J. Greenh. Gas Control 2019, 84, 219–231. [Google Scholar] [CrossRef]
- Gardarsdottir, S.O.; De Lena, E.; Romano, M.; Roussanaly, S.; Voldsund, M.; Pérez-Calvo, J.-F.; Berstad, D.; Fu, C.; Anantharaman, R.; Sutter, D.; et al. Comparison of Technologies for CO2 Capture from Cement Production—Part 2: Cost Analysis. Energies 2019, 12, 542. [Google Scholar] [CrossRef] [Green Version]
- Nazarov, V.; Retivov, V.; Gonopolsky, A.; Makarenkov, D.; Popov, A.; Aflyatunova, G. Study of the Technology of Using Complex Lithium-Сobalt Current Sources Using Combined Processes of Mechanical Processing. Leaching Extr. Ecol. Ind. Russ. 2022, 26, 10–16. [Google Scholar] [CrossRef]
- Samari, M.; Ridha, F.; Manovic, V.; Macchi, A.; Anthony, E.J. Direct capture of carbon dioxide from air via lime-based sorbents. Mitig. Adapt. Strat. Glob. Chang. 2020, 25, 25–41. [Google Scholar] [CrossRef]
- Erans, M.; Nabavi, S.A.; Manović, V. Carbonation of lime-based materials under ambient conditions for direct air capture. J. Clean. Prod. 2020, 242, 118330. [Google Scholar] [CrossRef]
- Aminu, M.D.; Nabavi, S.A.; Rochelle, C.A.; Manovic, V. A review of developments in carbon dioxide storage. Appl. Energy 2017, 208, 1389–1419. [Google Scholar] [CrossRef] [Green Version]
- Zou, H.; Du, H.; Wang, Y.; Zhao, L.; Mao, G.; Zuo, J.; Liu, Y.; Liu, X.; Huisingh, D. A review of the first twenty-three years of articles published in the Journal of Cleaner Production: With a focus on trends, themes, collaboration networks, low/no-fossil carbon transformations and the future. J. Clean. Prod. 2017, 163, 1–14. [Google Scholar] [CrossRef]
- Hanak, D.P.; Jenkins, B.G.; Kruger, T.; Manovic, V. High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner. Appl. Energy 2017, 205, 1189–1201. [Google Scholar] [CrossRef] [Green Version]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon capture and storage (CCS): The way forward Energy. Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef] [Green Version]
- Santori, G.; Charalambous, C.; Ferrari, M.-C.; Stefano Brandani, S. Adsorption artificial tree for atmospheric carbon dioxide capture, purification and compression. Energy 2018, 162, 1158–1168. [Google Scholar] [CrossRef] [Green Version]
- Barkakaty, B.; Sumpter, B.G.; Ivanov, I.N.; Potter, M.E.; Jones, C.W.; Lokitz, B.S. Emerging materials for lowering atmospheric carbon. Environ. Technol. Innov. 2017, 7, 30–43. [Google Scholar] [CrossRef] [Green Version]
- Brethomé, F.M.; Williams, N.J.; Seipp, C.A.; Kidder, M.K.; Custelcean, R. Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power. Nat Energy 2018, 3, 553–559. [Google Scholar] [CrossRef]
- Minx, J.C.; Lamb, F.; Callaghan, M.W.; Bornmann, L.; Fuss, S. Fast growing research on negative emissions. Environ. Res. Lett. 2017, 12, 035007. [Google Scholar] [CrossRef]
- Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E.A.; Fuss, S.; Dowell, N.M.; Minx, J.C.; Smith, P.; Williams, C.K. The technological and economic prospects for CO2 utilization and removal. Nature 2019, 575, 87–97. [Google Scholar] [CrossRef]
- Bjerge, L.M.; Brevik, P. CO2 Capture in the Cement Industry, Norcem CO2 Capture Project (Norway). Energy Procedia 2014, 63, 6455–6463. [Google Scholar] [CrossRef] [Green Version]
- ECRA. CCS—Carbon Capture and Storage. Available online: https://ecra-online.org/research/ccs/ (accessed on 6 January 2022).
- Nelson, T.O.; Coleman, L.J.; Mobley, P.; Kataria, A.; Tanthana, J.; Lesemann, M.; Bjerge, L.M. Solid Sorbent CO2 Capture Technology Evaluation and Demonstration at Norcem’s Cement Plant in Brevik, Norway. Energy Procedia 2014, 63, 6504–6516. [Google Scholar] [CrossRef] [Green Version]
- National Energy Technology Laboratory (NETL). Cost of Capturing CO2 from Industrial Sources; DOE/NETL-2013/1602. 2014. Available online: https://www.netl.doe.gov/research/energy-analysis/search-publications/vuedetails?id=1836 (accessed on 6 January 2022).
- IEA. Energy Technology Transitions for Industry: Strategies for the Next Industrial Revolution; OECD Publishing: Paris, France, 2009. [Google Scholar] [CrossRef]
- Carbo, M. Biomass-Based Industrial CO2 Sources: Biofuels Production with CCS; United Nations Industrial Development Organization: Vienna, Austria, 2011; Available online: https://www.globalccsinstitute.com/archive/hub/publications/15681/global-technology-roadmap-ccs-industry-biomass-based-industrial-co2-sources-biofuels-production-ccs.pdf (accessed on 21 January 2022).
- Jakobsen, J.; Roussanaly, S.; Anantharaman, R. A techno-economic case study of CO2 capture, transport and storage chain from a cement plant in Norway. J. Clean. Prod. 2017, 144, 523–539. [Google Scholar] [CrossRef] [Green Version]
- Peeters, A.N.M.; Faaij, A.P.C.; Turkenburg, W.C. Techno-economic analysis of natural gas combined cycles with post-combustion CO2 absorption, including a detailed evaluation of the development potential. Int. J. Greenh. Gas Control 2017, 1, 396–417. [Google Scholar] [CrossRef] [Green Version]
- Guandalini and Romano, 2019. G. Guandalini, M.C. Romano CCS Economic Benchmarking Calculation Tool. 2019. Available online: https://zenodo.org/record/2600790#.Ye1tcclBzIU (accessed on 20 October 2022).
- Bolland, O.; Undrum, H. A novel methodology for comparing CO2 capture options for natural gas-fired combined cycle plants. Adv. Environ. Res. 2003, 7, 901–911. [Google Scholar] [CrossRef]
- Kuramochi, T.; Ramírez, A.; Turkenburg, W.; Faaij, A. Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes. Prog. Energy Combust. Sci. 2012, 38, 87–112. [Google Scholar] [CrossRef]
- Mallon, W.; Buit, L.; van Wingerden, J.; Lemmens, H.; Eldrup, N.H. Costs of CO2 Transportation Infrastructures. Energy Procedia 2013, 37, 2969–2980. [Google Scholar] [CrossRef] [Green Version]
- Roussanaly, S.; Fu, C.; Voldsund, M.; Anantharaman, R.; Spinelli, M.; Romano, M. Techno-economic Analysis of MEA CO2 Capture from a Cement Kiln—Impact of Steam Supply Scenario. Energy Procedia 2017, 114, 6229–6239. [Google Scholar] [CrossRef] [Green Version]
- Erin, E.S. The Cost of CO2 Transport and Storage in Global Integrated Assessment Modeling, Submitted to the Institute for Data, Systems, and Society in Partial Fulfillment of the Requirements for the degree of Master of Science in Technology and Policy at the Massachusetts Institute of Technology, June 2021. Master’ Thesis, B.S. Environmental Science, University of California, Berkeley, CA, USA, 2015. Available online: https://globalchange.mit.edu/sites/default/files/Smith-TPP-2021.pdf (accessed on 20 October 2022).
- Damen, K.; van Troost, M.; Faaij, A.; Turkenburg, W. A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: Review and selection of promising conversion and capture technologies. Prog. Energy Combust. Sci. 2006, 32, 215–246. [Google Scholar] [CrossRef]
- van Straelen, J.; Geuzebroek, F.; Goodchild, N.; Protopapas, G.; Mahony, L. CO2 capture for refineries, a practical approach. Int. J. Greenh. Gas Control 2010, 4, 316–320. [Google Scholar] [CrossRef]
- IPCC. Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2005; Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/srccs_wholereport-1.pdf (accessed on 20 October 2022).
- Brown, J.; Holtedahl, P.; Brown, D. Global Technology Roadmap for CCS in Industry, Sectoral Assessment: Refineries, Report No./DNV Reg No.: /12P5TPP-9 Draft Rev 3. 2010-08-25. Available online: https://www.globalccsinstitute.com/archive/hub/publications/15691/global-technology-roadmap-ccs-industry-sectoral-assessment-refineries.pdf (accessed on 20 October 2022).
- IEA. Energy efficiency, International Energy Agency, Typeset in France by IEA—December 2020. 2020. Available online: https://iea.blob.core.windows.net/assets/59268647-0b70-4e7b-9f78-269e5ee93f26/Energy_Efficiency_2020.pdf (accessed on 20 October 2022).
- Neelis, M.L.; Patel, M.; Gielen, D.J.; Blok, K. Modelling CO2 emissions from non-energy use with the non-energy use emission accounting tables (NEAT) model. Resour. Conserv. Recycl. 2005, 45, 226–250. [Google Scholar] [CrossRef] [Green Version]
- Nikita, O.K.; Dmitry, A.G. Exploring the implications of Russian Energy Strategy project for oil refining sector. Energy Policy 2018, 117, 198–207. [Google Scholar] [CrossRef]
- The Ministry of Energy of the Russian Federation, Statistic, Primary Cruide Oil Proccecing by Domestic Refineries, Russia. 2022. Available online: https://minenergo.gov.ru/en/activity/statistic (accessed on 29 January 2022).
- Wilkinson, M.B.; Boden, J.C.; Gilmartin, T.; Ward, C.; Cross, D.A.; Allam, R.J.; Ivens, N.W. Ivens CO2 Capture from Oil Refinery Process Heaters Through Oxyfuel Combustion. In Greenhouse Gas Control Technologies—6th International Conference, Pergamon; Gale, J., Kaya, Y., Eds.; 2003; pp. 69–74. [Google Scholar] [CrossRef]
- Flamme, S.; Benrath, D.; Glanz, S.; Hoffart, F.M.; Pielow, C.; Roos, M.; Span, R.; Wagner, H.-J.; Schönauer, A.-L. ELEGANCY: The Interdisciplinary Approach of the German Case Study to Enable a Low Carbon Economy by Hydrogen and CCS. Energy Procedia 2019, 158, 3709–3714. [Google Scholar] [CrossRef]
- Ajayi, T.; Gomes, J.S.; Bera, A. A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. Pet. Sci. 2019, 16, 1028–1063. [Google Scholar] [CrossRef] [Green Version]
- The Global CCS Institute. Technology Scouting—Carbon Capture: From Today’s to Novel Technologies, Concawe Review Volume 29, Number 2. February 2021. Available online: https://www.concawe.eu/wp-content/uploads/Technology-scouting%E2%80%94carbon-capture-from-todays-to-novel-technologies.pdf (accessed on 6 January 2022).
- Darde, V.; Maribo-Mogensen, B.; van Well, W.J.; Stenby, E.H.; Thomsen, K. Process simulation of CO2 capture with aqueous ammonia using the Extended UNIQUAC model. Int. J. Greenh. Gas Control 2012, 10, 74–87. [Google Scholar] [CrossRef]
- Hanak, D.P.; Biliyok, C.; Manovic, V. Efficiency improvements for the coal-fired power plant retrofit with CO2 capture plant using chilled ammonia process. Appl. Energy 2015, 151, 258–272. [Google Scholar] [CrossRef]
- Kvamsdal, H.M.; Romano, M.C.; van der Ham, L.; Bonalumi, D.; van Os, P.; Goetheer, E. Energetic evaluation of a power plant integrated with a piperazine-based CO2 capture process. Int. J. Greenh. Gas Control 2014, 28, 343–355. [Google Scholar] [CrossRef]
- Lucquiaud, M.; Gibbins, J. On the integration of CO2 capture with coal-fired power plants: A methodology to assess and optimise solvent-based post-combustion capture systems. Chem. Eng. Res. Des. 2011, 89, 1553–1571. [Google Scholar] [CrossRef]
- Mantripragada, H.C.; Zhai, H.; Rubin, E.S. Boundary Dam or Petra Nova—Which is a better model for CCS energy supply? Int. J. Greenh. Gas Control 2019, 82, 59–68. [Google Scholar] [CrossRef]
- Martínez, I.; Grasa, G.; Parkkinen, J.; Tynjälä, T.; Hyppänen, T.; Murillo, R.; Romano, M.C. Review and research needs of Ca-Looping systems modelling for post-combustion CO2 capture applications. Int. J. Greenh. Gas Control 2016, 50, 271–304. [Google Scholar] [CrossRef]
- Merkel, T.C.; Lin, H.; Wei, X.; Baker, R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membr. Sci. 2010, 359, 126–139. [Google Scholar] [CrossRef]
- Rochelle, G.T. Scrubbing for CO2 capture. Science 2009, 325, 1652–1654. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Shen, Y.; Zhou, X.; Liu, F.; Zhang, S.; Lu, S.; Ye, J.; Li, S.; Chen, J.; Li, W. Relationship between tertiary amine’s physical property and biphasic solvent’s CO2 absorption performance: Quantum calculation and experimental demonstration. Chem. Eng. J. 2022, 428, 131241. [Google Scholar] [CrossRef]
- Vega, F.; Cano, M.; Sanna, A.; Infantes, J.M.; Maroto-Valer, M.M.; Navarrete, B. Oxidative degradation of a novel AMP/AEP blend designed for CO2 capture based on partial oxy-combustion technology. Chem. Eng. J. 2018, 350, 883–892. [Google Scholar] [CrossRef]
- Afshar-Mohajer, N.; Li, C.; Rule, A.M.; Katz, J.; Koehler, K. A laboratory study of particulate and gaseous emissions from crude oil and crude oil-dispersant contaminated seawater due to breaking waves. Atmos. Environ. 2018, 179, 177–186. [Google Scholar] [CrossRef]
- Aklilu, Y.А.; Cho, S.; Zhang, Q.; Taylor, E. Source apportionment of volatile organic compounds measured near a cold heavy oil production area. Atmos. Res. 2018, 206, 75–86. [Google Scholar] [CrossRef]
- Bolaji, B.O.; Huan, Z. Ozone depletion and global warming: Case for the use of natural refrigerant—A review. Renew. Sustain. Energy Rev. 2013, 18, 49–54. [Google Scholar] [CrossRef]
- Zhukovskiy, Y.L.; Semenyuk, A.V.; Alieva, L.Z.; Arapova, E.G. Blockchain-based digital platforms to reduce the carbon footprint of mining. MIAB. Mining Inf. Anal. Bull. 2022, 6, 361–378. (In Russian) [Google Scholar] [CrossRef]
- Smyshlyaeva Ksenia, I.; Rudko, V.A. Description of the stability of residual marine fuel using ternary phase diagrams and SARA analysis. E3S Web Conf. 2021, 266, 02006. [Google Scholar] [CrossRef]
- Cherepovitsyn, A.; Chvileva, T.; Fedoseev, S. Popularization of Carbon Capture and Storage Technology in Society: Principles and Methods. Int. J. Environ. Res. Public Health 2020, 17, 8368. [Google Scholar] [CrossRef]
- Johnson, M.R.; Tyner, D.R.; Conley, S.; Schwietzke, S.; Zavala-Araiza, D. Comparisons of Airborne Measurements and Inventory Estimates of Methane Emissions in the Alberta Upstream Oil and Gas Sector. Environ. Sci. Technol. 2017, 51, 13008–13017. [Google Scholar] [CrossRef] [PubMed]
- Khoramfar, S.; Jones, K.D.; Boswell, J.; Ghobadi, J.; Paca, J. Evaluation of a sequential biotrickling–biofiltration unit for removal of VOCs from the headspace of crude oil storage tanks. J. Chem. Technol. Biotechnol. 2018, 93, 1778–1789. [Google Scholar] [CrossRef]
- Koss, A.; Yuan, B.; Warneke, C.; Gilman, J.B.; Lerner, B.M.; Veres, P.R.; Peischl, J.; Eilerman, S.; Wild, R.; Brown, S.S.; et al. Observations of VOC emissions and photochemical products over US oil-and gas-producing regions using high-resolution H3O+ CIMS (PTR-ToF-MS). Atmos. Meas. Tech. 2017, 10, 2941–2968. [Google Scholar] [CrossRef] [Green Version]
- Salih, Y.M.; Karim, A.R.; Khorshid, I. Estimation the time of spill crude oil in deep soil by the detection of volatile organic compounds (VOCs). Pet. Sci. Technol. 2018, 36, 1497–1502. [Google Scholar] [CrossRef]
- Fetisov, V.; Gonopolsky, A.M.; Davardoost, H.; Ghanbari, A.R.; Mohammadi, A.H. Regulation and impact of VOC and CO2 emissions on low-carbon energy systems resilient to climate change: A Case study on an environmental issue in the oil and gas industry. Energy Sci. Eng. 2022. [Google Scholar] [CrossRef]
- Romasheva, N.; Ilinova, A. CCS Projects: How Regulatory Framework Influences Their Deployment. Resources 2019, 8, 181. [Google Scholar] [CrossRef] [Green Version]
- Kovalenko, K.; Kovalenkj, N. The problem of waste in the Russian Federation. MATEC Web Conf. 2018, 193, 02030. [Google Scholar] [CrossRef]
- State Report of the Ministry of Natural Resources and Environment of the Russian Federation for 2019 [ГoсударственныйдoкладминистерстваприрoдныхресурсoвиэкoлoгииРoссийскoйФедерацииза 2019 гoд]. Available online: https://www.mnr.gov.ru/upload/iblock/cf1/07_09_2020_M_P_O%20(1).pdf (accessed on 20 October 2022).
- OPEC Annual Statistical Bulletin. 2020. Available online: https://www.opec.org/opec_web/en/press_room/6045.htm (accessed on 20 October 2022).
- Statistical Review of World Energy. 2020. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf (accessed on 20 October 2022).
- Saeed, T.; Al-Mutairi, M. Comparative Composition of Volatile Organic Compounds in the Water-Soluble Fraction of Different Crude Oils Produced in Kuwait. Water Air Soil Pollut. 2000, 120, 107–119. [Google Scholar] [CrossRef]
- Saeed, T.; Lulwa NAli Al-Bloushi, A.; Al-Hashash, H.; Al-Bahloul, M.; Al-Khabbaz, A.; Ali, S.G. Photodegradation of Volatile Organic Compounds in the Water-Soluble Fraction of Kuwait Crude Oil in Seawater: Effect of Environmental Factors. Water Air Soil. Pollut. 2013, 224, 1584. [Google Scholar] [CrossRef]
- Salih, Y.M.; Karim, A.R.; Khurshid, I. A comparative study of the emission of volatile organic compounds (VOCs) from different sulfur content crude oils. Pet. Sci. Technol. 2018, 36, 1037–1043. [Google Scholar] [CrossRef]
- Rajabi, H.; Mosleh, M.H.; Mandal, P.; Lea-Langton, A.; Sedighi, M. Emissions of volatile organic compounds from crude oil processin—Global emission inventory and environmental release. Sci. Total Environ. 2020, 727, 138654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, I.J.; Blake, N.J.; Barletta, B.; Diskin, G.S.; Fuelberg, H.E.; Gorham, K.; Huey, L.G.; Meinardi, S.; Rowland, F.S.; Vay, S.A.; et al. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2–C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2. Atmos. Chem. Phys. 2010, 10, 11931–11954. [Google Scholar] [CrossRef] [Green Version]
- Sonibare, J.A.; Akeredolu, F.A.; Obanijesu, E.O.-O.; Adebiyi, F.M. Contribution of Volatile Organic Compounds to Nigeria’s Airshed by Petroleum Refineries. Pet. Sci. Technol. 2007, 25, 503–516. [Google Scholar] [CrossRef]
- Pashkevich, M.A.; Bech, J.; Matveeva, V.A.; Alekseenko, A.V. Biogeochemical assessment of soils and plants in industrial, residential and recreational areas of Saint Petersburg. J. Min. Inst. 2020, 241, 125. [Google Scholar] [CrossRef]
- Uhler, A.D.; McCarthy, K.J.; Emsbo-Mattingly, S.D.; Stout, S.A.; Douglas, G.S. Douglas Predicting Chemical Fingerprints of Vadose Zone Soil Gas and Indoor Air from Non-Aqueous Phase Liquid Composition. Environ. Forensics 2010, 11, 342–354. [Google Scholar] [CrossRef]
- Villasenor, R.; Magdaleno, M.; Quintanar, A.; Gallardo, J.C.; López, M.T.; Jurado, R.; Miranda, A.; Aguilar, M.; Melgarejo, L.A.; Palmerín, E.; et al. An air quality emission inventory of offshore operations for the exploration and production of petroleum by the Mexican oil industry. Atmos. Environ. 2003, 37, 3713–3729. [Google Scholar] [CrossRef]
- Warneke, C.; Geiger, F.; Edwards, P.M.; Dube, W.; Pétron, G.; Kofler, J.; Zahn, A.; Brown, S.S.; Graus, M.; Gilman, J.B.; et al. Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: Oil and gas well pad emissions compared to ambient air composition. Atmos. Chem. Phys. Discuss. 2014, 14, 10977–10988. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Cheng, S.; Li, G.; Wang, G.; Wang, H. Characteristics of volatile organic compounds (VOC) emitted from a petroleum refinery in Beijing, China. Atmos. Environ. 2014, 89, 358–366. [Google Scholar] [CrossRef]
- Wei, W.; Lv, Z.; Yang, G.; Cheng, S.; Li, Y.; Wang, L. VOCs emission rate estimate for complicated industrial area source using an inverse-dispersion calculation method: A case study on a petroleum refinery in Northern China. Environ. Pollut. 2016, 218, 681–688. [Google Scholar] [CrossRef]
- Yang, C.; Wang, Z.; Li, K.; Hollebone, B.; Brown, C.; Landriault, M. Determination of Volatile Organic Compounds over Crude Oils Using Novel Automatic Liquid Sampler-Headspace (ALS-HS) Gas Chromatography/Mass Spectrometry. 2007. Volume 1. Available online: https://www.osti.gov/etdeweb/biblio/20945115 (accessed on 20 October 2022).
- Ilyushin, Y.; Afanaseva, O. Spatial Distributed Control System Of Temperature Field: Synthesis And Modeling. ARPN J. Eng. Appl. Sci. 2021, 16, 1491–1506. Available online: http://www.arpnjournals.org/jeas/research_papers/rp_2021/jeas_0721_8642.pdf (accessed on 20 October 2022).
- Martirosyan, A.V.; Ilyushin, Y.V.; Afanaseva, O.V. Development of a Distributed Mathematical Model and Control System for Reducing Pollution Risk in Mineral Water Aquifer Systems. Water 2022, 14, 151. [Google Scholar] [CrossRef]
- Yuan, B.; Warneke, C.; Shao, M.; de Gouw, J.A. Interpretation of volatile organic compound measurements by proton-transfer-reaction mass spectrometry over the deep-water horizon oil spill. Int. J. Mass Spectrom. 2014, 358, 43–48. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, N.; Jiang, X.; Zhao, Y. Characterization of Ambient Volatile Organic Compounds (VOCs) in the Area Adjacent to a Petroleum Refinery in Jinan, China. Aerosol Air Qual. Res. 2017, 17, 944–950. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yan, X.; Gao, F.; Thai, P.; Wang, H.; Chen, D.; Zhou, L.; Gong, D.; Li, Q.; Morawska, L.; et al. Emission and health risk assessment of volatile organic compounds in various processes of a petroleum refinery in the Pearl River Delta, China. Environ. Pollut. 2018, 238, 452–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GB 31570-2015; Emission Standard of Pollutants for Petroleum Refining Industry. The General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, The Standardization Administration of the People’s Republic of China: 2015. Available online: https://books.google.ru/books?id=icfaCQAAQBAJ&printsec=frontcover&hl=ru&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false (accessed on 20 October 2022).
- Energy Technology Perspectives. Special Report on Carbon Capture, Utilisation and Storage CCUS in Clean Energy Transitions. 2020. Available online: https://iea.blob.core.windows.net/assets/181b48b4-323f-454d-96fb-0bb1889d96a9/CCUS_in_clean_energy_transitions.pdf (accessed on 20 October 2022).
- An Official Website of the European Union. European Commission Energy, Climate Change, Environment, Climate Action, EU Action, EU Climate Action and the European Green Deal. 2021. Available online: https://ec.europa.eu/clima/policies/eu-climate-action/2030_ctp_en (accessed on 20 October 2022).
- The U.S. Energy Information Administration (EIA). «Short-Term Energy Outlook». 2021. Available online: https://www.eia.gov/outlooks/steo/report/global_oil.php (accessed on 20 October 2022).
- The UNFCCC Website the INDCs. 2021. Available online: https://www4.unfccc.int/sites/submissions/indc/Submission%20Pages/submissions.aspx (accessed on 20 October 2022).
- Global Energy and CO2 Status Report—2017; International Energy Agency (IEA): March 2018. Available online: https://www.connaissancedesenergies.org/sites/default/files/pdf-actualites/geco2017.pdf (accessed on 20 October 2022).
- Mansfeld, D.; Vodopyanov, A.; Sintsov, S. Disintegration of Carbon Dioxide in a Microwave Plasma Torch Sustained by Gyrotron Radiation at a Frequency of 24 GHz at Atmospheric Pressure, Conference: ISPC24. September 2019. Available online: https://www.researchgate.net/publication/335570845_Disintegration_of_carbon_dioxide_in_a_microwave_plasma_torch_sustained_by_gyrotron_radiation_at_a_frequency_of_24_GHz_at_atmospheric_pressure (accessed on 20 October 2022).
- Bongers, W.; Bouwmeester, H.; Wolf, B.; Peeters, F.; Welzel, S.; van den Bekerom, D.; den Harder, N.; Goede, A.; Graswinckel, M.; Groen, P.W.; et al. Plasma-driven dissociation of CO2 for fuel synthesis. Plasma Process Polym. 2017, 14, e1600126. [Google Scholar] [CrossRef] [Green Version]
- Kuparinen, K.; Vakkilainen, E.; Tynjälä, T. Biomass-based carbon capture and utilization in kraft pulp mills. Mitig. Adapt. Strat. Glob. Chang. 2019, 24, 1213–1230. [Google Scholar] [CrossRef] [Green Version]
- Lechtenböhmer, S.; Dienst, C.; Brenninkmeijer, C.; Fischedick, M.; Hanke, T.; Langrock, T.; Gürtler, M.; Lelieveld, J.; Hennicke, P.; Kruse, S. Treibhausgasemissionen des russischenErdgasExportpipeline-Systems Ergebnisse und HochrechnungenempirischerUntersuchungen in Russland. ProjektimAuftrag der E.ON Ruhrgas AG Wuppertal Institut für Klima, Umwelt und Energie in Zusammenarbeitmit dem Max-Planck-Institut für Chemie, Mainz, Wuppertal und Mainz Februar. 2005. Available online: https://epub.wupperinst.org/frontdoor/deliver/index/docId/2153/file/2153_GEPS_de.pdf (accessed on 20 October 2022).
- Jannik Schlemme, Matthias Schimmel, Christian Achtelik in Zusammenarbeitmit: Institut für Energiewirtschaft und RationelleEnergieanwendungForschungsgesellschaft für Energiewirtschaft. Energiewende in der Industrie, Potenziale und Wechselwirkungenmit dem Energiesektor, Branchensteckbrief der Eisen- und Stahlindustrie. Bundesministerium für Wirtschaft und Energie Navigant Energy Germany GmbH. 2020. Available online: https://www.bmwi.de/Redaktion/DE/Downloads/E/energiewende-in-der-industrie-ap2a-branchensteckbrief-stahl.pdf?__blob=publicationFile&v=4 (accessed on 20 October 2022).
- Cerniauskas, S.; Markewitz, P.; Linßen, J.; Kullmann, F.; Groß, T.; Lopion, P.; Heuser, P.-M.; Grube, T.; Robinius, M.; Stolten, D. WissenschaftlicheBegleitstudie der Wasserstoff Roadmap Nordrhein-Westfalen. Ministerium für wirtschaft, innovation, digitalisierung und energie des landesnordrhein-westfalen, Energie& Umwelt /Energy & Environment Band. 2019. Volume 535, ISBN 978-3-95806-547-5. Available online: https://www.wirtschaft.nrw/sites/default/files/asset/document/eu_535_h2_roadmap_nrw.pdf (accessed on 20 October 2022).
- Fritsche, U.R.; Schmidt, K. Endenergiebezogene Gesamtemissionenfür Treibhausgaseausfossilen Energieträgernunter Einbeziehungder Bereitstellungsvorketten, Kurzberichtim Auftragdes Bundesverbandsderdeutschen Gas- und Wasserwirtschafte. V. (BGW), Öko-Institut, BüroDarmstadt, Darmstadt, August 2007. Available online: http://iinas.org/tl_files/iinas/downloads/GEMIS/2007_thg_fossil_BGW.pdf (accessed on 20 October 2022).
- Peletiri, S.P.; Rahmanian, N.; Mujtaba, I.M. CO2 Pipeline Design: A Review. Energies 2018, 11, 2184. [Google Scholar] [CrossRef] [Green Version]
- Johnsen, K.; Helle, K.; Røneid, S.; Holt, H. DNV recommended practice: Design and operation of CO2 pipelines. Energy Procedia 2011, 4, 3032–3039. [Google Scholar] [CrossRef] [Green Version]
- Schlesinger, M.; Lindenberger, D.; Christian Lutz, C. Entwicklung der Energiemärkte—Energiereferenzprognose, Projekt Nr. 57/12, Studie imAuftrag des Bundesministeriums für Wirtschaft und Technologie. Basel/Köln/Osnabrück Juni 2014. Available online: https://www.bmwi.de/Redaktion/DE/Publikationen/Studien/entwicklung-der-energiemaerkte-energiereferenzprognose-endbericht.pdf?__blob=publicationFile&v=7 (accessed on 20 October 2022).
- Reuß, M.E. Techno-ökonomische Analyse alternative Wasserstoffinfrastruktur. Schriften des Forschungszentrums Jülich, Reihe Energie & Umwelt /Energy & Environment Band. 2019. Volume 467, ISBN 978-3-95806-414-0. Available online: https://juser.fz-juelich.de/record/864486/files/Energie_Umwelt_467.pdf (accessed on 20 October 2022).
- Ochirbat, P.; Chinzorig, B. On enhancement of cooperation between universities for implementation of the program «Sustainable development–2030». J. Min. Inst. 2018, 229, 27. [Google Scholar] [CrossRef]
- McKinsey & Company. Änderungen der europäischen Richtliniezum Emissionshandel: Auswirkungen auf die deutsche Zementindustrie. ImAuftrag von: Verein Deutscher Zementwerkee.V. und Bundesverband der DeutschenZementindustriee.V. Düsseldorf, Juni 2008. Available online: https://www.vdz-online.de/fileadmin/wissensportal/publikationen/zementindustrie/EU_ETS_Zementindustrie_DE.pdf (accessed on 20 October 2022).
- Wang, A.; van der Leun, K.; Peters, D.; Buseman, M. European Hydrogen Backbone. July 2020. Available online: https://gasforclimate2050.eu/ehb/ (accessed on 20 October 2022).
- You, F.; Tang, Y. Multicriteria Environmental and Economic Analysis of Municipal Solid Waste Incineration Power Plant with Carbon Capture and Separation from the Life-Cycle Perspective. ACS Sustain. Chem. Eng. 2018, 6, 937–956. [Google Scholar] [CrossRef]
- Gabov, V.V.; Zadkov, D.A.; Babyr, N.V.; Xie, F. Nonimpact rock pressure regulation with energy recovery into the hydraulic system of the longwall powered support. Eurasian Min. 2021, 36, 55–59. [Google Scholar] [CrossRef]
- Islamov, S.R.; Bondarenko, A.V.; Korobov, G.Y.; Podoprigora, D.G. Complex algorithm for developing effective kill fluids for oil and gas condensate reservoirs. Int. J. Civ. Eng. Technol. 2019, 10, 2697–2713. [Google Scholar]
- Kather, A.; Kahlke, S.-L.; Engel, F. Verbund CLUSTER: Auswirkungen von Begleitstoffen in den abgeschiedenen CO2-Strömen einesregionalen Clusters verschiedener Emittenten auf Transport, Injektion und SpeicherungEndbericht des Teilprojekts CLUSTER—TUHH Definition der CO2-Quellen, Quellenbilanzierung, Interaktion Quelle/Transportnetz, Schiffstransport. Hamburg, 29. Technische Universität Hamburg Institut für Energietechnik. März 2019. Available online: https://www.bgr.bund.de/DE/Themen/Nutzung_tieferer_Untergrund_CO2Speicherung/CO2Speicherung/CLUSTER/Downloads/Schlussbericht_TUHH.pdf;jsessionid=F91ED51450172690B8D425E557D6ED82.2_cid321?__blob=publicationFile&v=3 (accessed on 20 October 2022).
- Godec, M.L. Global Technology Roadmap for CCS in Industry, Sectoral Assessment CO2 Enhanced Oil Recovery, Advanced Resources International, United Nations Industrial Development Organization. 5 May 2011. Available online: https://www.unido.org/sites/default/files/2011-05/EOR_0.pdf (accessed on 20 October 2022).
- Müller-Syring, G.; Henel, M.; Poltrum, M.; Wehling, A.; Dannenberg, E.; Glandien, J.; Hartmut Krause, H.; Möhrke, F.; Zdrallek, M.; Ortloff, F. Deutscher verein des gas-und wasserfaches E.V. (DVGW) Transformationspfadezur Treibhausgas-neutralität der Gasnetze und Gasspeichernach COP 21. Energiewende. 2018, pp. 1–3. Available online: https://www.dvgw.de/medien/dvgw/forschung/berichte/transformationspfade-treibhausgasneutralitaet-1810mueller.pdf (accessed on 20 October 2022).
- Element Energy. Shipping CO2—UK Cost Estimation Study. 2018. Final Report for Business, Energy & Industrial Strategy Department. November 2018. pp. 1–59. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/761762/BEIS_Shipping_CO2.pdf (accessed on 20 October 2022).
- Litvinenko, V.S.; Tsvetkov, P.S.; Dvoynikov, M.V.; Buslaev, G.V. Barriers to implementation of hydrogen initiatives in the context of global energy sustainable development. J. Min. Inst. 2020, 244, 428–438. [Google Scholar] [CrossRef]
- Terlouw, W.; Peters, D.; van Tilburg, J.; Schimmel, M.; Berg, T.; Cihlar, J.; Mir, G.U.R.; Spöttle, M.; Staats, M.; Lejaretta, A.V.; et al. Gas for Climate—The Optimal Role for Gas in a Net-Zero Emissions Energy System. Report 18 March 2019. Available online: https://gasforclimate2050.eu/wp-content/uploads/2020/03/Navigant-Gas-for-Climate-The-optimal-role-for-gas-in-a-net-zero-emissions-energy-system-March-2019.pdf (accessed on 20 October 2022).
- Khalifa, O.; Alkhatib, I.I.I.; Bahamon, D.; Alhajaj, A.; Abu-Zahra, M.R.M.; Vega, L.F. Modifying absorption process configurations to improve their performance for Post-Combustion CO2 capture—, What have we learned and what is still Missing? Chem. Eng. J. 2022, 430, 133096. [Google Scholar] [CrossRef]
- Sandeep Roy. Industry Stories. The Oil and Gas Industry’s Path to Net Zero Emissions, Energy, Infosys. 2021. Available online: https://www.infosys.com/insights/industry-stories/oil-gas-industry.html (accessed on 20 October 2022).
Reference | Plant Economic Lifetime | CO2 Avoidance Costs | |
---|---|---|---|
Petroleum Refineries | Other Industries | ||
[42,43,44] | 20–30 | ∼45 EUR/t captured (2035year) | 25–40 EUR/t (2030) |
[45] | 30 | ∼40 EUR/t captured (2050 year) | 45–60 EUR/t (2050) |
[46,47,48] | 25 | ∼43 EUR/t captured (2050 year) | 45–60 EUR/t (2050) |
[49,50,51,52,53] | 25 | ∼45 EUR/t captured (2050 year) | 45–60 EUR/t (2050) |
Varied (original figures from reviewed studies) | 30 | Catalytic crackers ∼45 EUR/t captured (oxyfuel combustion) | 30–50 EUR/t (2030) |
Varied (original figures from reviewed studies) | Not stated | Not stated | Not stated |
[54] | Not stated. | Not stated | Not stated |
[55,56,57] | 20–30 | ∼40 EUR/t captured (2050 year) | Not stated |
Varied (original figures from reviewed studies) | Not stated | ∼25 EUR/t captured (gas recycling) | Not stated |
[58,59,60] | Not stated. | ∼30 EUR/t captured (gas recycling) | 35–50 EUR/t (2030) |
Technology | Description |
---|---|
Pre-combustion | Based on the gasification process through which the fuel passes, pre-combustion produces syngas, which is primarily composed of hydrogen and carbon monoxide. Subsequently, hydrogen and carbon monoxide are converted to carbon dioxide, which then goes through a gas separation process. |
Combustion | The capture of gases that occurs during combustion is called “oxygen combustion”, and its principle is to burn fuel in an oxygen-enriched environment. |
Post-combustion | Capture takes place in the final phase of the release of combustion products. This process is ideal for capturing CO2 from energy-generating sources such as thermal power plants and other plants that use waste to generate energy. After the exit of the flue gases, they go through a process whereby CO2 is separated from other gases using an appropriate technology. |
Cost model inputs | Units |
Capital costs | Euro/kWh |
Fuel Cost | Euro/MMBtu |
Thermal output based on the lower heating value in determined | Btu/kWh |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fetisov, V.; Gonopolsky, A.M.; Zemenkova, M.Y.; Andrey, S.; Davardoost, H.; Mohammadi, A.H.; Riazi, M. On the Integration of CO2 Capture Technologies for an Oil Refinery. Energies 2023, 16, 865. https://doi.org/10.3390/en16020865
Fetisov V, Gonopolsky AM, Zemenkova MY, Andrey S, Davardoost H, Mohammadi AH, Riazi M. On the Integration of CO2 Capture Technologies for an Oil Refinery. Energies. 2023; 16(2):865. https://doi.org/10.3390/en16020865
Chicago/Turabian StyleFetisov, Vadim, Adam M. Gonopolsky, Maria Yu. Zemenkova, Schipachev Andrey, Hadi Davardoost, Amir H. Mohammadi, and Masoud Riazi. 2023. "On the Integration of CO2 Capture Technologies for an Oil Refinery" Energies 16, no. 2: 865. https://doi.org/10.3390/en16020865
APA StyleFetisov, V., Gonopolsky, A. M., Zemenkova, M. Y., Andrey, S., Davardoost, H., Mohammadi, A. H., & Riazi, M. (2023). On the Integration of CO2 Capture Technologies for an Oil Refinery. Energies, 16(2), 865. https://doi.org/10.3390/en16020865