Optical Interactions in Bio-Electricity Generation from Photosynthesis in Microfluidic Micro-Photosynthetic Power Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of the µPSC
2.2. Test Conditions
2.3. Terminal Connections and Alligator Clips
2.4. Illumination
2.5. Dark Condition
2.6. µPSC Measurement, Illumination, DAQ, and Current Measuring Unit Multimeters
2.7. µPSC Power
2.8. Polarization Characteristics
3. Results and Discussion
3.1. Performance of µPSC under Light Illumination
3.1.1. Open-Circuit Voltage (Voc)
3.1.2. Short-Circuit Current (Isc)
3.2. Electrical Loading
Load Voltage and Load Current
3.3. Voltage–Current (V–I) Characteristics at 147 Lux
Power–Current (P–I) Characteristics
3.4. Effect of Light Illumination on the Performance of µPSC
3.4.1. Effect of Light Illumination on the Voc, Isc, VL, and IL
3.4.2. Effect of Light and Dark Conditions on I–V and I–P Characteristics of the µPSC
3.4.3. Effect of Light and Dark Conditions on the Maximum Power (Pmp) and Operating Points of the µPSC
3.4.4. Long-Term Performance of µPSC
3.4.5. Light-to-Electricity Conversion Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alex Driver, P.B. Biophotovoltaics Energy from algae. Catal. April 2011, 2011, 13–15. [Google Scholar]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- McCormick, A.J.; Bombelli, P.; Bradley, R.W.; Thorne, R.; Wenzel, T.; Howe, C.J. Biophotovoltaics: Oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ. Sci. 2015, 8, 1092–1109. [Google Scholar] [CrossRef]
- Saar, K.L.; Bombelli, P.; Lea-Smith, D.J.; Call, T.; Aro, E.M.; Müller, T.; Howe, C.J.; Knowles, T.P.J. Enhancing power density of biophotovoltaics by decoupling storage and power delivery. Nat. Energy 2018, 3, 75–81. [Google Scholar] [CrossRef]
- Tanneru, H.K.; Kuruvinashetti, K.; Pillay, P.; Rengaswamy, R.; Packirisamy, M. Perspective—Micro Photosynthetic Power Cells. J. Electrochem. Soc. 2019, 166, B3012–B3016. [Google Scholar] [CrossRef]
- Kuruvinashetti, K.; Tanneru, H.K.; Pillay, P.; Packirisamy, M. Review on Microphotosynthetic Power Cells—A Low-Power Energy-Harvesting Bioelectrochemical Cell: From Fundamentals to Applications. Energy Technol. 2021, 9, 2001002. [Google Scholar] [CrossRef]
- Kuruvinashetti, K.; Pakkiriswami, S.; Packirisamy, M. Gold Nanoparticle Interaction in Algae Enhancing Quantum Ef fi ciency and Power Generation in Microphotosynthetic Power Cells. Adv. Energy Sustain. Res. 2021, 3, 2100135. [Google Scholar] [CrossRef]
- Bombelli, P.; Müller, T.; Herling, T.W.; Howe, C.J.; Knowles, T.P.J. A high power-density, mediator-free, microfluidic biophotovoltaic device for cyanobacterial cells. Adv. Energy Mater. 2015, 5, 1401299. [Google Scholar] [CrossRef] [PubMed]
- Sawa, M.; Fantuzzi, A.; Bombelli, P.; Howe, C.J.; Hellgardt, K.; Nixon, P.J. Electricity generation from digitally printed cyanobacteria. Nat. Commun. 2017, 8, 1327. [Google Scholar] [CrossRef] [PubMed]
- Ramanan, A.V.; Member, S.; Pakirisamy, M. Advanced Fabrication, Modeling, and Testing of a Microphotosynthetic Electrochemical Cell for Energy Harvesting Applications. IEEE Trans. Power Electron. 2015, 30, 1275–1285. [Google Scholar] [CrossRef]
- Shahparnia, M.; Packirisamy, M.; Juneau, P.; Zazubovich, V. Micro photosynthetic power cell for power generation from photosynthesis of algae. Technology 2015, 3, 119–126. [Google Scholar] [CrossRef]
- Lam, K.B.; Johnson, E.A.; Chiao, M.; Lin, L. A MEMS photosynthetic electrochemical cell powered by subcellular plant photosystems. J. Micromech. Syst. 2006, 15, 1243–1250. [Google Scholar] [CrossRef]
- Yagishita, T.; Horigome, T.; Tanaka, K. Effects of light, CO2 and inhibitors on the current output of biofuel cells containing the photosynthetic organism Synechococcus sp. J. Chem. Technol. Biotechnol. 1993, 56, 393–399. [Google Scholar] [CrossRef]
- Yagishita, T.; Sawayama, S.; Tsukahara, K.I.; Ogi, T. Effects of intensity of incident light and concentrations of Synechococcus sp. and 2-hydroxy-1,4-naphthoquinone on the current output of photosynthetic electrochemical cell. Sol. Energy 1997, 61, 347–353. [Google Scholar] [CrossRef]
- Chiao, M.; Lam, K.B.; Lin, L. Micromachined microbial and photosynthetic fuel cells. J. Micromech. Microeng. 2006, 16, 2547–2553. [Google Scholar] [CrossRef]
- Lam, K.B.; Irwin, E.F.; Healy, K.E.; Lin, L. Bioelectrocatalytic self-assembled thylakoids for micro-power and sensing applications. Sens. Actuators B Chem. 2006, 117, 480–487. [Google Scholar] [CrossRef]
- Friebe, V.M.; Frese, R.N. Photosynthetic reaction center-based biophotovoltaics. Curr. Opin. Electrochem. 2017, 5, 126–134. [Google Scholar] [CrossRef]
- Mershin, A.; Matsumoto, K.; Kaiser, L.; Yu, D.; Vaughn, M.; Nazeeruddin, M.K.; Bruce, B.D.; Graetzel, M.; Zhang, S. Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO. Sci. Rep. 2012, 2, 234. [Google Scholar] [CrossRef]
- Masadeh, M.A.; Kuruvinashetti, K.; Shahparnia, M.; Pillay, P.; Packirisamy, M. Electrochemical Modeling and Equivalent Circuit Representation of a Microphotosynthetic Power Cell. IEEE Trans. Ind. Electron. 2017, 64, 1561–1571. [Google Scholar] [CrossRef]
- Convert PPFD to Lux–Online Calculator|Waveform Lighting. Available online: https://www.waveformlighting.com/horticulture/convert-ppfd-to-lux-online-calculator (accessed on 11 April 2019).
- Payarou, T.; Kuruvinashetti, K.; Sudharshan Kaarthik, R.; Pillay, P.; Packirisamy, M. Sensing Circuitry for Real-Time Power Studies of Micro-Photosynthetic Power Cells. In Proceedings of the 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), Quebec, QC, Canada, 13–16 May 2018; pp. 4–7. [Google Scholar]
- Shahparnia, M.; Thesis, A. Polymer Micro Photosynthetic Power Cell: Design, Fabrication, Parametric Study and Testing. Master’s Thesis, Concordia University, Montreal, QC, Canada, 2011. [Google Scholar]
- Shin, D.; Song, M.; Thompson, C. Turn That Light up: Examining the Effect of Light Intensity on Photosynthesis as Measured by Oxygen Production in Elodea canadensis. Univ. Br. Columbia 2012, 2, 1–22. [Google Scholar]
- Lux to Watts (W) Conversion Calculator. Available online: https://www.rapidtables.com/calc/light/lux-to-watt-calculator.html (accessed on 12 November 2021).
- Zhu, X.G.; Long, S.P.; Ort, D.R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Biotechnol. 2008, 19, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Wimalasekera, R. Effect of Light Intensity on Photosynthesis. In Photosynthesis, Productivity, and Environmental Stress, 1st ed.; Ahmad, P., Ahanger, M.A., Alyemeni, M.N., Alam, P., Eds.; John Wiley & Sons Ltd.: New York, NY, USA, 2019. [Google Scholar]
- Pakkiriswami, S.; Beall, B.F.N.; Maxwell, D.P. On the role of photosynthesis in the nitrate-dependent induction of the alternative oxidase in Chlamydomonas reinhardtii. Botany 2009, 87, 363–374. [Google Scholar] [CrossRef]
- Juneau, P.; Qiu, B.; Deblois, C.P. Use of chlorophyll fluorescence as a tool for determination of herbicide toxic effect: Review. Toxicol. Environ. Chem. 2007, 89, 609–625. [Google Scholar] [CrossRef]
- Caterino, R.; Csiki, R.; Lyuleeva, A.; Pfisterer, J.; Wiesinger, M.; Janssens, S.D.; Haenen, K.; Cattani-Scholz, A.; Stutzmann, M.; Garrido, J.A. Photocurrent generation in diamond electrodes modified with reaction centers. ACS Appl. Mater. Interfaces 2015, 7, 8099–8107. [Google Scholar] [CrossRef]
- Boghossian, A.A.; Sen, F.; Gibbons, B.M.; Sen, S.; Faltermeier, S.M.; Giraldo, J.P.; Zhang, C.T.; Zhang, J.; Heller, D.A.; Strano, M.S. Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Adv. Energy Mater. 2013, 3, 881–893. [Google Scholar] [CrossRef]
- Heller, A. Electrical connection of enzyme redox centers to electrodes. J. Phys. Chem. 1992, 96, 3579–3587. [Google Scholar] [CrossRef]
- Kamran, M.; Delgado, J.D.; Friebe, V.; Aartsma, T.J.; Frese, R.N. Photosynthetic protein complexes as bio-photovoltaic building blocks retaining A high internal quantum efficiency. Biomacromolecules 2014, 15, 2833–2838. [Google Scholar] [CrossRef]
- Ortiz-Torres, M.I.; Fernández-Niño, M.; Cruz, J.C.; Capasso, A.; Matteocci, F.; Patiño, E.J.; Hernández, Y.; González Barrios, A.F. Rational Design of Photo-Electrochemical Hybrid Devices Based on Graphene and Chlamydomonas reinhardtii Light-Harvesting Proteins. Sci. Rep. 2020, 10, 3376. [Google Scholar] [CrossRef]
- Kondo, M.; Iida, K.; Dewa, T.; Tanaka, H.; Ogawa, T.; Nagashima, S.; Nagashima, K.V.P.; Shimada, K.; Hashimoto, H.; Gardiner, A.T.; et al. Photocurrent and electronic activities of oriented-his-tagged photosynthetic light-harvesting/reaction center core complexes assembled onto a gold electrode. Biomacromolecules 2012, 13, 432–438. [Google Scholar] [CrossRef]
- Badura, A.; Kothe, T.; Schuhmann, W.; Rögner, M. Wiring photosynthetic enzymes to electrodes. Energy Environ. Sci. 2011, 4, 3263–3274. [Google Scholar] [CrossRef]
- Yu, D.; Wang, M.; Zhu, G.; Ge, B.; Liu, S.; Huang, F. Enhanced photocurrent production by bio-dyes of photosynthetic macromolecules on designed TiO2 film. Sci. Rep. 2015, 5, srep09375. [Google Scholar] [CrossRef]
- Utschig, L.M.; Dimitrijevic, N.M.; Poluektov, O.G.; Chemerisov, S.D.; Mulfort, K.L.; Tiede, D.M. Photocatalytic hydrogen production from noncovalent biohybrid Photosystem I/Pt nanoparticle complexes. J. Phys. Chem. Lett. 2011, 2, 236–241. [Google Scholar] [CrossRef]
- Noji, T.; Suzuki, H.; Gotoh, T.; Iwai, M.; Ikeuchi, M.; Tomo, T.; Noguchi, T. Photosystem II–Gold Nanoparticle Conjugate as a Nanodevice for the Development of Artificial Light-Driven Water-Splitting Systems. J. Phys. Chem. Lett. 2011, 2, 2448–2452. [Google Scholar] [CrossRef]
- Yehezkeli, O.; Tel-vered, R.; Wasserman, J.; Trifonov, A.; Michaeli, D.; Nechushtai, R.; Willner, I. Integrated photosystem II-based photo-bioelectrochemical cells. Nat. Commun. 2012, 3, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Schweber, B. The Autonomous Car: A Diverse Array of Sensors Drives Navigation, Driving, and Performance. Available online: https://www.mouser.ca/applications/autonomous-car-sensors-drive-performance/ (accessed on 20 October 2022).
- BOSCH Ultrasonic Sensor. Available online: https://www.bosch-mobility-solutions.com/en/products-and-services/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/construction-zone-assist/ultrasonic-sensor/ (accessed on 29 August 2019).
- Dfrobot URM07-UART Low-Power Consumption Ultrasonic Sensor (20~750 cm)–DFRobot. Available online: https://www.dfrobot.com/product-1057.html (accessed on 29 August 2019).
- SHTW2 (RH/T)–Digital Humidity Sensor|Sensirion. Available online: https://www.sensirion.com/en/environmental-sensors/humidity-sensors/digital-humidity-sensor-for-iot-applications/ (accessed on 22 March 2019).
- Kuruvinashetti, K.; Guoqing, G.; Haobin, J.; Packirisamy, M. Perspective—Application of Micro Photosynthetic Power Cells for IoT in Automotive Industry. J. Electrochem. Soc. 2020, 167, 037545. [Google Scholar] [CrossRef]
- Tanneru, H.K.; Kuruvinashetti, K.; Pillay, P.; Rengaswamy, R.; Packirisamy, M. Feasibility Studies of Micro Photosynthetic Power Cells as a Competitor of Photovoltaic Cells for Low and Ultra-Low Power IoT Applications. Energies 2019, 12, 1595. [Google Scholar] [CrossRef]
- Sundareswaran, K.; Kuruvinashetti, K.; Gangadhar, I.; Sankar, P.; Nayak, P.S.; Vigneshkumar, V. Output Voltage Control and Power Management of a Dual Input Buck–Boost Converter Employing P&O Algorithm. IFAC Proc. Vol. 2014, 47, 1039–1043. [Google Scholar]
- Sundareswaran, K.; Kuruvinashetti, K.; Nayak, P.S. Application of Particle Swarm Optimization for output voltage regulation of dual input buck-boost converter. In Proceedings of the 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), Coimbatore, India, 6–8 March 2014; pp. 1–6. [Google Scholar]
- Dallago, E.; Barnabei, A.L.; Liberale, A.; Torelli, G.; Venchi, G. A 300-mV low-power management system for energy harvesting applications. IEEE Trans. Power Electron. 2016, 31, 2273–2281. [Google Scholar] [CrossRef]
- Wang, H.; Ren, Z.; Park, J. Do Power electronic converters for microbial fuel cell energy extraction: Effects of inductance, duty ratio, and switching frequency. J. Power Sources 2012, 220, 89–94. [Google Scholar] [CrossRef]
S. | Illumination (lux) | µmolm−2s−1 | Pinput (mW) | Poutput (mW) | Efficiency (%) |
---|---|---|---|---|---|
1 | 147 | 2 | 1.1 | 0.2 | 0.18 |
2 | 595 | 8 | 4.7 | 0.133 | 0.02 |
3 | 1500 | 20 | 12 | 0.121 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuruvinashetti, K.; Tanneru, H.K.; Pakkiriswami, S.; Packirisamy, M. Optical Interactions in Bio-Electricity Generation from Photosynthesis in Microfluidic Micro-Photosynthetic Power Cells. Energies 2023, 16, 7353. https://doi.org/10.3390/en16217353
Kuruvinashetti K, Tanneru HK, Pakkiriswami S, Packirisamy M. Optical Interactions in Bio-Electricity Generation from Photosynthesis in Microfluidic Micro-Photosynthetic Power Cells. Energies. 2023; 16(21):7353. https://doi.org/10.3390/en16217353
Chicago/Turabian StyleKuruvinashetti, Kirankumar, Hemanth Kumar Tanneru, Shanmugasundaram Pakkiriswami, and Muthukumaran Packirisamy. 2023. "Optical Interactions in Bio-Electricity Generation from Photosynthesis in Microfluidic Micro-Photosynthetic Power Cells" Energies 16, no. 21: 7353. https://doi.org/10.3390/en16217353
APA StyleKuruvinashetti, K., Tanneru, H. K., Pakkiriswami, S., & Packirisamy, M. (2023). Optical Interactions in Bio-Electricity Generation from Photosynthesis in Microfluidic Micro-Photosynthetic Power Cells. Energies, 16(21), 7353. https://doi.org/10.3390/en16217353