Cumulative Multi-Day Effect of Ambient Temperature on Thermal Behaviour of Buildings with Different Thermal Masses
Abstract
:1. Introduction
1.1. State of the Art
1.2. Main Goal of the Study
1.3. Novelty of the Work
2. Materials and Methods
2.1. Characteristics of Experimental Buildings
2.2. Measurements
3. Results and Their Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hagentoft, C.E.; Pallin, S. A Conceptual Model for How to Design for Building Envelope Characteristics Impact of thermal comfort intervals and thermal mass on commercial buildings in U.S. climates. J. Build. Eng. 2021, 35, 22. [Google Scholar] [CrossRef]
- Spitler, J.; McQuiston, F.; Lindsey, K. CLTD/SCL/CLF cooling load calculation method. In Proceedings of the 1993 Winter Meeting of ASHRAE Transactions. Part 1, Chicago, IL, USA, 23–27 January 1993. [Google Scholar]
- McQuiston, F.C.; Parker, J.D.; Spitler, J.D. Heating, Ventilating, and Air Conditioning: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- EnergyPlus. Engineering Reference—The Reference to EnergyPlus Calculations. 2019. Available online: https://energyplus.net/sites/default/files/pdfs_v8.3.0/EngineeringReference.pdf (accessed on 10 September 2023).
- Lengsfeld, K.; Holm, A. Entwicklung und Validierung einer hygrothermischen Raumklima-Simulationssoftware WUFI®-Plus. Bauphysik 2007, 29, 178–186. [Google Scholar] [CrossRef]
- Yu, H.C. The M Factor: A New Concept in Heat Transfer Calculations. Consult. Eng. 1978, 51, 96–98. [Google Scholar]
- Masonry Industry Committee. The “M” Factor: The Use of Mass to Save Energy in Heating and Cooling of Buildings; Masonry Industry Committee: Boston, MA, USA, 1978. [Google Scholar]
- Childs, K. Appraisal of the M Factor and the Role of Building Thermal Mass in Energy Conservation; NASA STI/Recon Technical Report N; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 1980; Volume 80.
- Godfrey, R.D.; Wilkes, K.E.; Lavine, A.G. A technical review of the M factor concept. ASHRAE J. 1980, 22, 47–50. [Google Scholar]
- Godfrey, R.D.; Wilkes, K.E.; Lavine, A.G. A Technical Review of the “M” Factor Concept. In Proceedings of the Buildings XIII Conference, Atlanta, GA, USA, 4–8 December 2016. [Google Scholar]
- Alterman, D.; Moffiet, T.; Hands, S.; Page, A.; Luo, C.; Moghtaderi, B. A concept for a potential metric to characterise the dynamic thermal performance of walls. Energy Build. 2012, 54, 52–60. [Google Scholar] [CrossRef]
- Robinson, A.J.; Lesage, F.J.; Reilly, A.; McGranaghan, G.; Byrne, G.; O’Hegarty, R.; Kinnane, O. A new transient method for determining thermal properties of wall sections. Energy Build. 2017, 142, 139–146. [Google Scholar] [CrossRef]
- Reilly, A.; Kinnane, O. The impact of thermal mass on building energy consumption. Appl. Energy 2017, 198, 108–121. [Google Scholar] [CrossRef]
- Arkar, C.; Perino, M. Dynamic Thermal Performance Metrics for Adaptive Building Constructions. In Proceedings of the 16th IBPSA Conference, Rome, Italy, 2–4 September 2019; pp. 330–335. [Google Scholar]
- Al-Sanea, S.A.; Zedan, M.F.; Al-Hussain, S.N. Effect of thermal mass on performance of insulated building walls and the concept of energy savings potential. Appl. Energy 2012, 89, 430–442. [Google Scholar] [CrossRef]
- Di Perna, C.; Stazi, F.; Ursini Casalena, A.; D’Orozi, M. Influence of the internal inertia of the building envelope on summertime comfort in buildings with high internal heat loads. Energy Build. 2011, 43, 200–206. [Google Scholar] [CrossRef]
- Díaz-López, C.; Serrano-Jiménez, A.; Verichev, K.; Barrios-Padura, A. Passive cooling strategies to optimise sustainability and environmental ergonomics in Mediterranean schools based on a critical review. Build. Environ. 2022, 221, 109297. [Google Scholar] [CrossRef]
- Sheng, M.; Reiner, M.; Sun, K.; Hong, T. Assessing thermal resilience of an assisted living facility during heat waves and cold snaps with power outages. Build. Environ. 2023, 230, 110001. [Google Scholar] [CrossRef]
- Dodoo, A.; Gustavsson, L. Energy use and overheating risk of Swedish multi-storey residential buildings under different climate scenarios. Energy 2016, 97, 534–548. [Google Scholar] [CrossRef]
- Finney, D. Buildings for a Future; Green Building Press: San Rafael, CA, USA, 2004; Volume 13. [Google Scholar]
- Tuohy, P.; McElroy, L.; Johnstone, C. Thermal mass, insulation and ventilation in sustainable housing—An investigation across climate and occupancy, 2005. In Proceedings of the Ninth International IBPSA Conference, Montréal, QC, Canada, 15–18 August 2005; pp. 1253–1260. [Google Scholar]
- Stéphan, E.; Cantin, R.; Caucheteux, A.; Tasca-Guernouti, S.; Michel, P. Experimental assessment of thermal inertia in insulated and non-insulated old limestone buildings. Build. Environ. 2014, 80, 241–248. [Google Scholar] [CrossRef]
- Nawalany, G.; Sokołowski, P. Building–Soil Thermal Interaction: A Case Study. Energies 2019, 12, 2922. [Google Scholar] [CrossRef]
- Nawalany, G.; Sokołowski, P.; Michalik, M. Experimental Study of Thermal and Humidity Conditions in a Historic Wooden Building in Southern Poland. Buildings 2020, 10, 118. [Google Scholar] [CrossRef]
- Ulgen, K. Experimental and theoretical investigation of effects of wall’s thermophysical properties on time lag and decrement factor. Energy Build. 2002, 34, 273–278. [Google Scholar] [CrossRef]
- Kontoleon, K.J.; Eumorfopoulou, E.A. The influence of wall orientation and exterior surface solar absorptivity on time lag and decrement factor in the Greek region. Renew. Energy 2008, 33, 1652–1664. [Google Scholar] [CrossRef]
- Mantesi, E.; Hopfe, C.J.; Mourkos, K.; Glass, J.; Cook, M. Empirical and computational evidence for thermal mass assessment: The example of insulating concrete formwork. Energy Build. 2019, 188–189, 314–332. [Google Scholar] [CrossRef]
- Toure, P.M.; Dieye, Y.; Gueye, P.M.; Sambou, V.; Bodian, S.; Tiguampo, S. Experimental determination of time lag and decrement factor. Case Stud. Constr. Mater. 2019, 11, e00298. [Google Scholar] [CrossRef]
- Balaras, C.A. The role of thermal mass on the cooling load of buildings. An overview of computational methods. Energy Build. 1996, 24, 1–10. [Google Scholar] [CrossRef]
- Stazi, F.; Ulpiani, G.; Pergolini, M.; Di Perna, C. The role of areal heat capacity and decrement factor in case of hyper insulated buildings: An experimental study. Energy Build. 2018, 176, 310–324. [Google Scholar] [CrossRef]
- Grynning, S.; Nocente, A.; Gullbrekken, L.; Skjeggeru, K. Thermal mass and thermal comfort in offices–experimental studies of a concrete floor, MATEC Web of Conferences. In Proceedings of the 4th Central European Symposium on Building Physics (CESBP 2019), Prague, Czech Republic, 2–5 September 2019. [Google Scholar]
- Soon-Ching, N.; Low, K.S.; Tioh, N.H. Thermal inertia of newspaper sandwiched aerated lightweight concrete wall panels: Experimental study. Energy Build. 2011, 43, 2956–2960. [Google Scholar]
- Gagliano, A.; Nocera, F.; Patania, F.; Moschella, A.; Detommaso, M.; Evola, G. Synergic effects of thermal mass and natural ventilation on the thermal behavior of traditional massive buildings. Int. J. Sustain. Energy 2014, 35, 411–428. [Google Scholar] [CrossRef]
- Incropera, F.P.; Dewitt, D.P.; Bergman, T.L.; Lavine, A.S. Introduction to Heat Transfer; John Wiley and Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Bairi, A.; Garcia de Maria, J.M.; Laraqi, N. Thermal diffusivity measurements of building materials based on 2D models. Comput. Mater. Sci. 2007, 38, 838–846. [Google Scholar] [CrossRef]
- Venkanna, B.K. Fundamentals of Heat and Mass Transfer; PHI Learning: New Delhi, India, 2010; p. 38. ISBN 978-81-203-4031-2. [Google Scholar]
- Roucoult, J.M.; Douzane, O.; Langlet, T. Incorporation of thermal inertia in the aim of installing a natural nighttime ventilation system in buildings. Energy Build. 1999, 29, 129–133. [Google Scholar] [CrossRef]
- Orosa, J.A.; Oliveira, A.C. A field study on building inertia and its effects on indoor thermal environment. Renew. Energy 2012, 37, 89–96. [Google Scholar] [CrossRef]
- Mavromatidis, L.; El Mankibi, M.; Michel, P.; Santamouris, M. Numerical estimation of time lags and decrement factors for wall complexes including multilayer thermal insulation, in two different climatic zones. Appl. Energy 2012, 92, 480–491. [Google Scholar] [CrossRef]
- Mavrogianni, A.; Pathan, A.; Oikonomou, E.; Biddulph, P.; Symonds, P.; Davies, M. Inhabitant actions and summer overheating risk in London dwellings. Build. Res. Inf. 2017, 45, 119–142. [Google Scholar] [CrossRef]
- McLeod, R.S.; Swainson, M. Chronic overheating in low carbon urban developments in a temperate climate. Renew. Sustain. Energy Rev. 2017, 74, 201–220. [Google Scholar] [CrossRef]
- Mourkos, K.; McLeod, R.S.; Hopfe, C.J.; Goodier, C.; Swainson, M. Assessing the application and limitations of a standardised overheating risk-assessment methodology in a real-world context. Build. Environ. 2020, 181, 107070. [Google Scholar] [CrossRef]
- Lomas, K.J.; Porritt, S.M. Overheating in buildings: Lessons from research. J. Build. Res. Inf. 2017, 45, 1–18. [Google Scholar] [CrossRef]
- Zuurbier, M.; van Loenhout, J.A.F.; Le Grand, A.; Greven, F.; Duijm, F.; Hoek, G. Street temperature and building characteristics as determinants of indoor heat exposure. Sci. Total Environ. 2021, 766, 144376. [Google Scholar] [CrossRef] [PubMed]
- Clery, E.; Finnegan, J.; Kunz, S.; Littleford, C.; Raw, G.J. Quantifying Heat Energy Needs and Behaviours; Report to the Energy Technologies; ETI: Dolj Region, Romania, 2014. [Google Scholar]
- Van den Wymelenberg, K. Patterns of occupant interaction with window blinds: A literature review. Energy Build. 2012, 51, 165–176. [Google Scholar] [CrossRef]
- Ridley, I.; Clarke, A.; Bere, J.; Altamirano, H.; Lewis, S.; Durdev, M.; Farr, A. The monitored performance of the first new London dwelling certified to the Passive House standard. Energy Build. 2013, 63, 67–78. [Google Scholar] [CrossRef]
- Borghero, L.; Clèries, E.; Péan, T.; Ortiz, J.; Salom, J. Comparing cooling strategies to assess thermal comfort resilience of residential buildings in Barcelona for present and future heatwaves. Build. Environ. 2023, 231, 110043. [Google Scholar] [CrossRef]
- Ben-Alon, L.; Rempel, A.R. Thermal comfort and passive survivability in earthen buildings. Build. Environ. 2023, 238, 110339. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, Z.; Grimmond, S. Impact of building envelope design parameters on diurnal building anthropogenic heat emission. Build. Environ. 2023, 234, 110134. [Google Scholar] [CrossRef]
- Bruno, R.; Bevilacqua, P. Bio-PCM to enhance dynamic thermal properties of dry-assembled wooden walls: Experimental results. Build. Environ. 2023, 242, 110526. [Google Scholar] [CrossRef]
- López-Cabeza, V.P.; Rivera-Gómez, C.; Roa-Fernández, J.; Hernandez-Valencia, M.; Herrera-Limones, R. Effect of thermal inertia and natural ventilation on user comfort in courtyards under warm summer conditions. Build. Environ. 2023, 228, 109812. [Google Scholar] [CrossRef]
- Azkorra-Larrinaga, Z.; Erkoreka-González, A.; Martín-Escudero, K.; Pérez-Iribarren, E.; Romero-Antón, N. Thermal characterization of a modular living wall for improved energy performance in buildings. Build. Environ. 2023, 234, 110102. [Google Scholar] [CrossRef]
- Mousavi, S.; Rismanchi, B.; Brey, S.; Aye, L. Thermal and energy performance evaluation of a full-scale test cabin equipped with PCM embedded radiant chilled ceiling. Build. Environ. 2023, 237, 110348. [Google Scholar] [CrossRef]
- Guo, R.; Heiselberg, P.; Hu, Y.; Johra, H.; Zhang, C.; Jensen, R.L.; Jønsson, K.T.; Peng, P. Experimental investigation of convective heat transfer for night cooling with diffuse ceiling ventilation. Build. Environ. 2021, 193, 107665. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Koppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- EN ISO 13786: 2017; Thermal Performance of Building Components. Dynamic Thermal Characteristics. Calculation Methods. ISO: Geneva, Switzerland, 2017.
- SAP 2012, The Government’s Standard Assessment Procrdure for Energy Rating of Dwellings, Published by BRE, Garston, Watford, WD 25 9XX. Available online: https://www.bre.co.uk/filelibrary/SAP/2012/SAP-2012_9-92.pdf (accessed on 15 January 2022).
- Brelih, N.; Seppänen, O. Ventilation rates and IAQ in european standards and national regulations. In Proceedings of the 32nd AIVC Conference and 1st TightVent Conference, Brussels, Belgium, 12–13 October 2011; Available online: www.aivc.org (accessed on 10 September 2023).
- Sundell, J.; Levin, H.; Nazaroff, W.W.; Cain, W.S.; Fisk, W.J.; Grimsrud, D.T.; Gyntelberg, F.; Li, Y.; Persily, A.K.; Pickering, A.C.; et al. Ventilation rates and health: Multidisciplinary review of the scientific literature. Indoor Air 2011, 21, 191–204. [Google Scholar] [CrossRef]
- Givoni, B. Effectiveness of mass and night ventilation in lowering the indoor daytime temperature. Energy Build. 1998, 28, 25–32. [Google Scholar] [CrossRef]
- Mousa, W.A.Y.; Lang, W.; Yousef, W.A. Simulations and quantitative data analytic interpretations of indoor-outdoor temperatures in a high thermal mass structure. J. Build. Eng. 2017, 12, 68–76. [Google Scholar] [CrossRef]
- Neya, I.; Yamegueu, D.; Coulibaly, Y.; Messan, A.; Ouedraogo, A.L.S.-N. Impact of insulation and wall thickness in compressed earth buildings in hot and dry tropical regions. J. Build. Eng. 2021, 33, 101612. [Google Scholar] [CrossRef]
- Brambilla, A.; Bonvin, J.; Flourentzou, F.; Jusselme, T. On the influence of thermal mass and natural ventilation on overheating risk in offices. Buildings 2018, 8, 12. [Google Scholar] [CrossRef]
- Research into Overheating in New Homes—Phase 1 Report; Ministry of Housing, Communities & Local Government: London, UK, 2019.
- Holford, J.M.; Woods, A.W. On the thermal buffering of naturally ventilated buildings through internal thermal mass. J. Fluid Mech. 2007, 580, 3–29. [Google Scholar] [CrossRef]
- Craig, S. The optimal tuning, within carbon limits, of thermal mass in naturally ventilated buildings. Build. Environ. 2019, 165, 106373. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Dimitroulopoulou, C.; Thornes, J.; Lai, K.-M.; Taylor, J.; Myers, I.; Heaviside, C.; Mavrogianni, A.; Shrubsole, C.; Chalabi, Z.; et al. Impact of climate change on the domestic indoor environment and associated health risks in the UK. Environ. Int. 2015, 85, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Heier, J.; Bales, C.; Martin, V. Thermal energy storage in Swedish single family houses—A case study. In Proceedings of the InnoStock 12th International Conference on Energy Storage, Lleida, Spain, 16–18 May 2012; pp. 1–10. [Google Scholar]
- Tink, V.; Porritt, S.; Allinson, D.; Loveday, D. Measuring and mitigating overheating risk in solid wall dwellings retrofitted with internal wall insulation. Build. Environ. 2018, 141, 247–261. [Google Scholar] [CrossRef]
- Brambilla, A.; Jusselme, T. Preventing overheating in offices through thermal inertial properties of compressed earth bricks: A study on a real scale prototype. Energy Build. 2017, 156, 281–292. [Google Scholar] [CrossRef]
Component | Material | Thickness (cm) |
---|---|---|
External wall | Lime sand plaster | 1 |
Cellular concrete blocks | 24 | |
Mineral wool (90) | 20 | |
Cement lime plaster | 1 | |
Internal wall 1—construction wall | Lime sand plaster | 1 |
Lime sand blocks (silicate) | 24 | |
Lime sand plaster | 1 | |
Internal wall 1—partiton wall | Lime sand plaster | 1 |
Lime sand blocks (silicate) | 8 | |
Lime sand plaster | 1 | |
Ceiling | Mineral wool (40) | 2 × 20 |
Oriented strand board | 2.2 | |
PE membrane | ||
Distance frame for gypsum board | 20 | |
Gypsum board | 1.25 | |
Slab on ground | Concrete screed layer | 5.5 |
PEHD membrane | ||
Mineral wool (150) | 30 | |
Asphalt | ||
Concrete slab | 15 | |
Sand ballast | 30 | |
Surrounding ground | ||
Foundation wall | Concrete blocks | 24 |
EPS | 20 |
Component | Material | Thickness (cm) |
---|---|---|
External wall | Fermacell gypsum fibreboard | 1.5 |
Oriented strand board | 1.5 | |
Mineral wool (40)—section a | 16 | |
Pine wood beam—section b | 4.5 × 16 | |
Oriented strand board | 1.5 | |
Mineral wool (90) | 18 | |
Cement lime plaster | 1 | |
Internal wall 1—construction wall | Fermacell gypsum fibreboard | 1.5 |
Oriented strand board | 1.5 | |
Mineral wool (40)—section a | 16 | |
Pine wood beam—section b | 4.5 × 16 | |
Oriented strand board | 1.5 | |
Fermacell gypsum fibreboard | 1.5 | |
Internal wall 1—partition wall | Gypsum board | 2 × 1.25 |
Mineral wool (90)—section a | 5 | |
Steel framed structure—section b | ||
Gypsum board | 2 × 1.25 | |
Ceiling | Mineral wool (40) | 16 |
Oriented strand board—section a | 1.8 | |
Mineral wool (40)—section a | 26 | |
Ceiling beam—section b | 8.9 × 30 | |
Oriented strand board—section b | 1.8 | |
PE membrane | ||
Fermacell gypsum fibreboard | 1.25 | |
Slab on ground | Concrete screed layer | 5.5 |
PEHD membrane | ||
Mineral wool (150) | 30 | |
Asphalt | ||
Concrete slab | 15 | |
Sand ballast | 30 | |
Surrounding ground | ||
Foundation wall | Concrete blocks | 24 |
EPS | 20 |
Component | Construction, Properties |
---|---|
Windows 1—SK | System Passive Line Plus Glazing: 4TM/18A/4/18A/4TM—48 mm Ug = 0.5 W/m2K; g = 50%; Lt = 72%; Uw = 0.709 W/m2K SHGC (av.) = 0.50 Total dimensions: 1.6 m × 1.47 m |
Windows 3—SK | System Passive Line Plus Glazing: 4TM/18A/4/18A/4TM—48mm Ug = 0.5 W/m2K; g = 50%; Lt = 72%; Uw = 0.74 W/m2K SHGC (av.) = 0.50 Total dimensions: 2.7 m × 2.22 m |
Internal door | S900—82.5 mm PVC panel Internal dimensions: 1.2 m × 2.0 m; Uw = 0.78 W/m2K Total dimensions: 1.42 m × 2.09 m |
External door | Wing 68 mm; GRP panel/ urethane foam/GRP panel Ud = 0.76 W/m2K Total dimensions: 1.60 m × 2.20 m |
Component | Building B1 | Building B2 | ||
---|---|---|---|---|
[kJ/m2K] | A [m2] | [kJ/m2K] | A [m2] | |
External wall | 97.00 | 116 | 37.33 | 116 |
Internal wall 1 | 416.00 | 34 | 74.66 | 34 |
Internal wall 2 | 160.00 | 62 | 45.00 | 62 |
Ceiling | 11.25 | 122 | 17.30 | 123 |
Slab on ground | 92.40 | 122 | 92.40 | 123 |
Material | λ | ρ | c |
---|---|---|---|
(W/m K) | (kg/m3) | (J/kg K) | |
Asphalt | 0.8 | 1000 | 1460 |
Cellular concrete blocks | 0.16 | 600 | 1500 |
Lime sand plaster | 0.82 | 1850 | 840 |
Concrete screed layer | 1.15 | 1800 | 1000 |
Concrete slab | 1.35 | 2000 | 1000 |
Ceiling beam | 0.3 | 500 | 1000 |
Fermacell gypsum fibreboard | 0.32 | 1153 | 1200 |
Gypsum board | 0.25 | 900 | 1000 |
Cement lime plaster | 0.8 | 1600 | 1000 |
Lime sand blocks (silicate) | 0.55 | 1600 | 1000 |
Mineral wool (40) | 0.036 | 40 | 1030 |
Mineral wool (90) | 0.037 | 90 | 1030 |
Mineral wool (150) | 0.04 | 150 | 1030 |
EPS | 0.031 | 100 | 1450 |
Oriented strand board | 0.13 | 650 | 1700 |
PE membrane | 0.33 | 920 | 2200 |
PEHD membrane | 0.5 | 980 | 1800 |
Pine wood beam | 0.16 | 550 | 2510 |
Sand ballast | 0.4 | 1650 | 840 |
Measuring Device | Measurement Parameter | Measuring Range | Accuracy/Error |
---|---|---|---|
P18—temperature and humidity transmitter. The installation location is shown in Figure 2. Installed at a height of 1.2 m above the floor surface. | Temperature of indoor air Humidity of indoor air | −30 … −20 … 60 … 80 °C 0…100% | ±0.5% ±2% dla RH = 10 … 90% ±3% dla RH otherwise |
Delta OHM, type HD9008TRR | Temperature of outdoor air | −40… +80 °C | ±0.15 °C ±0.1% measured value |
Shielded Delta OHM, type HD9007A1 | Relative humidity of outdoor air | 0…100% | 1.5% RH (0…90%RH) ±2.0% RH otherwise |
Delta OHM, type LP PYRA 03 | Global solar radiation | 0 ÷ 2000 W/m2 | Sensitivity: 5–15 µV/Wm2 Annual stability: <|±2.5|% Nonlinearity: <|±2|% Directional error: <|±22|W/m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staszczuk, A.; Kuczyński, T. Cumulative Multi-Day Effect of Ambient Temperature on Thermal Behaviour of Buildings with Different Thermal Masses. Energies 2023, 16, 7361. https://doi.org/10.3390/en16217361
Staszczuk A, Kuczyński T. Cumulative Multi-Day Effect of Ambient Temperature on Thermal Behaviour of Buildings with Different Thermal Masses. Energies. 2023; 16(21):7361. https://doi.org/10.3390/en16217361
Chicago/Turabian StyleStaszczuk, Anna, and Tadeusz Kuczyński. 2023. "Cumulative Multi-Day Effect of Ambient Temperature on Thermal Behaviour of Buildings with Different Thermal Masses" Energies 16, no. 21: 7361. https://doi.org/10.3390/en16217361
APA StyleStaszczuk, A., & Kuczyński, T. (2023). Cumulative Multi-Day Effect of Ambient Temperature on Thermal Behaviour of Buildings with Different Thermal Masses. Energies, 16(21), 7361. https://doi.org/10.3390/en16217361