3D Heterogeneous Model for Electrodes in Lithium-Ion Batteries to Study Interfacial Detachment of Active Material Particles and Carbon-Binder Domain
Abstract
:1. Introduction
2. Methods
2.1. Electrode Microstructure
2.2. Electro-Chemo-Mechanical Model
2.2.1. Solid Domains
2.2.2. Pore and Separator Domains
2.2.3. Lithium Foil Boundary
2.2.4. Mechanics
Parameters | Value | Ref. |
---|---|---|
NMC622 Particles | ||
AM solid conductivity () | [34] | |
AM solid diffusivity () | [34] | |
max AM solid concentration () | 48,700 mol · m−3 | [34] |
Initial AM solid concentration () | 500 mol · m−3 | |
Equilibrium potential (U) | [34] | |
Kinetics | ||
Reaction rate constant (k) | [34] | |
Transfer coefficients (, ) | ||
Surface double layer capacitance () | [28] | |
Bruggeman exponent (p) | [34] | |
Current collector | ||
Conductivity () | [34] | |
Carbon-binder domain | ||
Conductivity () | 375 | [34] |
Electrolyte | ||
Initial electrolyte concentration () | 1000 | [34] |
Conductivity () | [37] | |
Diffusivity () | [37] | |
Activity () | [37] | |
Transference () | [37] |
Parameter | Value | Ref. |
---|---|---|
NMC622 particles | ||
Partial molar volume () | [34] | |
Young’s modulus (E) | 140 GPa | [34] |
Current collector | ||
Young’s modulus (E) | 70 GPa | [34] |
Carbon-binder domain | ||
Young’s modulus (E) | GPa | [34] |
Electrolyte | ||
Instantaneous shear modulus (G) | MPa | [38] |
AM-CBD interface | ||
Spring constant per unit area in pristine state () | [28] | |
Decreasing rate of spring constant per cycle () | [28] |
3. Results and Discussion
Electrochemical Impedance Spectroscopy (EIS)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Latin Letters | Unit | |
Specific active surface area | [] | |
Elastic stiffness tensor | [Pa] | |
Specific double layer capacitance | [] | |
Electrolyte concentration | [] | |
Solid concentration | [] | |
Bulk and effective electrolyte diffusivity | [] | |
Solid diffusivity | [] | |
F | Faraday constant | [] |
Identity tensor | ||
Applied current | [] | |
Exchange current density | [] | |
Volumetric faradaic current density | [] | |
Volumetric capacitive current density | [] | |
k | Reaction rate constant | [] |
Spring constant per unit area | [] | |
Diminishing rate of spring constant | [] | |
Electrode length | [] | |
p | Bruggeman exponent | |
R | Gas constant | [] |
Average particle radius | [] | |
T | Temperature | [] |
U | Open circuit voltage | [] |
Deformation field | [] | |
Greek Letters | ||
Symmetry coefficient | ||
Volumetric fraction | ||
Elastic strain tensor tensor | ||
Lithium-induced strain tensor | ||
Partial molar volume | [] | |
Electrolyte electrochemical potential | [] | |
Solid electrical potential | [] | |
Cauchy stress tensor | [] | |
Hydrostatic stress | [] | |
Bulk and effective electrolyte conductivity | [] | |
Effective electrolyte diffusional conductivity | [] | |
Bulk and effective solid conductivity | [] | |
Overpotential | [] | |
Abbreviations | ||
AM | Active material | |
BC | Boundary condition | |
BV | Butler–Volmer | |
CBD | Carbon-binder domain | |
CC | Current collector | |
DL | Double layer | |
EIS | Electrochemical impedance spectroscopy | |
EV | Electric vehicle | |
LIB | Lithium-ion battery | |
RVE | Representative volume element | |
SEM | Scanning electron microscope | |
SoL | State of lithiation | |
XCT | X-ray computed tomography | |
Subscripts | ||
Solid, electrolyte |
References
- Ansah, S.; Hyun, H.; Shin, N.; Lee, J.S.; Lim, J.; Cho, H.H. A modeling approach to study the performance of Ni-rich layered oxide cathode for lithium-ion battery. Comput. Mater. Sci. 2021, 196, 110559. [Google Scholar] [CrossRef]
- Mirsalehian, M.; Vossoughi, B.; Kaiser, J.; Pischinger, S. 3D Heterogeneous Model for Electrodes in Lithium-Ion Batteries and Its Application to a Modified Continuum Model. Batteries 2023, 9, 298. [Google Scholar] [CrossRef]
- Doyle, M.; Fuller, T.F.; Newman, J. Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell. J. Electrochem. Soc. 1993, 140, 1526–1533. [Google Scholar] [CrossRef]
- Fuller, T.F.; Doyle, M.; Newman, J. Simulation and Optimization of the Dual Lithium Ion Insertion Cell. J. Electrochem. Soc. 1994, 141, 1–10. [Google Scholar] [CrossRef]
- Fang, R.; Ge, H.; Wang, Z.; Li, Z.; Zhang, J. A two-dimensional heterogeneous model of lithium-ion battery and application on designing electrode with non-uniform porosity. J. Electrochem. Soc. 2020, 167, 130513. [Google Scholar] [CrossRef]
- Tjaden, B.; Cooper, S.J.; Brett, D.J.; Kramer, D.; Shearing, P.R. On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems. Curr. Opin. Chem. Eng. 2016, 12, 44–51. [Google Scholar] [CrossRef]
- Garcıa, R.E.; Chiang, Y.M.; Carter, W.C.; Limthongkul, P.; Bishop, C.M. Microstructural modeling and design of rechargeable lithium-ion batteries. J. Electrochem. Soc. 2004, 152, A255. [Google Scholar] [CrossRef]
- Mistry, A.N.; Smith, K.; Mukherjee, P.P. Secondary-phase stochastics in lithium-ion battery electrodes. ACS Appl. Mater. Interfaces 2018, 10, 6317–6326. [Google Scholar] [CrossRef]
- Tu, V. Modeling and Finite Element Simulation of the Bifunctional Performance of a Microporous Structural Battery Electrolyte. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2019. [Google Scholar]
- Feinauer, J.; Westhoff, D.; Kuchler, K.; Schmidt, V. 3D Microstructure Modeling and Simulation of Materials in Lithium-ion Battery Cells. In Proceedings of the Simulation Science: First International Workshop, SimScience 2017, Göttingen, Germany, 27–28 April 2017; pp. 128–144. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Demortière, A.; Fleutot, B.; Delobel, B.; Delacourt, C.; Cooper, S.J. The electrode tortuosity factor: Why the conventional tortuosity factor is not well suited for quantifying transport in porous Li-ion battery electrodes and what to use instead. NPJ Comput. Mater. 2020, 6, 1–12. [Google Scholar] [CrossRef]
- Danner, T.; Singh, M.; Hein, S.; Kaiser, J.; Hahn, H.; Latz, A. Thick electrodes for Li-ion batteries: A model based analysis. J. Power Source 2016, 334, 191–201. [Google Scholar] [CrossRef]
- He, X.; Bresser, D.; Passerini, S.; Baakes, F.; Krewer, U.; Lopez, J.; Mallia, C.T.; Shao-Horn, Y.; Cekic-Laskovic, I.; Wiemers-Meyer, S.; et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 2021, 6, 1036–1052. [Google Scholar] [CrossRef]
- Lu, X.; Bertei, A.; Finegan, D.P.; Tan, C.; Daemi, S.R.; Weaving, J.S.; O’Regan, K.B.; Heenan, T.M.M.; Hinds, G.; Kendrick, E.; et al. 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling. Nat. Commun. 2020, 11, 2079. [Google Scholar] [CrossRef] [PubMed]
- An, F.; Zhou, W.; Li, P. A comparison of model prediction from P2D and particle packing with experiment. Electrochim. Acta 2021, 370, 137775. [Google Scholar] [CrossRef]
- Chouchane, M.; Rucci, A.; Lombardo, T.; Ngandjong, A.C.; Franco, A.A. Lithium ion battery electrodes predicted from manufacturing simulations: Assessing the impact of the carbon-binder spatial location on the electrochemical performance. J. Power Source 2019, 444, 227285. [Google Scholar] [CrossRef]
- Zhao, Y.; Stein, P.; Bai, Y.; Al-Siraj, M.; Yang, Y.; Xu, B.X. A review on modeling of electro-chemo-mechanics in lithium-ion batteries. J. Power Source 2019, 413, 259–283. [Google Scholar] [CrossRef]
- Iqbal, N.; Choi, J.; Lee, C.; Khan, A.; Tanveer, M.; Lee, S. A Review on Modeling of Chemo-mechanical Behavior of Particle–Binder Systems in Lithium-Ion Batteries. Multiscale Sci. Eng. 2022, 4, 79–93. [Google Scholar] [CrossRef]
- Renganathan, S.; Sikha, G.; Santhanagopalan, S.; White, R.E. Theoretical analysis of stresses in a lithium ion cell. J. Electrochem. Soc. 2009, 157, A155. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Verbrugge, M.W. Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J. Power Source 2009, 190, 453–460. [Google Scholar] [CrossRef]
- Gao, X.; Lu, W.; Xu, J. Modeling framework for multiphysics-multiscale behavior of Si–C composite anode. J. Power Source 2020, 449, 227501. [Google Scholar] [CrossRef]
- Liu, B.; Jia, Y.; Li, J.; Jiang, H.; Yin, S.; Xu, J. Multiphysics coupled computational model for commercialized Si/graphite composite anode. J. Power Source 2020, 450, 227667. [Google Scholar] [CrossRef]
- Wang, M.; Xiao, X.; Huang, X. A multiphysics microstructure-resolved model for silicon anode lithium-ion batteries. J. Power Source 2017, 348, 66–79. [Google Scholar] [CrossRef]
- Wu, W.; Xiao, X.; Wang, M.; Huang, X. A microstructural resolved model for the stress analysis of lithium-ion batteries. J. Electrochem. Soc. 2014, 161, A803. [Google Scholar] [CrossRef]
- Ahmadi, M. A hybrid phase field model for fracture induced by lithium diffusion in electrode particles of Li-ion batteries. Comput. Mater. Sci. 2020, 184, 109879. [Google Scholar] [CrossRef]
- Lee, S.; Yang, J.; Lu, W. Debonding at the interface between active particles and PVDF binder in Li-ion batteries. Extrem. Mech. Lett. 2016, 6, 37–44. [Google Scholar] [CrossRef]
- Grantab, R.; Shenoy, V.B. Pressure-gradient dependent diffusion and crack propagation in lithiated silicon nanowires. J. Electrochem. Soc. 2012, 159, A584. [Google Scholar] [CrossRef]
- Xu, R.; Yang, Y.; Yin, F.; Liu, P.; Cloetens, P.; Liu, Y.; Lin, F.; Zhao, K. Heterogeneous damage in Li-ion batteries: Experimental analysis and theoretical modeling. J. Mech. Phys. Solids 2019, 129, 160–183. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, R.; Zhang, K.; Lee, S.J.; Mu, L.; Liu, P.; Waters, C.K.; Spence, S.; Xu, Z.; Wei, C.; et al. Quantification of heterogeneous degradation in Li-ion batteries. Adv. Energy Mater. 2019, 9, 1900674. [Google Scholar] [CrossRef]
- Baboo, J.P.; Yatoo, M.A.; Dent, M.; Hojaji Najafabadi, E.; Lekakou, C.; Slade, R.; Hinder, S.J.; Watts, J.F. Exploring different binders for a LiFePO4 battery, battery testing, modeling and simulations. Energies 2022, 15, 2332. [Google Scholar] [CrossRef]
- Koerver, R.; Aygün, I.; Leichtweiß, T.; Dietrich, C.; Zhang, W.; Binder, J.O.; Hartmann, P.; Zeier, W.G.; Janek, J. Capacity fade in solid-state batteries: Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 2017, 29, 5574–5582. [Google Scholar] [CrossRef]
- Liu, P.; Xu, R.; Liu, Y.; Lin, F.; Zhao, K. Computational modeling of heterogeneity of stress, charge, and cyclic damage in composite electrodes of Li-ion batteries. J. Electrochem. Soc. 2020, 167, 40527. [Google Scholar] [CrossRef]
- Daemi, S.R.; Tan, C.; Volkenandt, T.; Cooper, S.J.; Palacios-Padros, A.; Cookson, J.; Brett, D.J.; Shearing, P.R. Visualizing the carbon binder phase of battery electrodes in three dimensions. ACS Appl. Energy Mater. 2018, 1, 3702–3710. [Google Scholar] [CrossRef]
- Boyce, A.M.; Martínez-Pañeda, E.; Wade, A.; Zhang, Y.S.; Bailey, J.J.; Heenan, T.M.; Brett, D.J.; Shearing, P.R. Cracking predictions of lithium-ion battery electrodes by X-ray computed tomography and modelling. J. Power Source 2022, 526, 231119. [Google Scholar] [CrossRef]
- Müller, S.; Pietsch, P.; Brandt, B.E.; Baade, P.; De Andrade, V.; De Carlo, F.; Wood, V. Quantification and modeling of mechanical degradation in lithium-ion batteries based on nanoscale imaging. Nat. Commun. 2018, 9, 2340. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zeng, K.; Lu, L. Cycling effects on surface morphology, nanomechanical and interfacial reliability of LiMn2O4 cathode in thin film lithium ion batteries. Electrochim. Acta 2012, 68, 52–59. [Google Scholar] [CrossRef]
- Valøen, L.O.; Reimers, J.N. Transport properties of LiPF6-based Li-ion battery electrolytes. J. Electrochem. Soc. 2005, 152, A882. [Google Scholar] [CrossRef]
- Xiao, X.; Wu, W.; Huang, X. A multi-scale approach for the stress analysis of polymeric separators in a lithium-ion battery. J. Power Source 2010, 195, 7649–7660. [Google Scholar] [CrossRef]
- Appiah, W.A.; Park, J.; Byun, S.; Cho, I.; Mozer, A.; Ryou, M.H.; Lee, Y.M. A coupled chemo-mechanical model to study the effects of adhesive strength on the electrochemical performance of silicon electrodes for advanced lithium ion batteries. J. Power Source 2018, 407, 153–161. [Google Scholar] [CrossRef]
- Li, P.; Zhao, Y.; Shen, Y.; Bo, S.H. Fracture behavior in battery materials. J. Phys. Energy 2020, 2, 022002. [Google Scholar] [CrossRef]
- Iqbal, N.; Lee, S. Mechanical failure analysis of graphite anode particles with PVDF binders in Li-ion batteries. J. Electrochem. Soc. 2018, 165, A1961. [Google Scholar] [CrossRef]
- Parks, H.C.; Boyce, A.M.; Wade, A.; Heenan, T.M.; Tan, C.; Martínez-Pañeda, E.; Shearing, P.R.; Brett, D.J.; Jervis, R. Direct 4D Observations of Electrochemically Induced Intergranular Cracking in NMC811 Particles. ChemRxiv 2023. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Cathode microstructure dimension | 25 μm3 |
Average NMC particle radius | 2 μm and 5 μm |
Particle radius standard deviation | 0.2 μm |
Active material volumetric fraction () | 62.83% |
Carbon-binder domain volumetric fraction () | 10.55% |
Porosity () | 26.6% |
Separator thickness | 11 μm |
Al current collector thickness | 6.5 μm |
Domain/Boundary | Equation | No. |
---|---|---|
Electrochemistry | ||
AM, CBD, CC | ||
AM | ||
Pore, CBD, separator | ||
CBD, Separator | ||
CBD | ||
AM-electrolyte interface | ||
Mechanics | ||
All domains | ||
AM | ||
AM-CBD interface |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirsalehian, M.; Vossoughi, B.; Kaiser, J.; Pischinger, S. 3D Heterogeneous Model for Electrodes in Lithium-Ion Batteries to Study Interfacial Detachment of Active Material Particles and Carbon-Binder Domain. Energies 2023, 16, 7391. https://doi.org/10.3390/en16217391
Mirsalehian M, Vossoughi B, Kaiser J, Pischinger S. 3D Heterogeneous Model for Electrodes in Lithium-Ion Batteries to Study Interfacial Detachment of Active Material Particles and Carbon-Binder Domain. Energies. 2023; 16(21):7391. https://doi.org/10.3390/en16217391
Chicago/Turabian StyleMirsalehian, Mohammadali, Bahareh Vossoughi, Jörg Kaiser, and Stefan Pischinger. 2023. "3D Heterogeneous Model for Electrodes in Lithium-Ion Batteries to Study Interfacial Detachment of Active Material Particles and Carbon-Binder Domain" Energies 16, no. 21: 7391. https://doi.org/10.3390/en16217391
APA StyleMirsalehian, M., Vossoughi, B., Kaiser, J., & Pischinger, S. (2023). 3D Heterogeneous Model for Electrodes in Lithium-Ion Batteries to Study Interfacial Detachment of Active Material Particles and Carbon-Binder Domain. Energies, 16(21), 7391. https://doi.org/10.3390/en16217391