Cold Climate Challenges: Analysis of Heat Recovery Efficiency in Ventilation Systems
Abstract
:1. Introduction
2. Methodology
3. Results and Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmed, S.; Assaf, R.; Rahman, M.R.; Tabassum, F. Is geopolitical risk interconnected? Evidence from Russian-Ukraine crisis. J. Econ. Asymmetries 2023, 28, e00306. [Google Scholar] [CrossRef]
- Kola-Bezka, M. One size fits all? Prospects for developing a common strategy supporting European Union households in times of energy crisis. Energy Rep. 2023, 10, 319–332. [Google Scholar] [CrossRef]
- Olubusoye, O.E.; Akintande, O.J.; Yaya, O.S.; Ogbonna, A.E.; Adenikinju, A.F. Energy pricing during the COVID-19 pandemic: Predictive information-based uncertainty indexes with machine learning algorithm. Intell. Syst. Appl. 2021, 12, 200050. [Google Scholar] [CrossRef]
- Thi, T.D.P.; Do, H.D.; Paramaiah, C.; Duong, N.T.; Pham, V.K.; Shamansurova, Z. Sustainable economic performance and natural resource price volatility in the post-covid-pandemic: Evidence using GARCH models in Chinese context. Resour. Policy 2023, 86, 104138. [Google Scholar] [CrossRef]
- Khan, K.; Su, C.-W.; Khurshid, A.; Umar, M. COVID-19 impact on multifractality of energy prices: Asymmetric multifractality analysis. Energy 2022, 256, 124607. [Google Scholar] [CrossRef]
- Yagi, M.; Managi, S. The spillover effects of rising energy prices following 2022 Russian invasion of Ukraine. Econ. Anal. Policy 2023, 77, 680–695. [Google Scholar] [CrossRef]
- Veljkovic, A.; Pohoryles, D.A.; Bournas, D.A. Heating energy demand estimation of the EU building stock: Combining building physics and artificial neural networks. Energy Build. 2023, 298, 113474. [Google Scholar] [CrossRef]
- Palladino, D. Energy performance gap of the Italian residential building stock: Parametric energy simulations for theoretical deviation assessment from standard conditions. Appl. Energy 2023, 345, 121365. [Google Scholar] [CrossRef]
- Elnagar, E.; Gendebien, S.; Georges, E.; Berardi, U.; Doutreloup, S.; Lemort, V. Framework to assess climate change impact on heating and cooling energy demands in building stock: A case study of Belgium in 2050 and 2100. Energy Build. 2023, 298, 113547. [Google Scholar] [CrossRef]
- Walsh, A.; Cóstola, D.; Labaki, L.C. Review of methods for climatic zoning for building energy efficiency programs. Build. Environ. 2017, 112, 337–350. [Google Scholar] [CrossRef]
- Kangas, H.L.; Lazarevic, D.; Kivimaa, P. Technical skills, disinterest and non-functional regulation: Barriers to building energy efficiency in Finland viewed by energy service companies. Energy Policy 2018, 114, 63–76. [Google Scholar] [CrossRef]
- Borodinecs, A.; Budjko, Z. Indoor Air Quality in Nursery Schools in Latvia. In Proceedings of the 9th International Conference and Exhibition—Healthy Buildings 2009 (HB 2009), Online. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84872658922&partnerID=40&md5=c7cf36f9b24d638c72e763727f5f625c (accessed on 4 September 2023).
- Zemitis, J.; Borodinecs, A.; Geikins, A.; Kalamees, T.; Kuusk, K. Ventilation System Design in Three European Geo Cluster. Energy Procedia 2016, 96, 285–293. [Google Scholar] [CrossRef]
- Arbulu, M.; Oregi, X.; Etxepare, L.; Hernández-Minguillón, R.J. Barriers and challenges of the assessment framework of the Commission Recommendation (EU) 2019/786 on building renovation by European RTD projects. Energy Build. 2022, 269, 112267. [Google Scholar] [CrossRef]
- Krizmane, M.; Borodinecs, A.; Dzelzitis, E. Enabling the Landscape for Deep Green Renovations. Energy Procedia 2016, 96, 404–412. [Google Scholar] [CrossRef]
- Geikins, A.; Borodinecs, A.; Jacnevs, V. Estimation of Energy Profile and Possible Energy Savings of Unclassified Buildings. Buildings 2022, 12, 974. [Google Scholar] [CrossRef]
- Borodinecs, A.; Zajacs, A.; Palcikovskis, A. Modular Retrofitting Approach for Residential Buildings; Department of the Built Environment, Aalborg University: Aalborg, Denmark, 2023. [Google Scholar] [CrossRef]
- Baranova, D.; Sovetnikov, D.; Borodinecs, A. The extensive analysis of building energy performance across the Baltic Sea region. Sci. Technol. Built Environ. 2018, 24, 982–993. [Google Scholar] [CrossRef]
- Mohammadiziazi, R.; Bilec, M.M. Quantifying and spatializing building material stock and renovation flow for circular economy. J. Clean. Prod. 2023, 389, 135765. [Google Scholar] [CrossRef]
- European Union. The 28 Member Countries of the EU, Europa.eu. Available online: https://europa.eu/european-union/about-eu/countries_en#tab-0-1 (accessed on 4 September 2023).
- Gulotta, T.M.; Cellura, M.; Guarino, F.; Longo, S. A bottom-up harmonized energy-environmental models for europe (BOHEEME): A case study on the thermal insulation of the EU-28 building stock. Energy Build. 2021, 231, 110584. [Google Scholar] [CrossRef]
- Venturelli, M.; Saponelli, R.; Milani, M.; Montorsi, L. Combined numerical approach for the evaluation of the energy efficiency and economic investment of building external insulation technologies. Energy Nexus 2023, 10, 100198. [Google Scholar] [CrossRef]
- Mikulić, D.; Keček, D.; Slijepčević, S. Economic and regional spillovers of energy efficiency investments in buildings. Energy Build. 2021, 253, 111518. [Google Scholar] [CrossRef]
- Dodoo, A.; Gustavsson, L.; Tettey, U.Y.A. Cost-optimized energy-efficient building envelope measures for a multi-storey residential building in a cold climate. Energy Procedia 2019, 158, 3760–3767. [Google Scholar] [CrossRef]
- Petkov, I.; Mavromatidis, G.; Knoeri, C.; Allan, J.; Hoffmann, V.H. MANGOret: An optimization framework for the long-term investment planning of building multi-energy system and envelope retrofits. Appl. Energy 2022, 314, 118901. [Google Scholar] [CrossRef]
- Qi, X.; Wang, B.; Gao, Q. Environment, social and governance research of infrastructure investment: A literature review. J. Clean. Prod. 2023, 425, 139030. [Google Scholar] [CrossRef]
- Lai, Y.; Papadopoulos, S.; Fuerst, F.; Pivo, G.; Sagi, J.; Kontokosta, C.E. Building retrofit hurdle rates and risk aversion in energy efficiency investments. Appl. Energy 2022, 306, 118048. [Google Scholar] [CrossRef]
- Sutherland, G.; Maldonado, E.; Wouters, P.; Papaglastra, M. Implementing the Energy Performance of Buildings Directive (EPBD). 2013. Available online: http://www.epbd-ca.org/Medias/Pdf/CA3-BOOK-2012-ebook-201310.pdf (accessed on 4 September 2023).
- Attia, S.; Benzidane, C.; Rahif, R.; Amaripadath, D.; Hamdy, M.; Holzer, P.; Carlucci, S. Overheating calculation methods, criteria, and indicators in European regulation for residential buildings. Energy Build. 2023, 292, 113170. [Google Scholar] [CrossRef]
- Fernandes, D.V.; Silva, C.S. Open Energy Data—A regulatory framework proposal under the Portuguese electric system context. Energy Policy 2022, 170, 113240. [Google Scholar] [CrossRef]
- Dervishi, S.; Baçi, N. Early design evaluation of low-rise school building morphology on energy performance: Climatic contexts of Southeast Europe. Energy 2023, 269, 126790. [Google Scholar] [CrossRef]
- Cichowicz, R.; Jerominko, T. Comparison of calculation and consumption methods for determining Energy Performance Certificates (EPC) in the case of multi-family residential buildings in Poland (Central-Eastern Europe). Energy 2023, 282, 128393. [Google Scholar] [CrossRef]
- Gao, H.; Cai, W.; He, S.; Jiang, J.; Liu, J. Multi-energy sharing optimization for a building cluster towards net-zero energy system. Appl. Energy 2023, 350, 121778. [Google Scholar] [CrossRef]
- Buyak, N.; Deshko, V.; Bilous, I. Changing Energy and Exergy Comfort Level after School Thermomodernization. Rocz. Ochr. Sr. 2021, 23, 458–469. [Google Scholar] [CrossRef]
- Fan, Y.; Xia, X. Energy-efficiency building retrofit planning for green building compliance. Build. Environ. 2018, 136, 312–321. [Google Scholar] [CrossRef]
- Yüksek, I.; Karadayi, T.T. Energy-Efficient Building Design in the Context of Building Life Cycle. Energy Effic. Build. 2017, 10, 93–123. [Google Scholar] [CrossRef]
- Borodinecs, A.; Gaujena, B. The implementation of building envelopes with controlled thermal resistance. In Proceedings of the 10th International Conference on Healthy Buildings, Brisbane, QLD, Australia, 8–12 July 2012. [Google Scholar]
- Borodinecs, A.; Prozuments, A.; Zajacs, A.; Zemitis, J. Retrofitting of fire stations in cold climate regions. Mag. Civ. Eng. 2019, 90, 85–92. [Google Scholar] [CrossRef]
- Bosseboeuf, D. Energy Efficiency Trends and Policies in the Household and Tertiary Sectors. Photomed. Laser Surg. 2015, 31, 97. [Google Scholar] [CrossRef]
- Prozuments, A. Long-Term Assessment Methodology of Building Stock Thermal Energy Consumption; RTU Press: Riga, Letonia, 2021. [Google Scholar] [CrossRef]
- Deshko, V.; Bilous, I.; Buyak, N.; Shevchenko, O. The Impact of Energy-Efficient Heating Modes on Human Body Exergy Consumption in Public Buildings. In Proceedings of the 2020 IEEE 7th International Conference on Energy Smart Systems (ESS), Kyiv, Ukraine, 12–14 May 2020; pp. 201–205. [Google Scholar] [CrossRef]
- Borodinecs, A.; Zemitis, J.; Dobelis, M.; Kalinka, M.; Prozuments, A.; Šteinerte, K. Modular retrofitting solution of buildings based on 3D scanning. Procedia Eng. 2017, 205, 160–166. [Google Scholar] [CrossRef]
- Baiburin, A.K.; Rybakov, M.M.; Vatin, N.I. Heat loss through the window frames of buildings. Mag. Civ. Eng. 2019, 85, 3–14. [Google Scholar] [CrossRef]
- Tien, P.W.; Wei, S.; Liu, T.; Calautit, J.; Darkwa, J.; Wood, C. A deep learning approach towards the detection and recognition of opening of windows for effective management of building ventilation heat losses and reducing space heating demand. Renew. Energy 2021, 177, 603–625. [Google Scholar] [CrossRef]
- EUBD. European Buildings Database. 2017. Available online: https://ec.europa.eu/energy/en/eu-buildings-database (accessed on 4 September 2023).
- Thonipara, A.; Runst, P.; Ochsner, C.; Bizer, K. Energy efficiency of residential buildings in the European Union–An exploratory analysis of cross-country consumption patterns. Energy Policy 2019, 129, 1156–1167. [Google Scholar] [CrossRef]
- Zevenhoven, R.; Erlund, R.; Tveit, T.-M. Energy efficiency of exhaust air heat recovery while controlling building air humidity: A case study. Energy Convers. Manag. 2019, 195, 1238–1243. [Google Scholar] [CrossRef]
- Liu, P.; Justo Alonso, M.; Mathisen, H.M.; Halfvardsson, A.; Simonson, C. Understanding the role of moisture recovery in indoor humidity: An analytical study for a Norwegian single-family house during heating season. Build. Environ. 2023, 229, 109940. [Google Scholar] [CrossRef]
- Ana Picallo-Perez, I.G.-A.; Sala, J.M.; Odriozola-Maritorena, M.; Hidalgo, J.M. Ventilation of buildings with heat recovery systems: Thorough energy and exergy analysis for indoor thermal wellness. J. Build. Eng. 2021, 39, 102255. [Google Scholar] [CrossRef]
- Liu, P.; Justo Alonso, M.; Mathisen, H.M. Heat recovery ventilation design limitations due to LHC for different ventilation strategies in ZEB. Build. Environ. 2022, 224, 109542. [Google Scholar] [CrossRef]
- De Jonge, K.; Ghijsels, J.; Laverge, J. Energy savings and exposure to VOCs of different household sizes for three residential smart ventilation systems with heat recovery. Energy Build. 2023, 290, 113091. [Google Scholar] [CrossRef]
- Zemitis, J.; Borodinecs, A. Energy saving potential of ventilation systems with exhaust air heat recovery. IOP Conf. Ser. Mater. Sci. Eng. 2019, 660, 012019. [Google Scholar] [CrossRef]
- Liu, P.; Justo Alonso, M.; Mathisen, H.M. Global sensitivity analysis and optimal design of heat recovery ventilation for zero emission buildings. Appl. Energy 2023, 329, 120237. [Google Scholar] [CrossRef]
- Gainza-Barrencua, J.; Odriozola-Maritorena, M.; Barrutieta, X.; Gomez-Arriaran, I.; Hernández Minguillón, R. Use of sunspaces to obtain energy savings by preheating the intake air of the ventilation system: Analysis of its main characteristics in the different Spanish climate zones. J. Build. Eng. 2022, 62, 105331. [Google Scholar] [CrossRef]
- Asdrubali, F.; Baldinelli, G.; Bianchi, F.; Cornicchia, M. Experimental Performance Analyses of a Heat Recovery System for Mechanical Ventilation in Buildings. Energy Procedia 2015, 82, 465–471. [Google Scholar] [CrossRef]
- Bai, H.Y.; Liu, P.; Justo Alonso, M.; Mathisen, H.M. A review of heat recovery technologies and their frost control for residential building ventilation in cold climate regions. Renew. Sustain. Energy Rev. 2022, 162, 112417. [Google Scholar] [CrossRef]
- Thébault, S.; Bouchié, R. Estimating Infiltration Losses for In-situ Measurements of the Building Envelope Thermal Performance. Energy Procedia 2015, 78, 1756–1761. [Google Scholar] [CrossRef]
- Petrichenko, M.R.; Nemova, D.V.; Kotov, E.V.; Tarasova, D.S.; Sergeev, V.V. Ventilated facade integrated with the HVAC system for cold climate. Mag. Civ. Eng. 2018, 77, 47–58. [Google Scholar] [CrossRef]
- Nord, N. Building Energy Efficiency in Cold Climates; Elsevier: Amsterdam, The Netherlands, 2017; Volume 2. [Google Scholar] [CrossRef]
- Attia, S.; Kurnitski, J.; Kosiński, P.; Borodiņecs, A.; Belafi, Z.D.; István, K.; Laurent, O. Overview and future challenges of nearly zero-energy building (nZEB) design in Eastern Europe. Energy Build. 2022, 267, 112165. [Google Scholar] [CrossRef]
- Deshko, V.; Bilous, I.; Sukhodub, I.; Yatsenko, O. Evaluation of energy use for heating in residential building under the influence of air exchange modes. J. Build. Eng. 2021, 42, 103020. [Google Scholar] [CrossRef]
- Evola, G.; Gagliano, A.; Marletta, L.; Nocera, F. Controlled mechanical ventilation systems in residential buildings: Primary energy balances and financial issues. J. Build. Eng. 2017, 11, 96–107. [Google Scholar] [CrossRef]
- EN 308:1997; Heat Exchangers—Test Procedures for Establishing Performance of Air to Air and Flue Gases Heat Recovery Devices. iTeh, Inc.: Newark, DE, USA, 1997.
- Liu, P.; Justo Alonso, M.; Mathisen, H.M.; Halfvardsson, A. Development and optimization of highly efficient heat recoveries for low carbon residential buildings. Energy Build. 2022, 268, 112236. [Google Scholar] [CrossRef]
- Fernández-Agüera, J.; Domínguez-Amarillo, S.; Alonso, C.; Martín-Consuegra, F. Thermal comfort and indoor air quality in low-income housing in Spain: The influence of airtightness and occupant behaviour. Energy Build. 2019, 199, 102–114. [Google Scholar] [CrossRef]
- Psomas, T.; Teli, D.; Langer, S.; Wahlgren, P.; Wargocki, P. Indoor humidity of dwellings and association with building characteristics, behaviors and health in a northern climate. Build. Environ. 2021, 198, 107885. [Google Scholar] [CrossRef]
- LVS EN 16798-1:2019; Ventilācijas Gaisa Daudzuma Noteikšana Pēc. LVS: Riga, Latvia, 2019.
- Chen, Y.-H.; Tu, Y.-P.; Sung, S.-Y.; Weng, W.-C.; Huang, H.-L.; Tsai, Y.I. A comprehensive analysis of the intervention of a fresh air ventilation system on indoor air quality in classrooms. Atmos Pollut. Res. 2022, 13, 101373. [Google Scholar] [CrossRef]
- Shi, S.; Man, Y.; Wang, Z.; Wang, L.; Zhang, X. On Site Measurement and Analysis on Indoor Air Environment of Classroom in University Campus. Procedia Eng. 2017, 205, 2200–2207. [Google Scholar] [CrossRef]
- Zemitis, J.; Borodinecs, A. Indoor Air Quality in Multi-Storey Apartment Buildings after Refurbishment. In Proceedings of the 5th International Scientific Conference “Civil Engineering ‘15’”, Jelgava, Latvia, 14–15 May 2015. [Google Scholar]
- Rafati Nasr, M.; Kassai, M.; Ge, G.; Simonson, C.J. Evaluation of defrosting methods for air-to-air heat/energy exchangers on energy consumption of ventilation. Appl. Energy 2015, 151, 32–40. [Google Scholar] [CrossRef]
- Tang, F.; Gao, J.; Wu, X.; Hu, G.; Yao, H.; Zhu, X. Performance investigation on a precision air conditioning system with a condensation heat recovery unit under varying operating conditions. Appl. Therm. Eng. 2024, 236, 121664. [Google Scholar] [CrossRef]
- Nielsen, T.R.; Rose, J.; Kragh, J. Dynamic model of counter flow air to air heat exchanger for comfort ventilation with condensation and frost formation. Appl. Therm. Eng. 2009, 29, 462–468. [Google Scholar] [CrossRef]
- Nada, S.A.; Elattar, H.F.; Fouda, A. Performance analysis of proposed hybrid air conditioning and humidification-dehumidification systems for energy saving and water production in hot and dry climatic regions. Energy Convers. Manag. 2015, 96, 208–227. [Google Scholar] [CrossRef]
- Zemitis, J.; Terekh, M. Management of energy efficient measures by buildings’ thermorenovation. MATEC Web Conf. 2018, 245, 06003. [Google Scholar] [CrossRef]
- Fu, H.; Liu, X.; Xie, Y.; Jiang, Y. Experimental and numerical analysis on total heat recovery performance of an enthalpy wheel under high temperature high humidity working conditions. Appl. Therm. Eng. 2019, 146, 482–494. [Google Scholar] [CrossRef]
- Asasian-Kolur, N.; Sharifian, S.; Haddadi, B.; Pourhoseinian, M.; Shekarbaghani, Z.M.; Harasek, M. Membrane-based enthalpy exchangers for coincident sensible and latent heat recovery. Energy Convers. Manag. 2022, 253, 115144. [Google Scholar] [CrossRef]
Specification | Value |
---|---|
Test Chamber | |
Width | 4 m |
Length | 3 m |
Height | 2.8 m |
Air Handling Unit | |
Type of heat recovery unit | Aluminum, Plates |
Maximum output | 183 m3/h at 100 Pa system pressure |
Air duct connections | 4 × Ø125 mm |
Fan capacity | 2 × 0.119 kW, 0.9 A |
Electric after heater | 0.9 kW |
Heat recovery efficiency | 84% (as per manufacturer’s data) |
Defrosting method | Contour line without preheating |
Specification | Value |
---|---|
Measuring unit | HOBO MX1104 Data Logger |
Manufacturer | Onset |
Temperature: | |
Measurement range | −20 °C to +70 °C |
Accuracy | ±0.20 °C from 0 °C to +50 °C |
Measurement accuracy deviation | <0.1 °C per year |
Relative humidity | |
Measurement range | 0–100% at −20 °C to 70 °C |
Accuracy | ±2.5% (10% to 90%) with a maximum of ±3.5% |
Typical deviation (below 10% and above 90%) | ±5% |
Reading data | |
Possible reading interval | 1 s to 18 h |
Reading modes | Fixed interval (normal and statistical) |
Time accuracy | ±1 min per month |
Power source: | 3× AAA 1.5 V Batteries |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prozuments, A.; Zemitis, J.; Bulanovs, A. Cold Climate Challenges: Analysis of Heat Recovery Efficiency in Ventilation Systems. Energies 2023, 16, 7483. https://doi.org/10.3390/en16227483
Prozuments A, Zemitis J, Bulanovs A. Cold Climate Challenges: Analysis of Heat Recovery Efficiency in Ventilation Systems. Energies. 2023; 16(22):7483. https://doi.org/10.3390/en16227483
Chicago/Turabian StyleProzuments, Aleksejs, Jurgis Zemitis, and Aleksejs Bulanovs. 2023. "Cold Climate Challenges: Analysis of Heat Recovery Efficiency in Ventilation Systems" Energies 16, no. 22: 7483. https://doi.org/10.3390/en16227483
APA StyleProzuments, A., Zemitis, J., & Bulanovs, A. (2023). Cold Climate Challenges: Analysis of Heat Recovery Efficiency in Ventilation Systems. Energies, 16(22), 7483. https://doi.org/10.3390/en16227483