Investigation of the Efficacy of Horizontal Hollow Light Tubes for Energy Conservation in Illuminating Buildings
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
DF | Daylight factor |
DPF | Daylight penetration factor |
LED | Light-emitting diode |
LPD | Lighting power density |
NPD | Normalized power density |
CIE | International Commission on Illumination |
References
- Khedari, J.; Sangprajak, A.; Hirunlabh, J. Investigation of thermal performance by applying a solar chimney with PCM towards the natural ventilation of model house under Climate of Thailand. Renew. Energy 2001, 25, 267–280. [Google Scholar] [CrossRef]
- Thongtha, A.; Khongthon, A.; Boonsri, T.; Chan, H.Y. Thermal effectiveness enhancement of autoclaved aerated concrete wall with PCM-contained conical holes to reduce the cooling load. Materials 2019, 12, 2170. [Google Scholar] [CrossRef]
- Thongtha, A.; Boontham, P. Experimental investigation of natural lighting systems using cylindrical glass for energy saving in buildings. Energies 2020, 13, 2528. [Google Scholar] [CrossRef]
- Yan, T.; Sun, Z.W.; Gao, J.J.; Xu, X.H.; Yu, J.H.; Gang, W.J. Simulation study of a pipe-encapsulated PCM wall system with self-activated heat removal by nocturnal sky radiation. Renew. Energy 2020, 146, 1451–1464. [Google Scholar] [CrossRef]
- Kim, J.T.; Kim, G. Overview and new developments in optical daylighting systems for building a healthy indoor environment. Build. Environ. 2010, 45, 256–269. [Google Scholar] [CrossRef]
- Chayawat, C.; Satakhun, D.; Kasemsap, P.; Sathornkich, J. Environmental controls on net CO2 exchange over a young rubber plantation in Northeastern Thailand. Sci. Asia 2019, 45, 50–59. [Google Scholar] [CrossRef]
- Krarti, M.; Erickson, P.M.; Hillman, T.C. A simplified method to estimate energy savings of artificial lighting use from daylighting. Build. Environ. 2005, 40, 747–754. [Google Scholar] [CrossRef]
- Li, D.H.W.; Lam, T.N.T.; Wong, S.L.; Tsang, E.K.W. Lighting and cooling energy consumption in an open-plan office using solar film coating. Energy 2008, 33, 1288–1297. [Google Scholar] [CrossRef]
- Kent, M.; Huynh, N.K.; Schiavon, S.; Selkowitz, S. Using support vector machine to detect desk illuminance sensor blockage for closed-loop daylight harvesting. Energy Build. 2022, 274, 112443. [Google Scholar] [CrossRef]
- Lopin, M.K. An overview of daylighting systems. Sol. Energy 2002, 73, 77–82. [Google Scholar] [CrossRef]
- Ekren, N.; Gorgulu, S. An investigation into the usability of straight light-pipes in Istanbul. Energy Ed. Sci. Tech. Part A Energy Sci. Res. 2012, 30, 637–644. [Google Scholar]
- Jenkins, D.; Muneer, T.; Kubie, J. A design tool for predicting the performances of light pipes. Energy Build. 2005, 37, 485–492. [Google Scholar] [CrossRef]
- Oakley, G.; Riffat, S.B.; Shao, L. Daylight performance of light pipes. Sol. Energy 2000, 69, 89–98. [Google Scholar] [CrossRef]
- Garcia, H.V.; Esteves, A.; Pattini, A. Passive solar systems for heating, daylighting and ventilation for rooms without an equator-facing façade. Renew. Energy 2002, 26, 91–111. [Google Scholar] [CrossRef]
- Wong, I.; Yang, H.X. Introducing natural lighting into the enclosed lift lobbies of high-rise buildings by remote source lighting system. Appl. Energy 2012, 90, 225–232. [Google Scholar] [CrossRef]
- Canziani, R.; Peron, F.; Rossi, G. Daylight and energy performances of a new type of light pipe. Energy Build. 2004, 36, 1163–1176. [Google Scholar] [CrossRef]
- Rosemann, A.; Mossman, M.; Whitehead, L. Development of a cost-effective solar illumination system to bring natural light into the building core. Sol. Energy 2008, 82, 302–310. [Google Scholar] [CrossRef]
- Alrubaih, M.S.; Zain, M.F.M.; Alghoul, M.A.; Ibrahim, N.L.N.; Shameri, M.A.; Elayeb, O. Research and development on aspects of daylighting fundamentals. Renew. Sustain. Energy Rev. 2013, 21, 494–505. [Google Scholar] [CrossRef]
- Smith, B.J.; Phillips, G.M.; Sweeney, M. Chapter 9—Daylighting. In Environmental Science; Routledge: London, UK, 2014. [Google Scholar]
- Zhang, X.; Muneer, T. Mathematical model for the performance of light pipes. Light Res. Technol. 2000, 32, 141–146. [Google Scholar] [CrossRef]
- SIST EN 17037:2019; Daylight of Buildings. Slovenian Institute for Standardization: Ljubljana, Slovenia, 2019.
- Ozarisoy, B.; Altan, H. Bridging the energy performance gap of social housing stock in south-eastern Mediterranean Europe: Climate change and mitigation. Energy Build. 2022, 258, 111687. [Google Scholar] [CrossRef]
- Altan, H.; Ozarisoy, B. An analysis of the development of modular building design elements to improve thermal performance of a representative high rise residential estate in the coastline city of Famagusta, Cyprus. Sustainability 2022, 14, 4065. [Google Scholar] [CrossRef]
- Pleshkov, S.; Brakale, G.; Vedishcheva, I. A Project aimed to increase energy efficiency of the object swimming pool universitet sky by application of hollow mirrored tubular light guides under trade mark. Mater. Sci. Eng. 2018, 463, 042050. [Google Scholar]
- Ahsan, M.D.; Ahsan, R.U.; Kim, Y.R.; Ashiri, R.; Cho, Y.J.; Jeong, C.; Park, Y.D. Cold metal transfer (CMT) MAW of zinc-coated steel. Weld. J. 2016, 95, 120–132. [Google Scholar]
- Sharma, L.; Ali, S.F.; Rakshit, D. Performance evaluation of a top lighting light-pipe in buildings and estimating energy saving potential. Energy Build. 2018, 179, 57–72. [Google Scholar] [CrossRef]
- Vasilakopoulou, K.; Kolokotsa, D.; Santamouris, M.; Kousis, I.; Asproulias, H.; Giannarakis, I. Analysis of the experimental performance of light pipes. Energy Build. 2017, 151, 242–249. [Google Scholar] [CrossRef]
- Mehta, D. A Review on Challenges of Daylight-Based-Classroom-Studies and their Methodology Regarding Architectural-Design Process. Int. J. Innov. Res. Sci. Eng. Technol. 2020, 9, 15. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Rubel, F.; Brugger, K.; Haslinger, K.; Auer, I. The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800–2100. Meteorol. Z. 2017, 26, 115–125. [Google Scholar] [CrossRef]
- Kent, M.G.; Schiavon, S.; Jakubiec, J.A. A Dimensionality reduction method to select the most representative daylight illuminance distributions. J. Build. Perform. Simul. 2020, 13, 122–135. [Google Scholar] [CrossRef]
- Freewan, A.A.Y.; Al Dalala, J.A. Assessment of daylight performance of Advanced Daylighting Strategies in Large University Classrooms; Case Study Classrooms at JUST. Alex. Eng. J. 2020, 59, 791–802. [Google Scholar] [CrossRef]
- Obradovic, B.; Matusiak, B.S. Daylight autonomy improvement in buildings at high latitudes using horizontal light pipes and light-deflecting panels. Sol. Energy 2020, 208, 493–514. [Google Scholar] [CrossRef]
- Šikula, O.; Mohelníková, J.; Plášek, J. Thermal CFD analysis of tubular light guides. Energies 2013, 6, 6304–6321. [Google Scholar] [CrossRef]
- Baglivo, C.; Bonomolo, M.; Congedo, P.M. Modeling of light pipes for the optimal disposition in buildings. Energies 2019, 12, 4323. [Google Scholar] [CrossRef]
- Kómar, L.; Kocifaj, M. An accurate prediction of daylight pipe harvesting of interior space. Appl. Sci. 2019, 9, 3552. [Google Scholar] [CrossRef]
- Mohelnikova, J. Daylighting and energy savings with tubular light guides. WSEAS Trans. Environ. Dev. 2008, 4, 200–209. [Google Scholar]
- Görgülü, S.; Ekrenb, N. Energy saving in lighting system with fuzzy logic controller which uses light-pipe and dimmable ballast. Energy Build. 2013, 61, 172–176. [Google Scholar] [CrossRef]
- Yaik, W.L.; Mohd, H.A.; Dilshan, R.O. Internal shading for efficient tropical daylighting in Malaysian contemporary high-rise open plan office. Indoor Built Environ. 2013, 22, 932–951. [Google Scholar]
- Hansen, V.G.; Edmonds, I. Methods for the illumination of multilevel buildings with vertical light pipes. Sol. Energy 2015, 117, 74–88. [Google Scholar] [CrossRef]
- Linhart, F.; Scartezzini, J.L. Evening office lighting—Visual comfort vs. energy efficiency vs. performance? Build. Environ. 2011, 46, 981–989. [Google Scholar] [CrossRef]
- Skarżyński, K.; Rutkowska, A. The interplay between parameters of light pollution and energy efficiency for outdoor amenity lighting. Energies 2023, 16, 3530. [Google Scholar] [CrossRef]
- Commission Internationale de l’Eclairage. CIE 150: Guide on the Limitation of the Effects of Obtrusive Light from Outdoor Lighting Installations; CIE: Vienna, Austria, 2017. [Google Scholar]
- EN 13201-5:2016-1-5; Road Lighitng. CEN: Brussels, Belgium, 2016.
- Pracki, P.; Dziedzicki, M.; Komorzycka, P. Ceiling and wall illumination, utilance, and power in interior lighting. Energies 2020, 13, 4744. [Google Scholar] [CrossRef]
- EN 12464-1:2011; Light and Lighting—Lighting of Work Places—Part 1: Indoor Work Places. BSI: London, UK, 2011.
- Ananwattanaporn, S.; Patcharoen, T.; Bunjongjit, S.; Ngaopitakkul, A. Retrofitted existing residential building design in energy and economic aspect according to thailand building energy code. Appl. Sci. 2021, 11, 1398. [Google Scholar] [CrossRef]
Horizontal Angle (Degree) | Elevation Angle (Degree) | Minimum Illuminance (lx) | Maximum Illuminance (lx) | Average Illuminance (lx) | Minimum to Maximum Ratio | Minimum to Average Ratio |
---|---|---|---|---|---|---|
0 | 0 | 40.7 | 55.7 | 47.6 | 0.73 | 0.85 |
10 | 35.7 | 50.7 | 43.4 | 0.70 | 0.82 | |
20 | 35.7 | 49.3 | 42.8 | 0.72 | 0.83 | |
30 | 36.7 | 48.7 | 43.2 | 0.75 | 0.85 | |
40 | 32.0 | 42.7 | 37.2 | 0.75 | 0.86 | |
50 | 30.3 | 38.7 | 34.8 | 0.78 | 0.87 | |
60 | 29.3 | 37.7 | 33.9 | 0.78 | 0.87 | |
70 | 28.0 | 40.0 | 33.7 | 0.70 | 0.83 | |
80 | 27.3 | 36.3 | 31.8 | 0.75 | 0.86 | |
90 | 27.0 | 35.3 | 30.8 | 0.76 | 0.88 | |
30 | 0 | 425.3 | 556.7 | 494.3 | 0.76 | 0.86 |
10 | 401.3 | 520.7 | 454.8 | 0.77 | 0.88 | |
20 | 378.7 | 482.3 | 423.2 | 0.79 | 0.89 | |
30 | 355.7 | 446.7 | 391.1 | 0.80 | 0.91 | |
40 | 316.3 | 403.7 | 355.0 | 0.78 | 0.89 | |
50 | 254.7 | 366.7 | 313.9 | 0.69 | 0.81 | |
60 | 206.7 | 297.3 | 255.7 | 0.70 | 0.81 | |
70 | 141.3 | 208.3 | 171.0 | 0.68 | 0.83 | |
80 | 125.0 | 149.3 | 136.6 | 0.84 | 0.92 | |
90 | 51.7 | 71.0 | 59.5 | 0.73 | 0.87 | |
60 | 0 | 601.7 | 776.0 | 701.1 | 0.78 | 0.86 |
10 | 517.0 | 651.7 | 597.5 | 0.79 | 0.87 | |
20 | 480.3 | 588.7 | 538.7 | 0.82 | 0.89 | |
30 | 391.3 | 556.7 | 486.0 | 0.70 | 0.81 | |
40 | 352.0 | 561.3 | 424.8 | 0.63 | 0.83 | |
50 | 325.7 | 499.3 | 367.0 | 0.65 | 0.89 | |
60 | 286.7 | 428.3 | 330.6 | 0.67 | 0.87 | |
70 | 204.3 | 305.0 | 258.9 | 0.67 | 0.79 | |
80 | 144.7 | 244.3 | 195.9 | 0.59 | 0.74 | |
90 | 74.7 | 103.3 | 88.9 | 0.72 | 0.84 | |
90 | 0 | 687.3 | 1075.3 | 868.9 | 0.64 | 0.79 |
10 | 662.0 | 858.7 | 750.5 | 0.77 | 0.88 | |
20 | 592.0 | 750.7 | 634.9 | 0.79 | 0.93 | |
30 | 542.3 | 644.7 | 575.1 | 0.84 | 0.94 | |
40 | 452.7 | 644.0 | 494.3 | 0.70 | 0.92 | |
50 | 391.7 | 598.0 | 438.6 | 0.65 | 0.89 | |
60 | 331.3 | 555.0 | 384.7 | 0.60 | 0.86 | |
70 | 232.7 | 437.0 | 287.1 | 0.53 | 0.81 | |
80 | 161.3 | 296.3 | 210.5 | 0.54 | 0.77 | |
90 | 74.7 | 136.3 | 102.1 | 0.55 | 0.73 | |
120 | 0 | 616.0 | 783.3 | 714.8 | 0.79 | 0.86 |
10 | 532.3 | 665.0 | 611.7 | 0.80 | 0.87 | |
20 | 447.0 | 621.3 | 557.9 | 0.72 | 0.80 | |
30 | 401.3 | 570.0 | 497.7 | 0.70 | 0.81 | |
40 | 343.0 | 549.7 | 414.8 | 0.62 | 0.83 | |
50 | 325.3 | 499.3 | 367.3 | 0.65 | 0.89 | |
60 | 265.7 | 409.7 | 311.6 | 0.65 | 0.85 | |
70 | 197.3 | 296.7 | 252.1 | 0.67 | 0.78 | |
80 | 133.7 | 231.3 | 187.2 | 0.58 | 0.71 | |
90 | 72.0 | 99.3 | 85.2 | 0.72 | 0.84 | |
150 | 0 | 419.7 | 551.3 | 488.3 | 0.76 | 0.86 |
10 | 382.7 | 501.7 | 435.9 | 0.76 | 0.88 | |
20 | 363.7 | 480.6 | 410.3 | 0.76 | 0.89 | |
30 | 333.0 | 432.7 | 373.0 | 0.77 | 0.89 | |
40 | 322.7 | 410.0 | 361.3 | 0.79 | 0.89 | |
50 | 265.7 | 377.7 | 325.1 | 0.70 | 0.82 | |
60 | 213.7 | 304.3 | 264.8 | 0.70 | 0.81 | |
70 | 155.3 | 222.0 | 185.3 | 0.70 | 0.84 | |
80 | 134.0 | 158.7 | 145.6 | 0.84 | 0.92 | |
90 | 57.7 | 76.0 | 65.2 | 0.76 | 0.88 | |
180 | 0 | 42.7 | 58.0 | 50.19 | 0.74 | 0.85 |
10 | 34.7 | 50.0 | 42.33 | 0.69 | 0.82 | |
20 | 37.7 | 51.0 | 44.89 | 0.74 | 0.84 | |
30 | 39.7 | 51.7 | 45.96 | 0.77 | 0.86 | |
40 | 29.0 | 39.7 | 34.33 | 0.73 | 0.84 | |
50 | 28.3 | 37.0 | 33.15 | 0.77 | 0.85 | |
60 | 31.3 | 40.3 | 36.19 | 0.78 | 0.87 | |
70 | 26.7 | 39.0 | 33.07 | 0.68 | 0.81 | |
80 | 29.3 | 39.0 | 34.04 | 0.75 | 0.86 | |
90 | 30.3 | 37.7 | 33.93 | 0.81 | 0.89 |
Horizontal Angle (Degree) | Elevation Angle (Degree) | Minimum Illuminance (lx) | Maximum Illuminance (lx) | Average Illuminance (lx) | Minimum to Maximum Ratio | Minimum to Average Ratio | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Al | Zn | Al | Zn | Al | Zn | Al | Zn | Al | Zn | ||
0 | 0 | 1.3 | 0.8 | 1.9 | 1.3 | 1.6 | 1.1 | 0.67 | 0.62 | 0.81 | 0.71 |
10 | 1.2 | 0.8 | 1.8 | 1.3 | 1.5 | 1.1 | 0.66 | 0.62 | 0.79 | 0.73 | |
20 | 1.1 | 0.8 | 1.7 | 1.3 | 1.4 | 1.1 | 0.67 | 0.62 | 0.81 | 0.70 | |
30 | 1.1 | 0.8 | 1.7 | 1.3 | 1.3 | 1.1 | 0.67 | 0.59 | 0.85 | 0.70 | |
40 | 1.1 | 0.8 | 1.5 | 1.3 | 1.3 | 1.1 | 0.73 | 0.62 | 0.86 | 0.70 | |
50 | 1.2 | 0.8 | 1.6 | 1.3 | 1.4 | 1.1 | 0.74 | 0.62 | 0.88 | 0.74 | |
60 | 1.1 | 0.8 | 1.6 | 1.3 | 1.3 | 1.1 | 0.70 | 0.62 | 0.84 | 0.74 | |
70 | 1.1 | 0.8 | 1.5 | 1.3 | 1.3 | 1.1 | 0.73 | 0.62 | 0.85 | 0.73 | |
80 | 1.1 | 0.8 | 1.4 | 1.3 | 1.3 | 1.1 | 0.80 | 0.62 | 0.87 | 0.73 | |
90 | 1.1 | 0.8 | 1.4 | 1.3 | 1.2 | 1.1 | 0.80 | 0.62 | 0.91 | 0.72 | |
30 | 0 | 4.5 | 3.2 | 6.9 | 5.8 | 5.6 | 4.4 | 0.65 | 0.56 | 0.81 | 0.73 |
10 | 4.6 | 3.2 | 6.8 | 5.3 | 5.6 | 4.1 | 0.68 | 0.60 | 0.83 | 0.77 | |
20 | 4.2 | 2.9 | 6.3 | 4.7 | 5.2 | 3.6 | 0.66 | 0.62 | 0.81 | 0.79 | |
30 | 3.9 | 2.8 | 6.1 | 3.9 | 4.9 | 3.3 | 0.64 | 0.70 | 0.80 | 0.83 | |
40 | 3.7 | 2.6 | 5.5 | 3.6 | 4.8 | 3.0 | 0.68 | 0.71 | 0.78 | 0.85 | |
50 | 3.7 | 2.5 | 5.1 | 3.2 | 4.6 | 2.8 | 0.73 | 0.78 | 0.81 | 0.90 | |
60 | 3.3 | 2.1 | 4.9 | 2.9 | 4.2 | 2.5 | 0.67 | 0.74 | 0.78 | 0.85 | |
70 | 2.8 | 2.0 | 4.0 | 2.5 | 3.4 | 2.2 | 0.71 | 0.81 | 0.84 | 0.91 | |
80 | 1.1 | 1.1 | 2.2 | 1.9 | 1.7 | 1.5 | 0.51 | 0.60 | 0.65 | 0.74 | |
90 | 1.1 | 0.8 | 1.4 | 1.3 | 1.2 | 1.1 | 0.80 | 0.59 | 0.90 | 0.71 | |
60 | 0 | 7.3 | 4.6 | 18.6 | 13.1 | 11.4 | 7.7 | 0.39 | 0.35 | 0.64 | 0.59 |
10 | 6.6 | 4.1 | 15.0 | 11.8 | 10.1 | 7.2 | 0.44 | 0.35 | 0.66 | 0.57 | |
20 | 4.7 | 3.9 | 12.1 | 11.6 | 8.9 | 6.9 | 0.39 | 0.34 | 0.52 | 0.57 | |
30 | 6.5 | 3.6 | 9.9 | 10.8 | 8.0 | 6.4 | 0.66 | 0.33 | 0.81 | 0.56 | |
40 | 6.0 | 3.3 | 8.8 | 10.5 | 7.3 | 6.1 | 0.69 | 0.32 | 0.83 | 0.55 | |
50 | 6.0 | 3.2 | 8.0 | 8.5 | 7.0 | 5.5 | 0.74 | 0.37 | 0.85 | 0.58 | |
60 | 5.3 | 3.0 | 7.0 | 7.7 | 6.2 | 4.7 | 0.76 | 0.38 | 0.85 | 0.63 | |
70 | 4.1 | 2.7 | 5.7 | 4.8 | 4.9 | 3.6 | 0.71 | 0.56 | 0.83 | 0.75 | |
80 | 2.1 | 1.3 | 3.2 | 2.2 | 2.7 | 1.8 | 0.64 | 0.60 | 0.77 | 0.73 | |
90 | 1.1 | 0.8 | 1.5 | 1.3 | 1.3 | 1.1 | 0.73 | 0.59 | 0.89 | 0.72 | |
90 | 0 | 12.5 | 7.5 | 30.3 | 24.0 | 19.8 | 14.3 | 0.41 | 0.31 | 0.63 | 0.52 |
10 | 11.4 | 7.1 | 23.7 | 19.2 | 17.2 | 12.2 | 0.48 | 0.37 | 0.67 | 0.59 | |
20 | 8.5 | 6.0 | 16.9 | 15.4 | 13.8 | 10.1 | 0.50 | 0.39 | 0.61 | 0.59 | |
30 | 7.4 | 5.0 | 15.8 | 12.9 | 12.4 | 8.5 | 0.47 | 0.39 | 0.59 | 0.59 | |
40 | 7.0 | 4.7 | 13.1 | 10.9 | 9.9 | 7.7 | 0.53 | 0.43 | 0.70 | 0.61 | |
50 | 6.9 | 4.5 | 8.7 | 8.5 | 7.9 | 6.5 | 0.79 | 0.53 | 0.87 | 0.69 | |
60 | 6.2 | 3.9 | 8.6 | 6.8 | 7.0 | 5.7 | 0.72 | 0.58 | 0.88 | 0.69 | |
70 | 4.9 | 3.8 | 7.0 | 5.6 | 5.7 | 4.7 | 0.71 | 0.69 | 0.86 | 0.82 | |
80 | 1.9 | 1.5 | 3.3 | 2.8 | 2.6 | 2.2 | 0.59 | 0.52 | 0.75 | 0.67 | |
90 | 1.1 | 0.8 | 1.7 | 1.3 | 1.3 | 1.1 | 0.67 | 0.59 | 0.84 | 0.71 | |
120 | 0 | 6.8 | 4.9 | 17.1 | 13.3 | 10.5 | 8.0 | 0.40 | 0.37 | 0.64 | 0.61 |
10 | 6.0 | 4.3 | 14.3 | 11.8 | 9.3 | 7.3 | 0.42 | 0.36 | 0.64 | 0.58 | |
20 | 6.3 | 4.1 | 11.6 | 11.7 | 8.7 | 7.0 | 0.54 | 0.35 | 0.73 | 0.58 | |
30 | 6.0 | 3.7 | 9.2 | 10.7 | 7.6 | 6.5 | 0.65 | 0.35 | 0.79 | 0.57 | |
40 | 5.8 | 3.6 | 8.5 | 9.9 | 6.8 | 6.0 | 0.69 | 0.36 | 0.85 | 0.60 | |
50 | 4.8 | 3.2 | 7.9 | 7.8 | 6.6 | 5.4 | 0.60 | 0.41 | 0.72 | 0.59 | |
60 | 5.5 | 3.0 | 6.9 | 7.1 | 6.1 | 4.8 | 0.80 | 0.43 | 0.90 | 0.63 | |
70 | 3.8 | 2.9 | 6.5 | 5.8 | 5.0 | 3.9 | 0.59 | 0.50 | 0.77 | 0.74 | |
80 | 1.9 | 1.7 | 3.1 | 2.3 | 2.5 | 2.0 | 0.60 | 0.71 | 0.73 | 0.82 | |
90 | 1.1 | 0.8 | 1.5 | 1.3 | 1.2 | 1.1 | 0.77 | 0.59 | 0.91 | 0.70 | |
150 | 0 | 4.5 | 3.3 | 6.6 | 5.8 | 5.4 | 4.5 | 0.68 | 0.57 | 0.84 | 0.74 |
10 | 4.3 | 3.3 | 6.4 | 5.4 | 5.2 | 4.1 | 0.66 | 0.62 | 0.81 | 0.80 | |
20 | 4.0 | 3.0 | 6.4 | 5.2 | 5.0 | 3.9 | 0.63 | 0.58 | 0.80 | 0.77 | |
30 | 3.8 | 3.0 | 5.9 | 3.7 | 4.7 | 3.3 | 0.65 | 0.80 | 0.82 | 0.89 | |
40 | 3.7 | 2.8 | 5.3 | 3.4 | 4.6 | 3.1 | 0.70 | 0.80 | 0.81 | 0.89 | |
50 | 3.6 | 2.6 | 4.8 | 3.2 | 4.4 | 2.9 | 0.76 | 0.79 | 0.82 | 0.88 | |
60 | 3.4 | 2.3 | 4.7 | 3.1 | 4.2 | 2.6 | 0.74 | 0.76 | 0.82 | 0.89 | |
70 | 2.7 | 2.1 | 3.8 | 2.6 | 3.2 | 2.2 | 0.71 | 0.81 | 0.83 | 0.92 | |
80 | 1.3 | 1.2 | 2.0 | 1.8 | 1.9 | 1.6 | 0.65 | 0.66 | 0.66 | 0.76 | |
90 | 1.1 | 0.8 | 1.3 | 1.5 | 1.2 | 1.1 | 0.85 | 0.53 | 0.94 | 0.68 | |
180 | 0 | 1.2 | 0.8 | 1.7 | 1.3 | 1.4 | 1.1 | 0.69 | 0.59 | 0.83 | 0.69 |
10 | 1.1 | 0.8 | 1.6 | 1.3 | 1.3 | 1.1 | 0.70 | 0.62 | 0.83 | 0.70 | |
20 | 1.1 | 0.8 | 1.5 | 1.3 | 1.3 | 1.1 | 0.77 | 0.62 | 0.88 | 0.70 | |
30 | 1.1 | 0.8 | 1.4 | 1.3 | 1.3 | 1.1 | 0.80 | 0.62 | 0.89 | 0.71 | |
40 | 1.1 | 0.8 | 1.4 | 1.3 | 1.2 | 1.1 | 0.80 | 0.62 | 0.90 | 0.71 | |
50 | 1.1 | 0.8 | 1.5 | 1.3 | 1.3 | 1.1 | 0.77 | 0.62 | 0.88 | 0.72 | |
60 | 1.1 | 0.8 | 1.5 | 1.3 | 1.3 | 1.1 | 0.77 | 0.62 | 0.89 | 0.71 | |
70 | 1.1 | 0.8 | 1.4 | 1.3 | 1.2 | 1.1 | 0.80 | 0.62 | 0.92 | 0.70 | |
80 | 1.1 | 0.8 | 1.3 | 1.3 | 1.2 | 1.1 | 0.85 | 0.62 | 0.92 | 0.72 | |
90 | 1.1 | 0.8 | 1.3 | 1.3 | 1.2 | 1.1 | 0.85 | 0.62 | 0.93 | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thongtha, A.; Laphom, P.; Mahawan, J. Investigation of the Efficacy of Horizontal Hollow Light Tubes for Energy Conservation in Illuminating Buildings. Energies 2023, 16, 7545. https://doi.org/10.3390/en16227545
Thongtha A, Laphom P, Mahawan J. Investigation of the Efficacy of Horizontal Hollow Light Tubes for Energy Conservation in Illuminating Buildings. Energies. 2023; 16(22):7545. https://doi.org/10.3390/en16227545
Chicago/Turabian StyleThongtha, Atthakorn, Peeranat Laphom, and Jiraphorn Mahawan. 2023. "Investigation of the Efficacy of Horizontal Hollow Light Tubes for Energy Conservation in Illuminating Buildings" Energies 16, no. 22: 7545. https://doi.org/10.3390/en16227545
APA StyleThongtha, A., Laphom, P., & Mahawan, J. (2023). Investigation of the Efficacy of Horizontal Hollow Light Tubes for Energy Conservation in Illuminating Buildings. Energies, 16(22), 7545. https://doi.org/10.3390/en16227545