Innovative Solid-State Ferroresonance-Suppressing Circuit for Voltage Transformer Protection in Wind Generation Systems
Abstract
:1. Introduction
- Effectively eliminating ferroresonance oscillations in wind energy system VTs;
- Protecting wind energy system VTs against sustained overvoltages;
- Very high operational speed;
- Utilizing a low-voltage circuit, thus requiring less insulation consideration.
2. Analysis and Simulation of Ferroresonance
2.1. Analysis of Ferroresonance
2.2. Simulation of Ferroresonance in VT
3. Configuration, Analysis, and Simulation of Proposed SSFSC
3.1. SSFSC Configuration and Operation
3.2. Analytical Study of SSFSC
3.3. Simulation of SSFSC Operation
4. SSFSC Control Strategy
5. Results Discussion and Comparison
5.1. Performance of the Proposed SSFSC
5.2. Comparison with State-of-the-Art
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
total core flux | resistive current of VT | ||
magnetic flux in primary | current at VT secondary | ||
magnetic flux in secondary | system equivalent resistance | ||
flux linkage | system equivalent inductance | ||
order of magnetizing characteristic | circuit breaker grading capacitance | ||
inductance of primary winding | VT primary side voltage | ||
voltage of wind generator station | VT secondary side voltage | ||
equivalent voltage OS system | SSFSC capacitor voltage | ||
equivalent voltage amplitude | primary winding turns number | ||
angular frequency | secondary winding turns number | ||
time | voltage harmonic of order | ||
equivalent voltage angle | reluctance of core | ||
wind source current | secondary winding resistance | ||
inductive current of VT | charged voltage of capacitor |
References
- Karaagac, U.; Mahseredjian, J.; Cai, L. Ferroresonance conditions in wind parks. Electr. Power Syst. Res. 2016, 138, 41–49. [Google Scholar] [CrossRef]
- Zhang, Y.; Muljadi, E.; Kosterev, D.; Singh, M. Wind power plant model validation using synchrophasor measurements at the point of interconnection. IEEE Trans. Sustain. Energy 2014, 6, 984–992. [Google Scholar] [CrossRef]
- Akinrinde, A.; Swanson, A.; Tiako, R. Dynamic behavior of wind turbine generator configurations during ferroresonant conditions. Energies 2019, 12, 639. [Google Scholar] [CrossRef]
- Milicevic, K.; Emin, Z. Initiation of characteristic ferroresonance states based on flux reflection model. IEEE Trans. Circuits Syst. II Express Briefs 2013, 60, 51–55. [Google Scholar] [CrossRef]
- Ding, X.; Yang, K.; Wang, W.; Liu, B.; Wang, X.; Zhang, J.; Li, D. Ferro-resonance analysis of capacitor voltage transformer with fast saturation damper. Energies 2022, 15, 2791. [Google Scholar] [CrossRef]
- Iravani, M.; Chaudhary, A.; Giesbrecht, W.; Hassan, I.; Keri, A.; Lee, K.; Martinez, J.; Morched, A.; Mork, B.; Parniani, M.; et al. Modeling and analysis guidelines for slow transients. III. The study of ferroresonance. IEEE Trans. Power Deliv. 2000, 15, 255–265. [Google Scholar] [CrossRef]
- Tajdinian, M.; Allahbakhshi, M.; Behdani, B.; Behi, D.; Goodarzi, A. Probabilistic framework for vulnerability analysis of coupling capacitor voltage transformer to ferroresonance phenomenon. IET Sci. Meas. Technol. 2020, 14, 344–351. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, X.; Pordanjani, I.R.; Cui, R.; Jafari, A.; Clark, C. Investigation of ferroresonance causing sustained high voltage at a DE-energized 138 kV bus: A case study. IEEE Trans. Ind. Appl. 2019, 55, 5675–5686. [Google Scholar] [CrossRef]
- Zirka, S.; Moroz, Y.; Zhuykov, A.; Matveev, D.; Kubatkin, M.; Frolov, M.; Popov, M. Eliminating VT uncertainties in modeling ferroresonance phenomena caused by single phase-to-ground faults in isolated neutral network. Int. J. Electr. Power Energy Syst. 2021, 133, 107275. [Google Scholar] [CrossRef]
- Kraszewski, W.; Syrek, P.; Mitoraj, M. Methods of ferroresonance mitigation in voltage transformers in a 30 kV power supply network. Energies 2022, 15, 9516. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, C.; Xia, Y.; Zhang, F. Analytical solution of serial ferroresonance triggered by circuit breaker operation in solidly grounded power grids. Int. J. Electr. Power Energy Syst. 2023, 154, 109447. [Google Scholar] [CrossRef]
- Heidary, A.; Niasar, M.G.; Popov, M.; Lekić, A. Transformer Resonance: Reasons, Modeling Approaches, Solutions. IEEE Access 2023, 11, 58692–58704. [Google Scholar] [CrossRef]
- Thanomsat, N.; Plangklang, B.; Ohgaki, H. Analysis of ferroresonance phenomenon in 22 kV distribution system with a photovoltaic source by PSCAD/EMTDC. Energies 2018, 11, 1742. [Google Scholar] [CrossRef]
- Abdel-Hamed, A.M.; El-Shafhy, M.M.; Badran, E.A. High Ohmic Reactor as a Shunt Limiter (HOR-SL) Method for Ferroresonance Elimination in the Distribution System. IEEE Access 2022, 10, 134217–134229. [Google Scholar] [CrossRef]
- Bronzeado, H.S.; Emin, Z.; Kocis, L.; Shim, E.B. Review of Ferroresonance Phenomenon on Power Systems: Practical Examples and Experience with Adopted Solutions. In Proceedings of the Cigré International Symposium on Assessing and Improving Power System Security, Reliability and Performance in Light of Changing Energy Sources, Recife, Brazil, 3–6 April 2011. [Google Scholar]
- Sagardia, S.R.; Morched, A. Potential Transformer Failure due to Ferroresonance. In Proceedings of the IPST ’97—International Conference on Power System Transients, Seattle, DC, USA, 22–26 June 1997; Available online: https://www.ipstconf.org/papers/Proc_IPST1997/97IPST030.pdf (accessed on 1 November 2023).
- Emin, Z.; Tong, Y.K. Ferroresonance Experience in UK: Simulations and Measurements. In Proceedings of the IPST 2001—International Conference on Power System Transients, Rio de Janeiro, Brazil, 24–28 June 2001; Available online: https://www.ipstconf.org/papers/Proc_IPST2001/01IPST044.pdf (accessed on 1 November 2023).
- Heidary, A.; Rouzbehi, K.; Radmanesh, H.; Pou, J. Voltage Transformer Ferroresonance: An Inhibitor Device. IEEE Trans. Power Deliv. 2020, 35, 2731–2733. [Google Scholar] [CrossRef]
- Milicevic, K.; Vulin, D.; Vinko, D. Experimental investigation of symmetry-breaking in ferroresonant circuit. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 1543–1552. [Google Scholar] [CrossRef]
- Rezaei-Zare, A.; Etemadi, A.H.; Iravani, R. Challenges of power converter operation and control under ferroresonance conditions. IEEE Trans. Power Deliv. 2016, 32, 2380–2388. [Google Scholar] [CrossRef]
- Fordoei, H.R.A.; Gholami, A.; Fathi, S.H.; Abbasi, A. Chaotic oscillations control in the voltage transformer including nonlinear core loss model by a nonlinear robust adaptive controller. Int. J. Electr. Power Energy Syst. 2013, 47, 280–294. [Google Scholar] [CrossRef]
- Behdani, B.; Allahbakhshi, M.; Tajdinian, M. On the impact of geomagnetically induced currents in driving series capacitor compensated power systems to ferroresonance. Int. J. Electr. Power Energy Syst. 2020, 125, 106424. [Google Scholar] [CrossRef]
- Radmanesh, H.; Gharehpetian, G.B.; Fathi, H. Ferroresonance of power transformers considering nonlinear core losses and metal oxide surge arrester effects. Electr. Power Compon. Syst. 2012, 40, 463–479. [Google Scholar] [CrossRef]
- Heidary, A.; Radmanesh, H.; Bakhshi, A.; Samandarpour, S.; Rouzbehi, K.; Shariati, N. Compound ferroresonance overvoltage and fault current limiter for power system protection. IET Energy Syst. Integr. 2020, 2, 325–330. [Google Scholar] [CrossRef]
- Radmanesh, H.; Heidary, A.; Fathi, S.H.; Gharehpetian, G.B. Dual function ferroresonance and fault current limiter based on DC reactor. IET Gener. Transm. Distrib. 2016, 10, 2058–2065. [Google Scholar] [CrossRef]
- Heidary, A.; Radmanesh, H. Smart solid-state ferroresonance limiter for voltage transformers application: Principle and test results. IET Power Electron. 2018, 11, 2545–2552. [Google Scholar] [CrossRef]
- Torres-García, V.; Solís-Ramos, N.; González-Cabrera, N.; Hernández-Mayoral, E.; Guillen, D. Ferroresonance Modeling and Analysis in Underground Distribution Feeders. IEEE Open Access J. Power Energy 2023, 10, 583–592. [Google Scholar] [CrossRef]
- Chapman, S.J. Electric Machinery Fundamentals, 5th ed.; McGraw Hill Higher Education: Maidenhead, UK, 2011. [Google Scholar]
Parameter Description | Value |
---|---|
wind generator voltage | 63 kV |
wind generator equivalent impedance | 0.1 + j0.3 W |
breaker equivalent capacitance | 2 nF |
VT core loss | 500 W |
VT core saturation region | 1.8 T |
Compared Parameter | Without SSFSC | With SSFSC |
---|---|---|
peak voltage | 2.5 p.u. | 1.05 p.u. |
peak magnetic flux | 3.2 p.u. | 2.2 p.u. |
maximum RVR | 28.7 kV/ms | 13.2 kV/ms |
MHCC | 45% | 78% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhshi, A.; Bigdeli, M.; Moradlou, M.; Behdani, B.; Hojabri, M. Innovative Solid-State Ferroresonance-Suppressing Circuit for Voltage Transformer Protection in Wind Generation Systems. Energies 2023, 16, 7684. https://doi.org/10.3390/en16237684
Bakhshi A, Bigdeli M, Moradlou M, Behdani B, Hojabri M. Innovative Solid-State Ferroresonance-Suppressing Circuit for Voltage Transformer Protection in Wind Generation Systems. Energies. 2023; 16(23):7684. https://doi.org/10.3390/en16237684
Chicago/Turabian StyleBakhshi, Ali, Mehdi Bigdeli, Majid Moradlou, Behzad Behdani, and Mojgan Hojabri. 2023. "Innovative Solid-State Ferroresonance-Suppressing Circuit for Voltage Transformer Protection in Wind Generation Systems" Energies 16, no. 23: 7684. https://doi.org/10.3390/en16237684
APA StyleBakhshi, A., Bigdeli, M., Moradlou, M., Behdani, B., & Hojabri, M. (2023). Innovative Solid-State Ferroresonance-Suppressing Circuit for Voltage Transformer Protection in Wind Generation Systems. Energies, 16(23), 7684. https://doi.org/10.3390/en16237684