Boosting Photovoltaic Efficiency in Double Quantum Well Intermediate Band-Solar Cells through Impurity Positioning
Abstract
:1. Introduction
2. Theoretical Considerations
- The solar cell must be thick and extensive enough to fully absorb all incident photons from the sun.
- Each photon that hits the solar cell can create only one electron–hole pair.
- Recombination must occur primarily through radiative transitions to achieve optimal conversion efficiency in the shortest possible time.
- Two of the three bands must exhibit photon absorption without overlap.
- The ohmic resistance of the device must be negligible.
- The solar cell should be considered as black body at a temperature of K.
- The solar surface temperature was assumed to be K, whereas the room temperature was K.
2.1. Description of the Model
2.2. Modelling of the Current Density and the Photovoltaic Conversion Efficiency
3. Results and Discussions
- Case 1: QW-BISC without impurities (only in Equation (1)).
- Case 2: Impurities located at the center of GaAs quantum barriers, .
- Case 3: Impurities located at the center of InAs quantum wells, .
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, G.K. Solar power generation by PV (photovoltaic) technology: A review. Energy 2013, 53, 1–13. [Google Scholar] [CrossRef]
- Rappaport, P. The photovoltaic effect and its utilization. Sol. Energy 1959, 3, 8–18. [Google Scholar] [CrossRef]
- Wenham, S.R.; Green, M.A. Silicon solar cells. Prog. Photovoltaics Res. Appl. 1996, 4, 3–33. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, X.; He, Y.; Li, J.; Wang, J.; Yan, H.; Zhang, Y. Toward Efficiency Limits of Crystalline Silicon Solar Cells: Recent Progress in High-Efficiency Silicon Heterojunction Solar Cells. Adv. Energy Mater. 2022, 12, 2200015. [Google Scholar] [CrossRef]
- Emery, K.A.; Osterwald, C.R. Solar cell efficiency measurements. Sol. Cells 1986, 17, 253–274. [Google Scholar] [CrossRef]
- Almora, O.; Baran, D.; Bazan, G.C.; Cabrera, C.I.; Erten-Ela, S.; Forberich, K.; Guo, F.; Hauch, J.; Ho-Baillie, A.W.Y.; Jacobsson, T.J.; et al. Device Performance of Emerging Photovoltaic Materials (Version 3). Adv. Energy Mater. 2023, 13, 2203313. [Google Scholar] [CrossRef]
- Wu, T.; Qin, Z.; Wang, Y.; Wu, Y.; Chen, W.; Zhang, S.; Cai, M.; Dai, S.; Zhang, J.; Liu, J.; et al. The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett. 2021, 13, 1–18. [Google Scholar] [CrossRef]
- Kumar, N.S.; Naidu, K.C.B. A review on perovskite solar cells (PSCs), materials and applications. J. Materiomics 2021, 7, 940–956. [Google Scholar] [CrossRef]
- Fukuda, K.; Yu, K.; Someya, T. The Future of Flexible Organic Solar Cells. Adv. Energy Mater. 2020, 10, 2000765. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, J.; Ma, X.; Gao, J.; Xu, C.; Yang, K.; Wang, Z.; Zhang, J.; Zhang, F. A critical review on semitransparent organic solar cells. Nano Energy 2020, 78, 105376. [Google Scholar] [CrossRef]
- Mavlonov, A.; Razykov, T.; Raziq, F.; Gan, J.; Chantana, J.; Kawano, Y.; Nishimura, T.; Wei, H.; Zakutayev, A.; Minemoto, T.; et al. A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Sol. Energy 2020, 201, 227–246. [Google Scholar] [CrossRef]
- Romeo, A.; Artegiani, E. CdTe-based thin film solar cells: Past, present and future. Energies 2021, 14, 1684. [Google Scholar] [CrossRef]
- Okada, Y.; Ekins-Daukes, N.J.; Kita, T.; Tamaki, R.; Yoshida, M.; Pusch, A.; Hess, O.; Phillips, C.C.; Farrell, D.J.; Ahsan, N.; et al. Intermediate band solar cells: Recent progress and future directions. Appl. Phys. Rev. 2015, 2, 021302. [Google Scholar] [CrossRef]
- Albaladejo-Siguan, M.; Baird, E.C.; Becker-Koch, D.; Li, Y.; Rogach, A.L.; Vaynzof, Y. Stability of Quantum Dot Solar Cells: A Matter of (Life)Time. Adv. Energy Mater. 2021, 11, 2003457. [Google Scholar] [CrossRef]
- Beattie, N.S.; See, P.; Zoppi, G.; Ushasree, P.M.; Duchamp, M.; Farrer, I.; Ritchie, D.A.; Tomić, S. Quantum Engineering of InAs/GaAs Quantum Dot Based Intermediate Band Solar Cells. ACS Photonics 2017, 4, 2745–2750. [Google Scholar] [CrossRef]
- Sayed, I.; Bedair, S.M. Quantum Well Solar Cells: Principles, Recent Progress, and Potential. IEEE J. Photovoltaics 2019, 9, 402–423. [Google Scholar] [CrossRef]
- Madani, L. Numerical Simulation of InAs/GaAs Quantum well and Quantum Dots Solar Cells. Master Dissertation, University of Biskra, Biskra, Algeria, 2019. [Google Scholar]
- El Ghazi, H. Numerical investigation of one-intermediate band InN/GaN QW solar cell under electric field, impurity and size effects. Phys. B Condens. Matter. 2020, 602, 412427. [Google Scholar] [CrossRef]
- Cho, E.-C.; Park, S.; Hao, X.; Song, D.; Conibeer, G.; Park, S.-C.; Green, A.M. Silicon quantum dot/crystalline silicon solar cells. Nanotechnology 2008, 19, 245201. [Google Scholar] [CrossRef]
- Luque, A.; Martí, A. Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels. Phys. Rev. Lett. 1997, 78, 5014–5017. [Google Scholar] [CrossRef]
- Wiemer, M.; Sabnis, V.; Yuen, H. 43.5% efficient lattice matched solar cells. In Proceedings of the SPIE 8108, High and Low Concentrator Systems for Solar Electric Applications, San Diego, CA, USA, 21–25 August 2011; Volume VI, pp. 810804–810805. [Google Scholar]
- Mishra, S.; Satpathy, S. One-dimensional photonic crystal: The Kronig-Penney model. Phys. Rev. B 2003, 68, 045121. [Google Scholar] [CrossRef]
- Abbasian, S.; Sabbaghi-Nadooshan, R. Study of hole-blocking and electron-blocking layers in a InaS/GaAs multiple quantum-well solar cell. Electron. Energetics 2020, 33, 477–487. [Google Scholar] [CrossRef]
- Ahn, K.; Kim, S.Y.; Kim, S.; Son, D.H.; Kim, S.H.; Kim, S.; Kim, J.; Sung, S.J.; Kim, D.H.; Kang, J.K. Flexible high-efficiency CZTSSe solar cells on stainless steel substrates. J. Mater. Chem. A 2019, 7, 24891–24899. [Google Scholar] [CrossRef]
- France, R.M.; Geisz, J.F.; Song, T.; Olavarria, W.; Young, M.; Kibbler, A.; Steiner, M.A. Triple-junction solar cells with 39.5% terrestrial and 34.2% space efficiency enabled by thick quantum well superlattices. Joule 2022, 6, 1121–1135. [Google Scholar] [CrossRef]
- Talhi, A.; Belghachi, A.; Moughli, H.; Amiri, B.; Varani, L. Numerical simulation of multi-quantum well solar cells GaAs/InAs using silvaco atlas. Dig. J. Nanomater. Biostruct. 2016, 11, 1361–1366. [Google Scholar]
- Abboudi, H.; El Ghazi, H.; Jorio, A.; Zorkani, I. Impurity-related photovoltaic efficiency of (In,Ga)N/GaN quantum well-single intermediate band solar cell considering heavy hole impact. Superlattices Microstruct. 2021, 150, 106756. [Google Scholar] [CrossRef]
- Paxman, M.; Nelson, J.; Braun, B.; Connolly, J.; Barnham, K.W.J.; Foxon, C.T.; Roberts, J.S. Modeling the spectral response of the quantum well solar cell. J. Appl. Phys. 1993, 74, 614–621. [Google Scholar] [CrossRef]
- Anderson, N.G. Ideal theory of quantum well solar cells. J. Appl. Phys. 1995, 78, 1850–1861. [Google Scholar] [CrossRef]
- Vadiee, E.; Fischer, A.M.; Clinton, E.A.; McFavilen, H.; Patadia, A.; Arena, C.; Ponce, F.A.; King, R.R.; Honsberg, C.B.; Doolittle, W.A. Evaluating the performance of InGaN/GaN multi-quantum-well solar cells operated at elevated temperatures via DC and small-signal AC analysis. Jpn. J. Appl. Phys. 2019, 58, 101003. [Google Scholar] [CrossRef]
- Parrott, J. Radiative recombination and photon recycling in photovoltaic solar cells. Sol. Energy Mater. Sol. Cells 1993, 30, 221–231. [Google Scholar] [CrossRef]
- Aly, A.E.-M.M.; Nasr, A. Theoretical performance of solar cell based on mini-bands quantum dots. J. Appl. Phys. 2014, 115, 114311. [Google Scholar] [CrossRef]
- Green, M.A. Solar Cells: Operating Principles Technology and System Applications; Prentice-Hall: Englewood Cliffs, NJ, USA, 1982; p. 80. [Google Scholar]
- Díaz, S.R. A generalized theoretical approach for solar cells fill factors by using Shockley diode model and Lambert W-function: A review comparing theory and experimental data. Physica B 2021, 624, 413427. [Google Scholar] [CrossRef]
- Xie, W.; Yan, Q.; Sun, Q.; Li, Y.; Zhang, C.; Deng, H.; Cheng, S. A Progress Review on Challenges and Strategies of Flexible Cu2ZnSn(S,Se)4 Solar Cells. Solar RRL 2023, 7, 2201036. [Google Scholar] [CrossRef]
- Zhang, Y.; Nelson, R.; Tam, K.-M.; Ku, W.; Yu, U.; Vidhyadhiraja, N.S.; Terletska, H.; Moreno, J.; Jarrell, M.; Berlijn, T. Origin of localization in Ti-doped Si. Phys. Rev. B 2018, 98, 174204. [Google Scholar] [CrossRef]
- Malerba, C.; Ricardo, C.L.A.; D’Incau, M.; Biccari, F.; Scardi, P.; Mittiga, A. Nitrogen doped Cu2O: A possible material for intermediate band solar cells? Sol. Energy Mater. Sol. Cells 2012, 105, 192–195. [Google Scholar] [CrossRef]
- Laroze, D.; Barseghyan, M.; Radu, A.; Kirakosyan, A. Laser driven impurity states in two-dimensional quantum dots and quantum rings. Physica B 2016, 501, 1–4. [Google Scholar] [CrossRef]
- Aly, A.E.-M.; Nasr, A. Theoretical Study of One-Intermediate Band Quantum Dot Solar Cell. Int. J. Photoenergy 2014, 2014, 1–10. [Google Scholar] [CrossRef]
- Tomić, S.; Sogabe, T.; Okada, Y. In-plane coupling effect on absorption coefficients of InAs/GaAs quantum dots arrays for intermediate band solar cell. Prog. Photovoltaics Res. Appl. 2014, 23, 546–558. [Google Scholar] [CrossRef]
- Imran, A.; Jiang, J.; Eric, D.; Yousaf, M. Numerical modelling of high efficiency InAs/GaAs intermediate band solar cell. In Proceedings of the 2017 International Conference on Optical Instruments and Technology: Micro/Nano Photonics: Materials and Devices, Beijing, China, 28–30 October 2017; Volume 10622, pp. 63–74. [Google Scholar]
- Kim, D.; Hatch, S.; Wu, J.; Sablon, K.A.; Lam, P.; Jurczak, P.; Tang, M.; Gillin, W.P.; Liu, H. Type-II InAs/GaAsSb Quantum Dot Solar Cells With GaAs Interlayer. IEEE J. Photovoltaics 2018, 8, 741–745. [Google Scholar] [CrossRef]
Electronic Parameter | Formula |
---|---|
Energy gap (GaAs) | eV |
Energy gap (InAs) | eV |
Effective electron mass (GaAs) | |
Effective electron mass (InAs) | |
Density of states | |
in the conduction | |
band (cm−3) | |
Density of states | |
in the valence | |
band (cm−3) | |
Relative dielectric constant (GaAs) | |
Relative dielectric constant (InAs) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obispo, A.E.; Zuñiga Vargas, C.; Algoner, W.C. Boosting Photovoltaic Efficiency in Double Quantum Well Intermediate Band-Solar Cells through Impurity Positioning. Energies 2023, 16, 7722. https://doi.org/10.3390/en16237722
Obispo AE, Zuñiga Vargas C, Algoner WC. Boosting Photovoltaic Efficiency in Double Quantum Well Intermediate Band-Solar Cells through Impurity Positioning. Energies. 2023; 16(23):7722. https://doi.org/10.3390/en16237722
Chicago/Turabian StyleObispo, Angel E., Cristofher Zuñiga Vargas, and William C. Algoner. 2023. "Boosting Photovoltaic Efficiency in Double Quantum Well Intermediate Band-Solar Cells through Impurity Positioning" Energies 16, no. 23: 7722. https://doi.org/10.3390/en16237722
APA StyleObispo, A. E., Zuñiga Vargas, C., & Algoner, W. C. (2023). Boosting Photovoltaic Efficiency in Double Quantum Well Intermediate Band-Solar Cells through Impurity Positioning. Energies, 16(23), 7722. https://doi.org/10.3390/en16237722