Effect of the Slinger Ring on the Forced Convection Heat Transfer in a Window Air Conditioner
Abstract
:1. Introduction
2. Computational and Experimental Methods
2.1. Mathematical Model and Numerical Approach
2.2. Experimental Test Facility
3. Results and Discussion
3.1. Condensate Distribution and Discharge of CFDs and EFDs
3.2. Flow and Thermal Fields
3.3. Heat-Transfer Rate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Time | |
Cartesian coordinates | |
, | Velocity components |
Pressure | |
Temperature | |
Specific heat capacity | |
Thermal conductivity | |
External body force | |
Volume fraction | |
Width | |
Height | |
Breadth | |
Length | |
Rotational speed | |
Fan diameter | |
Fan radius | |
Reynolds number (=) | |
Total condensate mass discharge | |
Mass discharge ratio | |
Second largest eigenvalue | |
Strain rate tensor | |
Rotation rate tensor | |
Greek symbols | |
Density | |
Dynamic viscosity | |
Kinematic viscosity | |
Superscripts | |
Time-averaged quantity | |
Abbreviations | |
WAC | Window air conditioner |
VOF | Volume of fluid |
CFD | Computational fluid dynamics |
EFD | Experimental fluid dynamics |
3D | Three dimensional |
SIMPLEC | Semi-implicit method for pressure-linked equation-consistent |
rps | Revolutions per second |
References
- Falkovich, G.; Fouxon, A.; Stepanov, M.G. Acceleration of rain initiation by cloud turbulence. Nature 2002, 419, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Bansal, P. High efficiency novel window air conditioner. Appl. Energy 2015, 156, 311–320. [Google Scholar] [CrossRef]
- Shen, B.; Bansal, P. Assessment of Environmentally Friendly Refrigerants for Window Air Conditioners. In Proceedings of the Name of the International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 14–17 July 2014. [Google Scholar]
- Shen, B.; Fricke, B. Development of high efficiency window air conditioner using propane under limited charge. Appl. Therm. Eng. 2020, 166, 114662. [Google Scholar] [CrossRef]
- Lawrence Livermore National Laboratory. Technical Support Document for Energy Conservation Standards for Room Air Conditioners: Volume 2—Detailed Analysis Of Efficiency Levels; Docket Numbers EE-RM-90-201 & EE-RM-93-801-RAC; Lawrence Livermore National Laboratory: Livermore, CA, USA, 1997. [Google Scholar]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Siemens. STAR-CCM+ User Guide Version 16.04; Siemens: New York, NY, USA, 2016. [Google Scholar]
- Meinke, M.; Schneiders, L.; Gunther, C.; Schröder, W. A cut-cell method for sharp moving boundaries in Cartesian grids. Comput. Fluids 2013, 85, 135–142. [Google Scholar] [CrossRef]
- Mathur, S. Unsteady flow simulations using unstructured sliding meshes. In Proceedings of the Fluid Dynamics Conference, Colorado Springs, CO, USA, 20–23 June 1994. [Google Scholar]
- Blades, E.L.; Marcum, D.L. A sliding interface method for unsteady unstructured flow simulations. Int. J. Numer. Methods Fluids 2007, 53, 507–529. [Google Scholar] [CrossRef]
- Hundshagen, M.; Skoda, R. State of the Art on Two-Phase Non-Miscible Liquid/Gas Flow Transport Analysis in Radial Centrifugal Pumps Part C: CFD Approaches with Emphasis on Improved Models. Int. J. Turbomach. Propuls. Power 2023, 8, 15. [Google Scholar] [CrossRef]
- Hynninen, A.; Vitanen, V.; Tanttari, J.; Klose, R.; Testa, C.; Martio, J. Multiphase Flow Simulation of ITTC Standard Cavitator for Underwater Radiated Noise Prediction. J. Mar. Sci. Eng. 2023, 11, 820. [Google Scholar] [CrossRef]
- Zhou, J.; Adrian, R.J.; Balachadar, S.; Kendall, T.M. Mechanisms for generating coherent packets of hairpin vorticies in channel flow. J. Fluid Mech. 1999, 387, 353–396. [Google Scholar] [CrossRef]
Properties | Value | |
---|---|---|
Condensate | Air | |
Density (kg/m3) | 997.56 | 1.18 |
Viscosity (Pa·s) | 10−4 | 10−5 |
Specific heat (J/kg·K) | 4181.72 | 1003.62 |
Thermal conductivity (W/m·K) | 0.6202 | 0.0260 |
Components | Specifications |
---|---|
Outdoor cover | 435.4 mm (W) × 281.2 mm (H) × 239.33 mm (B) Number of holes: 83 |
Motor | 106.6 (D) |
Compressor | 96.4 (D) |
Condenser fan | Number of blades: 7 Diameter: 123 mm |
Slinger ring | Depth: 10 mm Diameter: 133 mm |
Condenser | 369 mm (W) × 279.2 mm (H) × 19.77 mm (B) |
Number of coils: 83 | |
Number of rows in depth direction: 2 | |
Number of coils per row: 14 | |
Horizontal coil spacing: 5 mm | |
Vertical coil spacing: 150 mm | |
Coil diameter: 5 mm |
Boundaries | Conditions |
---|---|
Inlet | Pressure inlet (atmosphere), Temperature (35 °C) |
Outlet | Outflow |
Condensate supply | Mass flow rate (0.62 kg/h), Temperature (24 °C) |
Wall | No-slip, Temperature (35 °C) |
Coil | No-slip Temperature (35~70 °C) |
Initial filling height of condensate reservoir | 9 mm |
Components | Conditions/Specifications |
---|---|
Fan speed | 1435 rpm |
Initial filling height | 9 mm |
Condensate supply | 0.62 kg/h |
Tubes | Number of rows: 10 Number of columns: 13 Tube inside diameter: 8 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-H.; Jeong, D.-K.; Kim, D.-H.; Park, H.-C.; Lee, J.-H.; Ha, M.-Y.; Yoon, H.-S.; Kim, M.-I.; Hong, S.-B. Effect of the Slinger Ring on the Forced Convection Heat Transfer in a Window Air Conditioner. Energies 2023, 16, 7947. https://doi.org/10.3390/en16247947
Chang C-H, Jeong D-K, Kim D-H, Park H-C, Lee J-H, Ha M-Y, Yoon H-S, Kim M-I, Hong S-B. Effect of the Slinger Ring on the Forced Convection Heat Transfer in a Window Air Conditioner. Energies. 2023; 16(24):7947. https://doi.org/10.3390/en16247947
Chicago/Turabian StyleChang, Chin-Hyuk, Dae-Kwon Jeong, Dae-Hyeok Kim, Hyun-Cheol Park, Jong-Ho Lee, Man-Yeong Ha, Hyun-Sik Yoon, Min-Il Kim, and Seok-Beom Hong. 2023. "Effect of the Slinger Ring on the Forced Convection Heat Transfer in a Window Air Conditioner" Energies 16, no. 24: 7947. https://doi.org/10.3390/en16247947
APA StyleChang, C. -H., Jeong, D. -K., Kim, D. -H., Park, H. -C., Lee, J. -H., Ha, M. -Y., Yoon, H. -S., Kim, M. -I., & Hong, S. -B. (2023). Effect of the Slinger Ring on the Forced Convection Heat Transfer in a Window Air Conditioner. Energies, 16(24), 7947. https://doi.org/10.3390/en16247947