A Physics-Informed Neural Network Approach for Surrogating a Numerical Simulation of Fractured Horizontal Well Production Prediction
Abstract
:1. Introduction
1.1. Traditional Numerical Simulation of Fractured Horizontal Well Production
1.2. Review of Research
1.3. A Novel Proxy Model
2. Data Preparation from Numerical Simulations
2.1. Fracture Characterization
2.2. Reservoir Flow Model
2.3. Weak Formulations
2.4. XFEM Solver
2.5. Inputs and Outputs
3. AI Methodology
3.1. MLP
3.2. Seq2Seq Architecture
3.2.1. LSTM
- Input sequence:
- Initial hidden state:
- Initial cell state:
- For each time step ,
- Final hidden state at the last time step:
- Final cell state at the last time step:
- Input gate:
- Forget gate:
- Output gate:
- Candidate memory cell:
- Memory cell:
- Hidden state (output):
3.2.2. Regular Encoder–Decoder Architecture and Attention Mechanism
- (1)
- Regular Encoder–Decoder architecture
- (2)
- Attention mechanism
3.2.3. Physics-Informed Encoder–Decoder Architecture
3.3. The Training Workflow of PIED
3.3.1. Data Preparation
3.3.2. Data Preprocessing
3.3.3. Model Construction and Weight Initialization
3.3.4. Hyperparameter Optimization
3.3.5. Model Evaluation
4. Case Study
4.1. Data Preparation and Preprocessing
4.2. Configuration of Proxy Models and Hyperparameter Optimization
4.3. Evaluation of the Proxy Models
4.4. Contribution of Physics Information and Seq2Seq Structure
- (1)
- Superiority of the Seq2Seq Structure:
- (2)
- Improvement of Seq2Seq Performance using Physical Information:
5. Conclusions
6. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Qiao, L.; Lu, S.; Chen, F.; Fang, Z.; He, X.; Zhang, J.; He, T. A Novel Shale Gas Production Prediction Model Based on Machine Learning and Its Application in Optimization of Multistage Fractured Horizontal Wells. Front. Earth Sci. 2021, 9, 675–689. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Q.; Shi, J.; Zhang, W.; Ren, W.; Wang, H.; Tian, S. Productivity Prediction of Fractured Horizontal Well in Shale Gas Reservoirs with Machine Learning Algorithms. Appl. Sci. 2021, 11, 12064. [Google Scholar] [CrossRef]
- Xue, H.; Malpani, R.; Agrawal, S.; Bukovac, T.; Mahesh, A.L.; Judd, T. Fast-Track Completion Decision Through Ensemble-Based Machine Learning. In Proceedings of the SPE Reservoir Characterisation and Simulation Conference and Exhibition, Abu Dhabi, United Arab Emirates, 17–19 September 2019. [Google Scholar] [CrossRef]
- Lizhe, L.; Fujian, Z.; You, Z. The prediction and optimization of Hydraulic fracturing by integrating the numerical simulation and the machine learning methods. Energy Rep. 2022, 8, 15338–15349. [Google Scholar] [CrossRef]
- Wang, B.; Han, G.; Lu, X.; Ma, H.; Zhu, Z.; Liang, X. The integrated geosciences and engineering production prediction in tight reservoir based on deep learning. Geoenergy Sci. Eng. 2023, 223, 211571. [Google Scholar] [CrossRef]
- Krishnapriyan, A.; Gholami, A.; Zhe, S.; Kirby, R.; Mahoney, M.W. Characterizing possible failure modes in physics-informed neural networks. Adv. Neural Inf. Process. Syst. 2021, 34, 26548–26560. [Google Scholar]
- Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G.E. Physics-informed neural networks (PINNs) for fluid mechanics: A review. Acta Mech. Sin. 2021, 37, 1727–1738. [Google Scholar] [CrossRef]
- Cursi, J.S.D.; Koscianski, A. Physically constrained neural network models for simulation. In Proceedings of the Advances and Innovations in Systems, Computing Sciences and Software Engineering, Bridgeport, CT, USA, 3–12 December 2007; Springer: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Cuomo, S.; Di Cola, V.S.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F. Scientific machine learning through physics–informed neural networks: Where we are and what’s next. J. Sci. Comput. 2022, 92, 88. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Zhu, Y.; Zabaras, N.; Koutsourelakis, P.S.; Perdikaris, P. Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys. 2019, 394, 56–81. [Google Scholar] [CrossRef]
- Li, X.; Ma, X.; Xiao, F.; Xiao, C.; Wang, F.; Zhang, S. A physics-constrained long-term production prediction method for multiple fractured wells using deep learning. J. Petrol. Sci. Eng. 2022, 217, 110844. [Google Scholar] [CrossRef]
- Guevara, J.; Zadrozny, B.; Buoro, A.; Lu, L.; Tolle, J.; Limbeck, J.W.; Hohl, D. A machine-learning methodology using domain-knowledge constraints for well-data integration and well-production prediction. SPE Reserv. Eval. Eng. 2019, 22, 1185–1200. [Google Scholar] [CrossRef]
- Qu, H.Y.; Zhang, J.L.; Zhou, F.J.; Peng, Y.; Pan, Z.J.; Wu, X.Y. Evaluation of hydraulic fracturing of horizontal wells in tight reservoirs based on the deep neural network with physical constraints. Pet. Sci. 2023, 20, 1129–1141. [Google Scholar] [CrossRef]
- Yang, R.; Qin, X.; Liu, W.; Huang, Z.; Shi, Y.; Pang, Z.; Wang, T. A physics-constrained data-driven workflow for predicting Coalbed methane well production using artificial neural network. SPE J. 2022, 27, 1531–1552. [Google Scholar] [CrossRef]
- Wang, N.; Chang, H.; Zhang, D. Surrogate and inverse modeling for two-phase flow in porous media via theory-guided convolutional neural network. J. Comput. Phys. 2022, 466, 111419. [Google Scholar] [CrossRef]
- Cornelio, J.; Mohd Razak, S.; Cho, Y.; Liu, H.H.; Vaidya, R.; Jafarpour, B. Neural Network-Assisted Clustering for Improved Production Predictions in Unconventional Reservoirs. In Proceedings of the SPE Western Regional Meeting, Anchorage, AK, USA, 22–25 May 2023. [Google Scholar]
- Razak, S.M.; Cornelio, J.; Cho, Y.; Liu, H.H.; Vaidya, R.; Jafarpour, B. Embedding physical flow functions into deep learning predictive models for improved production forecasting. In Proceedings of the Unconventional Resources Technology Conference, Houston, TX, USA, 20–22 June 2022. [Google Scholar]
- Baca, R.G.; Arnett, R.C.; Langford, D.W. Modelling fluid flow in fractured-porous rock masses by finite-element techniques. Int. J. Numer. Methods Fluids 1984, 4, 337–348. [Google Scholar] [CrossRef]
- Xia, Y.; Jin, Y.; Oswald, J.; Chen, M.; Chen, K. Extended finite element modeling of production from a reservoir embedded with an arbitrary fracture network. Int. J. Numer. Methods Fluids 2018, 86, 329–345. [Google Scholar] [CrossRef]
- Jin, Y.; Chen, K.; Chen, M. An asymptotic solution for fluid production from an elliptical hydraulic fracture at early-times. Mech. Res. Commun. 2015, 63, 48–53. [Google Scholar] [CrossRef]
- Oswald, J.; Gracie, R.; Khare, R.; Belytschko, T. An extended finite element method for dislocations in complex geometries: Thin films and nanotubes. Comput. Methods Appl. Mech. Eng. 2009, 198, 1872–1886. [Google Scholar] [CrossRef]
- Karimi-Fard, M.; Durlofsky, L.J.; Aziz, K. An efficient discrete fracture model applicable for general purpose reservoir simulators. SPE J. 2004, 9, 227–236. [Google Scholar] [CrossRef]
- Reichenberger, V.; Jakobs, H.; Bastian, P.; Helmig, R. A mixed-dimensional finite volume method for two-phase flow in fractured porous media. Adv. Water Resour. 2006, 29, 1020–1036. [Google Scholar] [CrossRef]
- Noorishad, J.; Mehran, M. An upstream finite element method for solution of transient transport equation in fractured porous media. Water Resour. Res. 1982, 18, 588–596. [Google Scholar] [CrossRef]
- Xia, Y.; Jin, Y.; Chen, M.; Chen, K. An enriched approach for modeling multiscale discrete-fracture/matrix interaction for unconventional-reservoir simulations. SPE J. 2019, 24, 349–374. [Google Scholar] [CrossRef]
- Karimi-Fard, M.; Firoozabadi, A. Numerical simulation of water injection in fractured media using the discrete-fractured model and the galerkin method. SPE Res. Eval. Eng. 2003, 6, 117–126. [Google Scholar] [CrossRef]
- Melenk, J.M.; Babuška, I. The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Eng. 1996, 139, 289–314. [Google Scholar] [CrossRef]
- Berrone, S.; Pieraccini, S.; Scialò, S. On simulations of discrete fracture network flows with an optimization-based extended finite element method. SIAM J. Sci. Comput. 2013, 35, A908–A935. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Z.; Chen, S. Applicability of deep neural networks on production forecasting in Bakken shale reservoirs. J. Petrol. Sci. Eng. 2019, 179, 112–125. [Google Scholar] [CrossRef]
- Luo, G.; Tian, Y.; Bychina, M. Production optimization using machine learning in Bakken shale. In Proceedings of the Unconventional Resources Technology Conference, Houston, TX, USA, 23–25 July 2018; Society of Exploration Geophysicists: Tulsa, OK, USA; American Association of Petroleum Geologists: Tulsa, OK, USA; Society of Petroleum Engineers: Richardson, TX, USA, 2018. [Google Scholar]
- Panja, P.; Velasco, R.; Pathak, M.; Deo, M. Application of artificial intelligence to forecast hydrocarbon production from shales. Petroleum 2018, 4, 75–89. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 2014, 2, 3104–3112. [Google Scholar]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Chia Laguna Resort, Sardinia, Italy, 13–15 March 2010. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference for Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
Parameters | Value | Unit |
---|---|---|
Matrix permeability | 5 × 10−18 | m2 |
Fluid modulus | 3 × 109 | Pa |
Matrix modulus | 20 × 109 | Pa |
Fracture modulus | 1.05 × 109 | Pa |
Fluid viscosity | 3 × 10−3 | Pa·s |
Initial fluid density | 1000 | kg/m3 |
Porosity | 0.15 | / |
Wellbore pressure | 15 | MPa |
Reservoir pressure | 20 | MPa |
Reservoir thickness | 1 | m |
Inputs | Outputs | |||||
---|---|---|---|---|---|---|
Fracture Half-Length (m) | Fracture Dip | Fracture Permeability (m2) | Cumulative Production (kg) | |||
62.03 | 69.45° | 6.65 × 10−10 | Day 1 | 1164.32 | Day 120 | 7984.58 |
68.41 | 118.23° | 1.25 × 10−10 | Day 3 | 1905.52 | Day 150 | 8567.65 |
13.89 | 117.43° | 3.22 × 10−12 | Day 6 | 2591.89 | Day 180 | 9074.56 |
68.94 | 89.12° | 1.37 × 10−12 | Day 9 | 3086.58 | Day 210 | 9527.55 |
49.27 | 108.01° | 1.78 × 10−9 | Day 15 | 3814.71 | Day 240 | 9939.82 |
11.83 | 68.51° | 7.59 × 10−10 | Day 21 | 4359.01 | Day 270 | 10,319.74 |
24.49 | 85.30° | 6.56 × 10−10 | Day 30 | 4990.75 | Day 300 | 10,672.95 |
43.28 | 114.94° | 3.54 × 10−11 | Day 45 | 5775.01 | Day 330 | 11,003.43 |
72.03 | 107.53° | 8.60 × 10−12 | Day 60 | 6374.02 | Day 360 | 11,314.08 |
72.54 | 117.56° | 1.28 × 10−12 | Day 90 | 7283.71 |
A Sample Generated by the Numerical Simulator | ||||
---|---|---|---|---|
Length | Permeability | Dip angel (radian) | Generated randomly according to the uniform distribution | |
Fracture1 | 9.173320731 | 3.33587 × 10−13 | 1.737934557 | |
Fracture2 | 52.73803329 | 4.45321 × 10−13 | 1.590268905 | |
Fracture3 | 7.970179625 | 1.1239 × 10−8 | 2.066094122 | |
Fracture4 | 10.00118252 | 8.87251 × 10−12 | 1.726819853 | |
Fracture5 | 41.51548897 | 2.33735 × 10−9 | 1.88530177 | |
Fracture6 | 11.7711018 | 1.84973 × 10−10 | 1.522413401 | |
Fracture7 | 62.27039877 | 3.97928 × 10−11 | 1.499996875 | |
Fracture8 | 62.22829645 | 2.58495 × 10−13 | 1.911464137 | |
Fracture9 | 55.57077147 | 4.9175 × 10−10 | 1.134606937 | |
Fracture10 | 15.49058097 | 3.71595 × 10−13 | 1.186653904 | |
PRODUCTION Series | [767.3, 1580.8, 2030.5, 3271.0, 4266.5, 4974.3, 5537.9, 6013.7, 6430.8, 6805.8, 7149.1, 7467.8, 7766.5, 8048.6, 8316.7] | Generated by the numerical simulator (in Section 2) |
Proxy Models | Hidden Size of LSTM | Fully Connected Layers | Dropout | Activation Function | BatchNorm |
---|---|---|---|---|---|
PIED | Encoder: 13 | Encoder: 0 | — | — | — |
Decoder: 13 | Decoder: 1 (neurons: 13) | — | — | Not Applied | |
Regular LSTM-Attention-LSTM | Encoder: 12 | Encoder: 0 | — | — | — |
Decoder: 12 | Decoder: 1 (neurons: 12) | — | — | Not Applied | |
MLP | — | 4 (neurons: 28, 24, 24, 16) | 0.2, 0.1, 0, 0 | Leaky Relu | Applied |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, T.; Xia, Y.; Jiang, H. A Physics-Informed Neural Network Approach for Surrogating a Numerical Simulation of Fractured Horizontal Well Production Prediction. Energies 2023, 16, 7948. https://doi.org/10.3390/en16247948
Jin T, Xia Y, Jiang H. A Physics-Informed Neural Network Approach for Surrogating a Numerical Simulation of Fractured Horizontal Well Production Prediction. Energies. 2023; 16(24):7948. https://doi.org/10.3390/en16247948
Chicago/Turabian StyleJin, Taiyu, Yang Xia, and Haolin Jiang. 2023. "A Physics-Informed Neural Network Approach for Surrogating a Numerical Simulation of Fractured Horizontal Well Production Prediction" Energies 16, no. 24: 7948. https://doi.org/10.3390/en16247948
APA StyleJin, T., Xia, Y., & Jiang, H. (2023). A Physics-Informed Neural Network Approach for Surrogating a Numerical Simulation of Fractured Horizontal Well Production Prediction. Energies, 16(24), 7948. https://doi.org/10.3390/en16247948