Prediction of Circumsolar Irradiance and Its Impact on CSP Systems under Clear Skies
Abstract
:1. Introduction
2. Data
2.1. Experimental Solar Radiation Data
2.2. Modelled DNI and CSNI Data
3. Model Development and Assessment
3.1. Model Development
3.2. Performance Assessment
4. Prediction of CSNI and of Its Impact on the Energy Capture of CSP Systems
4.1. Impact on the Energy That Reaches the Aperture of CSP Systems
4.2. Impact on the Intercept Factor of CSP Systems: The Case of Parabolic trough Concentrators
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Station | Statistical Indicator | Models | |||
---|---|---|---|---|---|
Eissa et al. [5] SOV | Eissa et al. [5] TAM | Eissa et al. [5] Combined | This Work | ||
DAR (TR) | rMBE (%) | −8.28 | −16.53 | −12.94 | −2.25 |
rRMSE (%) | 74.34 | 76.38 | 75.23 | 64.85 | |
R | 0.4616 | 0.4516 | 0.4585 | 0.6277 | |
FB | 0.0647 | −0.0137 | 0.0180 | 0.0694 | |
FGE | 0.3966 | 0.3979 | 0.3946 | 0.3282 | |
EVR (TM) | rMBE (%) | −17.47 | −24.30 | −21.61 | −4.13 |
rRMSE (%) | 68.06 | 72.60 | 70.28 | 48.07 | |
R | 0.7515 | 0.7475 | 0.7506 | 0.8641 | |
FB | 0.0549 | −0.0116 | 0.0084 | 0.0634 | |
FGE | 0.4575 | 0.4660 | 0.4577 | 0.3657 | |
SMS (TM) | rMBE (%) | 51.23 | 41.23 | 44.25 | −7.88 |
rRMSE (%) | 94.91 | 87.53 | 90.03 | 59.32 | |
R | 0.5944 | 0.5952 | 0.5963 | 0.7761 | |
FB | 0.5935 | 0.5399 | 0.5512 | −0.0536 | |
FGE | 0.6657 | 0.6321 | 0.6352 | 0.4101 | |
GOB (AR) | rMBE (%) | −9.66 | −16.54 | −13.97 | 0.40 |
rRMSE (%) | 76.16 | 78.58 | 77.29 | 63.26 | |
R | 0.5963 | 0.5905 | 0.5950 | 0.7356 | |
FB | 0.1261 | 0.0626 | 0.0812 | 0.1404 | |
FGE | 0.4574 | 0.4542 | 0.4506 | 0.4007 | |
TAM (AR) | rMBE (%) | −46.42 | −51.60 | −49.26 | −11.08 |
rRMSE (%) | 64.19 | 68.52 | 66.48 | 35.98 | |
R | 0.6587 | 0.6591 | 0.6596 | 0.8105 | |
FB | −0.6053 | −0.6832 | −0.6521 | −0.0800 | |
FGE | 0.6179 | 0.6882 | 0.6597 | 0.2596 |
Station | Statistical Indicator | Models | |||
---|---|---|---|---|---|
Eissa et al. [5] SOV | Eissa et al. [5] TAM | Eissa et al. [5] Combined | This Work | ||
DAR (TR) | rMBE (%) | −7.32 | −14.46 | −11.38 | −2.97 |
rRMSE (%) | 71.52 | 73.24 | 72.26 | 61.41 | |
R | 0.4884 | 0.4792 | 0.4856 | 0.6585 | |
FB | 0.0677 | −0.0004 | 0.0262 | 0.0495 | |
FGE | 0.3861 | 0.3865 | 0.3836 | 0.3096 | |
EVR (TM) | rMBE (%) | −18.22 | −24.22 | −21.90 | −6.00 |
rRMSE (%) | 69.00 | 73.07 | 70.96 | 47.49 | |
R | 0.7651 | 0.7615 | 0.7644 | 0.8773 | |
FB | 0.0501 | −0.0126 | 0.0050 | 0.0379 | |
FGE | 0.4479 | 0.4538 | 0.4470 | 0.3495 | |
SMS (TM) | rMBE (%) | 55.71 | 46.30 | 48.97 | −8.79 |
rRMSE (%) | 97.65 | 90.25 | 92.75 | 58.16 | |
R | 0.6026 | 0.6060 | 0.6058 | 0.7872 | |
FB | 0.6128 | 0.5599 | 0.5702 | −0.0604 | |
FGE | 0.6748 | 0.6359 | 0.6409 | 0.3856 | |
GOB (AR) | rMBE (%) | −9.47 | −15.53 | −13.34 | 0.35 |
rRMSE (%) | 74.01 | 76.00 | 74.93 | 60.11 | |
R | 0.6099 | 0.6058 | 0.6095 | 0.7565 | |
FB | 0.1208 | 0.0614 | 0.0776 | 0.1306 | |
FGE | 0.4457 | 0.4389 | 0.4367 | 0.3819 | |
TAM (AR) | rMBE (%) | −47.77 | −52.19 | −50.16 | −13.12 |
rRMSE (%) | 65.61 | 69.38 | 67.56 | 36.73 | |
R | 0.6736 | 0.6744 | 0.6748 | 0.8230 | |
FB | −0.6253 | −0.6952 | −0.6679 | −0.1024 | |
FGE | 0.6334 | 0.6981 | 0.6728 | 0.2593 |
Station | Statistical Indicator | Models | |||
---|---|---|---|---|---|
Eissa et al. [5] SOV | Eissa et al. [5] TAM | Eissa et al. [5] Combined | This Work | ||
DAR (TR) | rMBE (%) | −11.28 | −17.81 | −15.01 | −3.11 |
rRMSE (%) | 69.47 | 71.49 | 70.39 | 58.15 | |
R | 0.5053 | 0.4969 | 0.5029 | 0.6813 | |
FB | 0.0232 | −0.0431 | −0.0176 | 0.0445 | |
FGE | 0.3809 | 0.3856 | 0.3815 | 0.3012 | |
EVR (TM) | rMBE (%) | −22.25 | −27.84 | −25.70 | −6.46 |
rRMSE (%) | 70.11 | 74.19 | 72.10 | 46.61 | |
R | 0.7747 | 0.7717 | 0.7744 | 0.8822 | |
FB | 0.0009 | −0.0634 | −0.0456 | 0.0261 | |
FGE | 0.4434 | 0.4518 | 0.4445 | 0.3420 | |
SMS (TM) | rMBE (%) | 50.25 | 41.06 | 43.62 | −8.91 |
rRMSE (%) | 92.84 | 86.01 | 88.31 | 56.76 | |
R | 0.6065 | 0.6118 | 0.6106 | 0.7919 | |
FB | 0.5766 | 0.5198 | 0.5312 | −0.0668 | |
FGE | 0.6454 | 0.6036 | 0.6094 | 0.3789 | |
GOB (AR) | rMBE (%) | −13.74 | −19.40 | −17.39 | 0.01 |
rRMSE (%) | 74.10 | 76.24 | 75.14 | 59.07 | |
R | 0.6138 | 0.6110 | 0.6140 | 0.7617 | |
FB | 0.0719 | 0.0109 | 0.0273 | 0.1230 | |
FGE | 0.4310 | 0.4270 | 0.4244 | 0.3730 | |
TAM (AR) | rMBE (%) | −50.66 | −54.66 | −52.82 | −13.94 |
rRMSE (%) | 68.04 | 71.56 | 69.85 | 37.16 | |
R | 0.6778 | 0.6787 | 0.6792 | 0.8243 | |
FB | −0.6735 | −0.7412 | −0.7149 | −0.1121 | |
FGE | 0.6772 | 0.7426 | 0.7171 | 0.2589 |
References
- Polo, J.; Fernández-Peruchena, C.; Gastón, M. Analysis on the Long-Term Relationship between DNI and CSP Yield Production for Different Technologies. Sol. Energy 2017, 155, 1121–1129. [Google Scholar] [CrossRef]
- Blanc, P.; Espinar, B.; Geuder, N.; Gueymard, C.; Meyer, R.; Pitz-Paal, R.; Reinhardt, B.; Renné, D.; Sengupta, M.; Wald, L.; et al. Direct Normal Irradiance Related Definitions and Applications: The Circumsolar Issue. Sol. Energy 2014, 110, 561–577. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Guide to Instruments and Methods of Observation. Volume I—Measurement of Meteorological Variables; World Meteorological Organization (WMO): Geneva, Switzerland, 2021. [Google Scholar]
- Rabl, A. Comparison of Solar Concentrators. Sol. Energy 1976, 18, 93–111. [Google Scholar] [CrossRef]
- Eissa, Y.; Blanc, P.; Ghedira, H.; Oumbe, A.; Wald, L. A Fast and Simple Model to Estimate the Contribution of the Circumsolar Irradiance to Measured Broadband Beam Irradiance under Cloud-Free Conditions in Desert Environment. Sol. Energy 2018, 163, 497–509. [Google Scholar] [CrossRef]
- Abreu, E.F.M.; Canhoto, P.; Costa, M.J. Development of a Clear-Sky Model to Determine Circumsolar Irradiance Using Widely Available Solar Radiation Data. Sol. Energy 2020, 205, 88–101. [Google Scholar] [CrossRef]
- Abreu, E.F.M.; Canhoto, P.; Costa, M.J. Circumsolar Irradiance Modelling Using libRadtran and AERONET Data. AIP Conf. Proc. 2019, 2126, 190001. [Google Scholar]
- Mayer, B.; Kylling, A. Technical Note: The libRadtran Software Package for Radiative Transfer Calculations—Description and Examples of Use. Atmos. Chem. Phys. 2005, 23, 1855–1877. [Google Scholar] [CrossRef]
- Ivanova, S.M. Modelling of Circumsolar Direct Irradiance as a Function of GHI, DHI and DNI. In Proceedings of the 8th International Conference on Solar Radiation and Daylighting Solaris-2017, London, UK, 27–28 July 2017. [Google Scholar]
- Neumann, A.; von der Au, B.; Heller, P. Measurements of Circumsolar Radiation at the Plataforma Solar (Spain) and at DLR (Germany); ASME International Solar Energy Conference: Albuquerque, NM, USA, 1998; pp. 429–438. [Google Scholar]
- Forman, P.; Penkert, S.; Kämper, C.; Stallmann, T.; Mark, P.; Schnell, J. A Survey of Solar Concrete Shell Collectors for Parabolic Troughs. Renew. Sustain. Energy Rev. 2020, 134, 110331. [Google Scholar] [CrossRef]
- Belhomme, B.; Pitz-Paal, R.; Schwarzbözl, P.; Ulmer, S. A New Fast Ray Tracing Tool for High-Precision Simulation of Heliostat Fields. J. Sol. Energy Eng. 2009, 131, 031002. [Google Scholar] [CrossRef]
- Leary, P.L.; Hankins, J.D. User’s Guide for MIRVAL: A Computer Code for Comparing Designs of Heliostat-Receiver Optics for Central Receiver Solar Power Plants; Sandia National Lab. (SNL-CA): Livermore, CA, USA, 1979. [Google Scholar]
- Bendt, P.; Rabl, A.; Gaul, H.W.; Reed, K.A. Optical Analysis and Optimization of Line Focus Solar Collectors; Solar Energy Research Institution: Golden, CO, USA, 1979. [Google Scholar]
- Schwarzbözl, P.; Pitz-Paal, R.; Schmitz, M. Visual HFLCAL—A Software Tool for Layout and Optimisation of Heliostat Fields. In Proceedings of the SolarPACES 2009, Berlin, Germany, 15–18 September 2009. [Google Scholar]
- Gilman, P.; Blair, N.; Mehos, M.; Christensen, C.; Janzou, S.; Cameron, C. Solar Advisor Model User Guide for Version 2.0; National Renewable Energy Laboratory: Colorado, CO, USA, 2008; NREL/TP-670-43704, 937349. [Google Scholar]
- Quaschning, V.; Ortmanns, W.; Kistner, R.; Geyer, M. Greenius: A New Simulation Environment for Technical and Economical Analysis of Renewable Independent Power Projects. In Proceedings of the SED2001, Solar Engineering 2001: (FORUM 2001: Solar Energy—The Power to Choose), Washington, DC, USA, 21 April 2001; pp. 413–417. [Google Scholar]
- Dersch, J.; Schwarzbözl, P.; Richert, T. Annual Yield Analysis of Solar Tower Power Plants With GREENIUS. J. Sol. Energy Eng. 2011, 133, 031017. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Driemel, A.; Augustine, J.; Behrens, K.; Colle, S.; Cox, C.; Cuevas-Agulló, E.; Denn, F.M.; Duprat, T.; Fukuda, M.; Grobe, H.; et al. Baseline Surface Radiation Network (BSRN): Structure and Data description (1992–2017). Earth Syst. Sci. Data 2018, 10, 1491–1501. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 Database—Automated near-Real-Time Quality Control Algorithm with Improved Cloud Screening for Sun Photometer Aerosol Optical Depth (AOD) Measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef]
- Sinyuk, A.; Holben, B.N.; Eck, T.F.; Giles, D.M.; Slutsker, I.; Korkin, S.; Schafer, J.S.; Smirnov, A.; Sorokin, M.; Lyapustin, A. The AERONET Version 3 Aerosol Retrieval Algorithm, Associated Uncertainties and Comparisons to Version 2. Atmos. Meas. Tech. 2020, 13, 3375–3411. [Google Scholar] [CrossRef]
- Liu, B.Y.H.; Jordan, R.C. The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation. Sol. Energy 1960, 4, 1–19. [Google Scholar] [CrossRef]
- Gueymard, C.A.; Ruiz-Arias, J.A. Extensive Worldwide Validation and Climate Sensitivity Analysis of Direct Irradiance Predictions from 1-Min Global Irradiance. Sol. Energy 2016, 128, 1–30. [Google Scholar] [CrossRef]
- Gueymard, C.A.; Bright, J.M.; Lingfors, D.; Habte, A.; Sengupta, M. A Posteriori Clear-Sky Identification Methods in Solar Irradiance Time Series: Review and Preliminary Validation Using Sky Imagers. Renew. Sustain. Energy Rev. 2019, 109, 412–427. [Google Scholar] [CrossRef]
- Noring, J.E.; Grether, D.F.; Hunt, A.J. Circumsolar Radiation Data: The Lawrence Berkeley Laboratory Reduced Data Base. NASA STI/Recon Tech. Rep. N 1991, 92, 19628. [Google Scholar]
- Rabl, A.; Bendt, P. Effect of Circumsolar Radiation on Performance of Focusing Collectors. J. Sol. Energy Eng. 1982, 104, 237–250. [Google Scholar] [CrossRef]
Location | Code | Lat. (°N) | Long. (°E) | Alt. (m) | Climate Zone | Period | Data Points |
---|---|---|---|---|---|---|---|
Darwin, AUS | DAR | −12.425 | 130.831 | 30 | TR | 2012–2014 | 974 |
Évora, PRT | EVR | 38.568 | −7.912 | 293 | TM | 2015–2017 | 1163 |
Gobabeb, NAM | GOB | −23.561 | 15.042 | 407 | AR | 2015–2017 | 1833 |
S. M. da Serra, BRA | SMS | −29.443 | −53.823 | 489 | TM | 2014–2016 | 614 |
Tamanrasset, DZA | TAM | 22.790 | 5.529 | 1385 | AR | 2014–2016 | 1060 |
Station | Parameter | Polynomial Coefficients | R2 | ||
---|---|---|---|---|---|
DAR (TR) | a | −0.0094 | 0.0137 | 0 | 0.9978 |
b | 0.7667 | −0.0727 | 0.0152 | 0.4325 | |
c | 1.4199 | −0.0063 | 0.0045 | 0.3446 | |
EVR (TM) | a | −0.0152 | 0.0206 | 0 | 0.9962 |
b | 0.7403 | 0.0033 | 0.0056 | 0.8524 | |
c | 1.6770 | 0.0343 | −0.0017 | 0.8817 | |
SMS (TM) | a | −0.0158 | 0.0213 | 0 | 0.9931 |
b | 2.0406 | 0.1906 | −0.0227 | 0.3278 | |
c | 2.1955 | 0.0439 | −0.0121 | 0.2684 | |
GOB (AR) | a | −0.0238 | 0.0303 | 0 | 0.9938 |
b | 1.2546 | 0.0286 | 0.0128 | 0.9250 | |
c | 1.7457 | 0.0161 | 0.0016 | 0.6406 | |
TAM (AR) | a | −0.0698 | 0.0740 | 0 | 0.9801 |
b | 1.4890 | 0.0944 | 0.0427 | 0.9919 | |
c | 1.4051 | 0.0739 | 0.0024 | 0.9359 |
Station | Statistical Indicator | Models | |||
---|---|---|---|---|---|
Eissa et al. [5] SOV | Eissa et al. [5] TAM | Eissa et al. [5] Combined | This Work | ||
DAR (TR) | rMBE (%) | −3.69 | −12.79 | −8.82 | −1.96 |
rRMSE (%) | 73.63 | 75.18 | 74.21 | 65.51 | |
R | 0.4558 | 0.4462 | 0.4529 | 0.6098 | |
FB | 0.1111 | 0.0280 | 0.0619 | 0.0783 | |
FGE | 0.4059 | 0.3986 | 0.3984 | 0.3373 | |
EVR (TM) | rMBE (%) | −14.56 | −21.99 | −19.06 | −5.38 |
rRMSE (%) | 69.76 | 74.14 | 71.86 | 51.53 | |
R | 0.7372 | 0.7333 | 0.7363 | 0.8503 | |
FB | 0.0960 | 0.0256 | 0.0473 | 0.0501 | |
FGE | 0.4720 | 0.4771 | 0.4700 | 0.3787 | |
SMS (TM) | rMBE (%) | 54.86 | 43.92 | 47.29 | −7.90 |
rRMSE (%) | 99.28 | 91.29 | 93.98 | 62.40 | |
R | 0.5886 | 0.5887 | 0.5902 | 0.7664 | |
FB | 0.6248 | 0.5683 | 0.5809 | −0.0267 | |
FGE | 0.6940 | 0.6570 | 0.6616 | 0.4119 | |
GOB (AR) | rMBE (%) | −5.53 | −13.16 | −10.29 | 0.70 |
rRMSE (%) | 77.78 | 79.89 | 78.69 | 66.07 | |
R | 0.5857 | 0.5800 | 0.5845 | 0.7205 | |
FB | 0.1736 | 0.1059 | 0.1264 | 0.1519 | |
FGE | 0.4739 | 0.4657 | 0.4637 | 0.4149 | |
TAM (AR) | rMBE (%) | −43.20 | −48.86 | −46.32 | −10.16 |
rRMSE (%) | 63.01 | 67.45 | 65.36 | 37.98 | |
R | 0.6365 | 0.6360 | 0.6370 | 0.7870 | |
FB | −0.5482 | −0.6302 | −0.5975 | −0.0651 | |
FGE | 0.5774 | 0.6440 | 0.6171 | 0.2760 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu, E.F.M.; Canhoto, P.; Costa, M.J. Prediction of Circumsolar Irradiance and Its Impact on CSP Systems under Clear Skies. Energies 2023, 16, 7950. https://doi.org/10.3390/en16247950
Abreu EFM, Canhoto P, Costa MJ. Prediction of Circumsolar Irradiance and Its Impact on CSP Systems under Clear Skies. Energies. 2023; 16(24):7950. https://doi.org/10.3390/en16247950
Chicago/Turabian StyleAbreu, Edgar F.M., Paulo Canhoto, and Maria João Costa. 2023. "Prediction of Circumsolar Irradiance and Its Impact on CSP Systems under Clear Skies" Energies 16, no. 24: 7950. https://doi.org/10.3390/en16247950
APA StyleAbreu, E. F. M., Canhoto, P., & Costa, M. J. (2023). Prediction of Circumsolar Irradiance and Its Impact on CSP Systems under Clear Skies. Energies, 16(24), 7950. https://doi.org/10.3390/en16247950