Exploring the Role of Building Envelope in Reducing Energy Poverty Risk: A Case Study on Italian Social Housing
Abstract
:1. Introduction
1.1. Context and Definitions
1.2. The Economic Issue in Energy Poverty
1.3. The Health Issue in Energy Poverty
1.4. The Role of Building Quality in Energy Poverty
1.5. Energy Poverty in Europe
1.6. Research Aim and Goals
2. Research Methodology
- (A)
- Envelope surface, insulated surface, and first index are obtained;
- (B)
- (Building heat transfer coefficient H’T), the following output is obtained per each scenario;
- (C)
- Building energy needed for space heating (QH,nd) and cooling (QC,nd), expressed in kWh/yr;
- (D)
- Primary energy for heating (Qp,H,tot), domestic hot water (Qp,W,tot), and cooling (Qp,C,tot), expressed in kWh/yr;
- (E)
- Primary energy index (EP) for heating (EPH,tot), domestic hot water (EPW,tot), and total (EPgl,tot) for all energy services, expressed in kWh/m2yr.
- (a)
- Family energy bills;
- (b)
- Family energy bill effect and percentage of families under the poverty threshold;
- (c)
- Total household cost, including rent and energy bills, and percentage of families under the energy poverty threshold.
Limitations of the Study
3. Case Study
3.1. Average Household Bills, Income, and Energy Poverty Threshold
- January 2021 (before the strong economic effects of the pandemic and before the conflict): EUR 0.066704/kWh;
- January 2023 (during recovery from the pandemic and conflict): EUR 0.161236/kWh.
3.2. Building Envelope Insulation Scenarios
- Scenario 0—Current state with no insulation (0% of opaque and transparent envelope);
- Scenario 1—Vertical closure insulation of the building’s west wing (16% of the opaque and transparent envelope);
- Scenario 2—Vertical closure insulation of the south wing (53% of the opaque and transparent envelope);
- Scenario 3—Vertical closure insulation of the east wing (68% of the opaque and transparent envelope);
- Scenario 4—Whole-volume roof insulation (84% of the opaque and transparent envelope);
- Scenario 5—Ground floor insulation (100% of the opaque and transparent envelope).
4. Results
4.1. Energy Performance Results
- Building input data: E, total surface of heat dispersant envelope; I, the insulated surface corresponding to the relative scenario; their ratio (I/E) is expressed as a percentage. Therefore, I/E = 0% is the current state, with no insulated surfaces, and I/E = 100% is the best scenario in which the entire envelope is insulated (including the roof, basement, and window replacement);
- Building heat transfer coefficient by transmission (H), expressed in W/K. Hd is the transmission heat transfer between the conditioned space and the external environment; Hu is the coefficient between the conditioned and adjacent unconditioned zones (e.g., attic and garage); Htot = Hd + Hu; and H’T is a coefficient resulting from the ratio between Htot and E (envelope surface), measured in W/m2K;
- Energy needs (as thermal power) for heating and cooling, following ISO 13790, divided into energy needs for heating (QH,nd) and cooling (QC,nd) expressed in kW;
- Primary energy expressed in kWh/year, divided into heating (Qp,H,tot), DHW (Qp,W,tot) and total (Qp,gl,TOT);
- Primary Energy index for heating (EPH), DHW (EPW), and total (EPgl,TOT), expressed in kWh/m2year.
4.2. Energy Poverty Risk
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Energy Agency. World Energy Outlook 2022; International Energy Agency: Paris, France, 2022. [Google Scholar]
- Fabbri, K.; Gaspari, J. Mapping the Energy Poverty: A Case Study Based on the Energy Performance Certificates in the City of Bologna. Energy Build 2021, 234, 110718. [Google Scholar] [CrossRef]
- Simoes, S.G.; Gregório, V.; Seixas, J. Mapping Fuel Poverty in Portugal. Energy Procedia 2016, 106, 155–165. [Google Scholar] [CrossRef]
- Robinson, C.; Bouzarovski, S.; Lindley, S. ‘Getting the Measure of Fuel Poverty’: The Geography of Fuel Poverty Indicators in England. Energy Res. Soc. Sci. 2018, 36, 79–93. [Google Scholar] [CrossRef]
- Thomson, H. The EU Fuel Poverty Toolkit: An Introductory Guide to Identifying and Measuring Fuel Poverty; University of York: Heslington, UK, 2013. [Google Scholar]
- Fabbri, K. The Role of Building in the Reduction of Fuel Poverty. In Urban Fuel Poverty; Elsevier: Amsterdam, The Netherlands, 2019; pp. 63–103. [Google Scholar]
- Fabbri, K. Urban Fuel Poverty; Academic Press: Cambridge, MA, USA, 2019; ISBN 9780128169520. [Google Scholar]
- Hills, J. Fuel Poverty: The Problem and Its Measurement. 2011. Available online: https://eprints.lse.ac.uk/39270/1/CASEreport69(lsero).pdf (accessed on 12 March 2022).
- Bradshaw, J.; Hutton, S. Social Policy Options and Fuel Poverty. J. Econ. Psychol. 1983, 3, 249–266. [Google Scholar] [CrossRef]
- Legendre, B.; Ricci, O. Measuring Fuel Poverty in France: Which Households Are the Most Fuel Vulnerable? Energy Econ. 2015, 49, 620–628. [Google Scholar] [CrossRef]
- Mastropietro, P.; Rodilla, P.; Battle, C. Measures to Tackle the COVID-19 Outbreak Impact on Energy Poverty. Preliminary Analysis Based on the Italian and Spanish Experiences. Available online: https://fsr.eui.eu/measures-to-tackle-the-covid-19-outbreak-impact-on-energy-poverty/ (accessed on 14 June 2023).
- Faiella, I.; Lavecchia, L.; Miniaci, R.; Valbonesi, P. (Eds.) La Povertà Energetica in Italia. Secondo Rapporto Dell’Osservatorio Italiano Sulla Povertà Energetica (OIPE). 2020. Available online: https://oipeosservatorio.it/wp-content/uploads/2020/12/rapporto2020_v2.pdf(accessed on 7 June 2023).
- Li, K.; Lloyd, B.; Liang, X.J.; Wei, Y.M. Energy Poor or Fuel Poor: What Are the Differences? Energy Policy 2014, 68, 476–481. [Google Scholar] [CrossRef]
- Eurostat Inability to Keep Home Adequately Warm—EU-SILC Survey 2022. Available online: https://ec.europa.eu/eurostat/databrowser/view/ILC_MDES01/default/table?lang=en (accessed on 26 June 2023).
- Baltruszewicz, M.; Steinberger, J.K.; Paavola, J.; Ivanova, D.; Brand-Correa, L.I.; Owen, A. Social Outcomes of Energy Use in the United Kingdom: Household Energy Footprints and Their Links to Well-Being. Ecol. Econ. 2023, 205, 107686. [Google Scholar] [CrossRef]
- Energy Poverty in the, EU. Available online: https://energy.ec.europa.eu/topics/markets-and-consumers/energy-consumer-rights/energy-poverty-eu_en (accessed on 12 May 2023).
- Fabbri, K. Building and Fuel Poverty, an Index to Measure Fuel Poverty: An Italian Case Study. Energy 2015, 89, 244–258. [Google Scholar] [CrossRef]
- Moore, R. Definitions of Fuel Poverty: Implications for Policy. Energy Policy 2012, 49, 19–26. [Google Scholar] [CrossRef]
- European Commission. Energy Poverty Advisory Hub Introduction to the Energy Poverty Advisory Hub (EPAH) Handbooks: A Guide to Understanding and Addressing Energy Poverty Energy; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Sustainable Energy for All Energy Poverty: Addressing the Intersection of Sustainable Development Goal 7 (SDG7), Development and Resilience. In Executive Note for the G20 Energy Transition Working Group and the G20 Climate Sustainability Working Group. 2021; Available online: http://www.g20.utoronto.ca/2021/Final-Energy-Poverty-executive-note_SE-for-All.pdf (accessed on 12 March 2022).
- Li, J.; Liu, Y.; Li, H. Gift Giving Results in Energy-Poverty Suffering: A New Explanation of the Nonincome Poor Traps in Hidden Energy Poverty in China. Energy Build 2023, 280, 112730. [Google Scholar] [CrossRef]
- Boardman, B. Fixing Fuel Poverty; Routledge: London, UK, 2013; ISBN 9781136545733. [Google Scholar]
- Boardman, B. Fuel Poverty Synthesis: Lessons Learnt, Actions Needed. Energy Policy 2012, 49, 143–148. [Google Scholar] [CrossRef]
- Alba-Rodríguez, M.D.; Rivero-Camacho, C.; Castaño-Rosa, R.; Marrero, M. Reducing Energy Poverty and Carbon Footprint of Social Housing Projects. In Energy Poverty Alleviation; Springer International Publishing: Cham, Switzerland, 2022; pp. 41–66. [Google Scholar]
- United Nations SDG 7—Ensure Access to Affordable, Reliable, Sustainable and Modern Energy. Available online: https://www.un.org/sustainabledevelopment/energy/ (accessed on 10 May 2023).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development (A/RES/70/1); United Nations: San Francisco, CA, USA, 2015. [Google Scholar]
- European Comission. A Clean Planet for All. A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; European Commission: Maastricht, The Netherlands, 2018. [Google Scholar]
- European Commission. COM(2020) 662 Final. A Renovation Wave for Europe; European Commission: Maastricht, The Netherlands, 2020. [Google Scholar]
- European Union. Directive 2018/844 of the European Parliament and of the Council of 30 May 2028 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency; European Union: Luxembourg, 2018. [Google Scholar]
- Croon, T.M.; Hoekstra, J.S.C.M.; Elsinga, M.G.; Dalla Longa, F.; Mulder, P. Beyond Headcount Statistics: Exploring the Utility of Energy Poverty Gap Indices in Policy Design. Energy Policy 2023, 177, 113579. [Google Scholar] [CrossRef]
- Castaño-Rosa, R.; Solís-Guzmán, J.; Rubio-Bellido, C.; Marrero, M. Towards a Multiple-Indicator Approach to Energy Poverty in the European Union: A Review. Energy Build 2019, 193, 36–48. [Google Scholar] [CrossRef]
- Energy Poverty Advisory Hub. Energy Poverty National Indicators: Insights for a More Effective Measuring; European Union: Luxembourg, 2022. [Google Scholar]
- Gestro, M.; Condemi, V.; Bardi, L.; Tomaino, L.; Roveda, E.; Bruschetta, A.; Solimene, U.; Esposito, F. Short-Term Air Pollution Exposure Is a Risk Factor for Acute Coronary Syndromes in an Urban Area with Low Annual Pollution Rates: Results from a Retrospective Observational Study (2011–2015). Arch. Cardiovasc. Dis. 2020, 113, 308–320. [Google Scholar] [CrossRef] [PubMed]
- McMichael, A.J.; Woodruff, R.E.; Hales, S. Climate Change and Human Health: Present and Future Risks. Lancet 2006, 367, 859–869. [Google Scholar] [CrossRef]
- Santurtún, A.; Almendra, R.; Fdez-Arroyabe, P.; Sanchez-Lorenzo, A.; Royé, D.; Zarrabeitia, M.T.; Santana, P. Predictive Value of Three Thermal Comfort Indices in Low Temperatures on Cardiovascular Morbidity in the Iberian Peninsula. Sci. Total Environ. 2020, 729, 138969. [Google Scholar] [CrossRef]
- Deng, Q.; Zhao, J.; Liu, W.; Li, Y. Heatstroke at Home: Prediction by Thermoregulation Modeling. Build Environ. 2018, 137, 147–156. [Google Scholar] [CrossRef]
- Liu, H.; Hu, T. Energy Poverty Alleviation and Its Implications for Household Energy Consumption and Health. Environ. Dev. Sustain. 2023, 1–21. [Google Scholar] [CrossRef]
- Faiella, I.; Lavecchia, L. Energy Poverty. How Can You Fight It, If You Can’t Measure It? Energy Build 2021, 233, 110692. [Google Scholar] [CrossRef]
- Castellini, M.; Faiella, I.; Luciano, L.; Miniaci, R.; Valbonesi, P. (Eds.) La Povertà Energetica in Italia. Rapporto 2023 Dell’Osservatorio Italiano Sulla Povertà Energetica (OIPE). 2023. Available online: https://oipeosservatorio.it/wp-content/uploads/2023/07/rapporto2023.pdf (accessed on 10 September 2023).
- Berti, K.; Bienvenido, D.; Bellicoso, A.; Rubio, C. Implications of Energy Poverty and Climate Change in Italian Regions. Energy Effic. 2023, 16, 51. [Google Scholar] [CrossRef]
- Martín-Consuegra, F.; Gómez Giménez, J.M.; Alonso, C.; Córdoba Hernández, R.; Hernández Aja, A.; Oteiza, I. Multidimensional Index of Fuel Poverty in Deprived Neighbourhoods. Case Study of Madrid. Energy Build 2020, 224, 110205. [Google Scholar] [CrossRef]
- Karásek, J.; Pojar, J. Programme to reduce energy poverty in the Czech Republic. Energy Policy 2018, 115, 131–137. [Google Scholar]
- Karpinska, L.; Śmiech, S. Invisible Energy Poverty? Analysing Housing Costs in Central and Eastern Europe. Energy Res. Soc. Sci. 2020, 70, 101670. [Google Scholar] [CrossRef]
- Oliveras, L.; Artazcoz, L.; Borrell, C.; Palència, L.; López, M.J.; Gotsens, M.; Peralta, A.; Marí-Dell’Olmo, M. The Association of Energy Poverty with Health, Health Care Utilisation and Medication Use in Southern Europe; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; ISBN 3493202784. [Google Scholar]
- Sareen, S.; Thomson, H.; Tirado Herrero, S.; Gouveia, J.P.; Lippert, I.; Lis, A. European Energy Poverty Metrics: Scales, Prospects and Limits. Glob. Transit. 2020, 2, 26–36. [Google Scholar] [CrossRef]
- Rifkin, D.I.; Long, M.W.; Perry, M.J. Climate Change and Sleep: A Systematic Review of the Literature and Conceptual Framework. Sleep Med. Rev. 2018, 42, 3–9. [Google Scholar] [CrossRef]
- Minor, K.; Bjerre-Nielsen, A.; Jonasdottir, S.S.; Lehmann, S.; Obradovich, N. Rising Temperatures Erode Human Sleep Globally. One Earth 2022, 5, 534–549. [Google Scholar] [CrossRef]
- McCauley, D.; Heffron, R. Just Transition: Integrating Climate, Energy and Environmental Justice. Energy Policy 2018, 119, 1–7. [Google Scholar] [CrossRef]
- Wilkinson, P.; Smith, K.R.; Beevers, S.; Tonne, C.; Oreszczyn, T. Energy, Energy Efficiency, and the Built Environment. Lancet 2007, 370, 1175–1187. [Google Scholar] [CrossRef] [PubMed]
- Healy, J.D. Excess Winter Mortality in Europe: A Cross Country Analysis Identifying Key Risk Factors. J. Epidemiol. Community Health 2003, 57, 784–789. [Google Scholar] [CrossRef] [PubMed]
- Braubach, M.; Jacobs, D.E.; Ormandy, D. Environmental Burden of Disease Associated with Inadequate Housing: A Method Guide to the Quantification of Health Effects of Selected Housing Risks in the WHO European Region; World Health Organization, Regional Office for Europe: Geneva, Switzerland, 2011. [Google Scholar]
- Condemi, V.; Gestro, M. Health Impact of Fuel Poverty. In Urban Fuel Poverty; Elsevier: Amsterdam, The Netherlands, 2019; pp. 105–123. [Google Scholar]
- Ormandy, D.; Ezratty, V. Health and Thermal Comfort: From WHO Guidance to Housing Strategies. Energy Policy 2012, 49, 116–121. [Google Scholar] [CrossRef]
- Shortt, N.; Rugkåsa, J. “The Walls Were so Damp and Cold” Fuel Poverty and Ill Health in Northern Ireland: Results from a Housing Intervention. Health Place 2007, 13, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Anderson, W.; White, V.; Finney, A. Coping with Low Incomes and Cold Homes. Energy Policy 2012, 49, 40–52. [Google Scholar] [CrossRef]
- Michelozzi, P.; De’ Donato, F.; Scortichini, M.; De Sario, M.; Asta, F.; Agabiti, N.; Guerra, R.; de Martino, A.; Davoli, M. On the Increase in Mortality in Italy in 2015: Analysis of Seasonal Mortality in the 32 Municipalities Included in the Surveillance System of Daily Mortality. Epidemiol. Prev. 2016, 40, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Smyth, R.; Xin, G.; Yao, Y. Warmer Temperatures and Energy Poverty: Evidence from Chinese Households. Energy Econ. 2023, 120, 106575. [Google Scholar] [CrossRef]
- Atanasiu, B.; Kontonasiou, E.; Mariottini, F. Alleviating Fuel Poverty in the EU: Investing in Home Renovation, a Sustainable and Inclusive Solution; Buildings Performance Institute Europe: Brussels, Belgium, 2014. [Google Scholar]
- Gallego Sánchez-Torija, J.; Fernández Nieto, M.A.; Gómez Serrano, P.J. Energy Solvency. A New Concept to Prevent Energy Poverty in Spain. Energy Effic. 2022, 15, 61. [Google Scholar] [CrossRef] [PubMed]
- Gaspari, J. Cities and Buildings Efficiency Improvement of Energy-Poor Household. In Urban Fuel Poverty; Elsevier: Amsterdam, The Netherlands, 2019; pp. 211–238. [Google Scholar]
- Mafalda Matos, A.; Delgado, J.M.P.Q.; Guimarães, A.S. Linking Energy Poverty with Thermal Building Regulations and Energy Efficiency Policies in Portugal. Energies 2022, 15, 329. [Google Scholar] [CrossRef]
- European Economic and Social Committee Energy Efficient Buildings Will Help Fight Energy Poverty. Available online: https://www.eesc.europa.eu/en/news-media/news/energy-efficient-buildings-will-help-fight-energy-poverty (accessed on 8 May 2023).
- Tardy, F.; Lee, B. Building Related Energy Poverty in Developed Countries—Past, Present, and Future from a Canadian Perspective. Energy Build. 2019, 194, 46–61. [Google Scholar] [CrossRef]
- Loga, T.; Stein, B.; Diefenbach, N. TABULA Building Typologies in 20 European Countries—Making Energy-Related Features of Residential Building Stocks Comparable. Energy Build. 2016, 132, 4–12. [Google Scholar] [CrossRef]
- Ballarini, I.; Corgnati, S.P.; Corrado, V. Use of Reference Buildings to Assess the Energy Saving Potentials of the Residential Building Stock: The Experience of TABULA Project. Energy Policy 2014, 68, 273–284. [Google Scholar] [CrossRef]
- Lucon, O.; Ürge-Vorsatz, D.; Zain Ahmed, A.; Akbari, H.; Bertoldi, P.; Cabeza, L.F.; Eyre, N.; Gadgil, A.; D Harvey, L.D.; Jiang, Y.; et al. Buildings. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O.R., Pichs-Madruga, Y., Sokona, E., Farahani, S., Kadner, K., Seyboth, A., Adler, I., Baum, S., Brunner, P., Eickemeier, B., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 671–738. [Google Scholar]
- Economidou, M. (Ed.) BPIE Europe’s Buildings under the Microscope. A Country-by-Country Review of the Energy Performance of Buildings; Buildings Performance Institute Europe: Brussels, Belgium, 2011; ISBN 9789491143014. [Google Scholar]
- BPIE (Buildings Performance Institute Europe). How to Stay Warm and Save Energy: Insulation Opportunities in European Homes; Buildings Performance Institute Europe: Brussels, Belgium, 2023. [Google Scholar]
- OECD. Social Housing: A Key Part of Past and Future Housing Policy; OECD: Paris, France, 2020. [Google Scholar]
- CENSIS. Social Housing e Agenzie Pubbliche per La Casa; CENSIS: Roma, Ialy, 2008. [Google Scholar]
- Housing Europe. The State of Housing in Europe; Housing Europe: Brussels, Belgium, 2021; Available online: https://www.stateofhousing.eu/#p=1 (accessed on 2 February 2022).
- Neri, M.; Pilotelli, M.; Traversi, M.; Levi, E.; Piana, E.A.; Bannó, M.; Cuerva, E.; Pujadas, P.; Guardo, A. Conversion of End-of-Life Household Materials into Building Insulating Low-Cost Solutions for the Development of Vulnerable Contexts: Review and Outlook towards a Circular and Sustainable Economy. Sustainability 2021, 13, 4397. [Google Scholar] [CrossRef]
- Frasca, F.; Bartolucci, B.; Parracha, J.L.; Ogut, O.; Mendes, M.P.; Siani, A.M.; Tzortzi, J.N.; Bertolin, C.; Flores-Colen, I. A Quantitative Comparison on the Use of Thermal Insulation Materials in Three European Countries through the TEnSE Approach: Challenges and Opportunities. Build Environ. 2023, 245, 110973. [Google Scholar] [CrossRef]
- Furtado, A.; Rodrigues, H.; Varum, H. Simplified Guidelines for Retrofitting Scenarios in the European Countries. Energies 2023, 16, 2408. [Google Scholar] [CrossRef]
- Castaño-Rosa, R.; Barrella, R.; Sánchez-Guevara, C.; Barbosa, R.; Kyprianou, I.; Paschalidou, E.; Thomaidis, N.S.; Dokupilova, D.; Gouveia, J.P.; Kádár, J.; et al. Cooling Degree Models and Future Energy Demand in the Residential Sector. A Seven-Country Case Study. Sustainability 2021, 13, 2987. [Google Scholar] [CrossRef]
- Clean Energy for All Europeans Package. Available online: https://energy.ec.europa.eu/topics/energy-strategy/clean-energy-all-europeans-package_en (accessed on 12 March 2023).
- European Commission. “Fit for 55”: Delivering the EU’s 2030 Climate Target on the Way to Climate Neutrality (Brussels, 14.7.2021 COM(2021) 550 Final); European Comission: Maastricht, The Netherlands, 2021. [Google Scholar]
- Rogulj, I.; Peretto, M.; Oikonomou, V.; Ebrahimigharehbaghi, S.; Tourkolias, C. Decarbonisation Policies in the Residential Sector and Energy Poverty: Mitigation Strategies and Impacts in Central and Southern Eastern Europe. Energies 2023, 16, 5443. [Google Scholar] [CrossRef]
- European Union Energy. Efficiency Directive (EED) 2018/2002/EU; European Union: Luxembourg, 2018. [Google Scholar]
- European Legislative Observatory Energy Efficiency Directive (Recast 2023) Summary. Available online: https://oeil.secure.europarl.europa.eu/oeil/popups/summary.do?id=1716205&t=e&l=en (accessed on 13 July 2023).
- European Parliament Energy Efficiency (Recast) Amendments Adopted by the European Parliament on 14 September 2022 on the Proposal for a Directive of the European Parliament and of the Council on Energy Efficiency (Recast) (COM(2021)0558–C9-0330/2021–2021/0203(COD))1 2023. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52022AP0315 (accessed on 19 November 2023).
- European Parliament Energy Performance of Buildings (Recast), Amendments Adopted by the European Parliament on 14 March 2023 on the Proposal for a Directive of the European Parliament and of the Council on the Energy Performance of Buildings (Recast) (COM(2021)0802–C9-0469/2021–2021/0426(COD) 2023. Available online: https://www.europarl.europa.eu/doceo/document/TA-9-2023-0068_EN.html (accessed on 19 November 2023).
- European Legislative Observatory Energy Performance of Building Directive (Recast 2023) Summary. Available online: https://oeil.secure.europarl.europa.eu/oeil/popups/summary.do?id=1737131&t=e&l=en (accessed on 13 July 2023).
- Thomson, H.; Snell, C.; Liddell, C. Fuel Poverty in the European Union: A Concept in Need of Definition? People Place Policy Online 2016, 10, 5–24. [Google Scholar] [CrossRef]
- Liddell, C. Fuel Poverty Comes of Age: Commemorating 21 Years of Research and Policy. Energy Policy 2012, 49, 2–5. [Google Scholar] [CrossRef]
- Fotiou, T.; Capros, P.; Fragkos, P. Policy Modelling for Ambitious Energy Efficiency Investment in the EU Residential Buildings. Energies 2022, 15, 2233. [Google Scholar] [CrossRef]
- Streimikiene, D.; Lekavičius, V.; Baležentis, T.; Kyriakopoulos, G.L.; Abrhám, J. Climate Change Mitigation Policies Targeting Households and Addressing Energy Poverty in European Union. Energies 2020, 13, 3389. [Google Scholar] [CrossRef]
- Antepara, I.; Papada, L.; Gouveia, J.P.; Katsoulakos, N.; Kaliampakos, D. Improving Energy Poverty Measurement in Southern European Regions through Equivalization of Modeled Energy Costs. Sustainability 2020, 12, 5721. [Google Scholar] [CrossRef]
- Gabriel, M.F.; Cardoso, J.P.; Felgueiras, F.; Azeredo, J.; Filipe, D.; Conradie, P.; Van Hove, S.; Mourão, Z.; Anagnostopoulos, F.; Azevedo, I. Opportunities for Promoting Healthy Homes and Long-Lasting Energy-Efficient Behaviour among Families with Children in Portugal. Energies 2023, 16, 1872. [Google Scholar] [CrossRef]
- Alba-Rodríguez, M.D.; Rubio-Bellido, C.; Tristancho-Carvajal, M.; Castaño-Rosa, R.; Marrero, M. Present and Future Energy Poverty, a Holistic Approach: A Case Study in Seville, Spain. Sustainability 2021, 13, 7866. [Google Scholar] [CrossRef]
- Escandón, R.; Suárez, R.; Alonso, A.; Mauro, G.M. Is Indoor Overheating an Upcoming Risk in Southern Spain Social Housing Stocks? Predictive Assessment under a Climate Change Scenario. Build Environ. 2022, 207, 108482. [Google Scholar] [CrossRef]
- Szulgowska-Zgrzywa, M.; Stefanowicz, E.; Chmielewska, A.; Piechurski, K. Detailed Analysis of the Causes of the Energy Performance Gap Using the Example of Apartments in Historical Buildings in Wroclaw (Poland). Energies 2023, 16, 1814. [Google Scholar] [CrossRef]
- Miniaci, R.; Scarpa, C.; Valbonesi, P. Energy Affordability and the Benefits System in Italy. Energy Policy 2014, 75, 289–300. [Google Scholar] [CrossRef]
- Amenta, C.; Lavecchia, L. La Povertà Energetica Delle Famiglie Italiane. Energia 2017, 2, 26–33. [Google Scholar]
- Bouzarovski, S.; Thomson, H.; Cornelis, M.; Varo, A.; Guyet, R. Towards an Inclusive Energy Transition in the European Union: Confronting Energy Poverty amidst a Global Crisis; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- European Commission National Energy and Climate Plans. Available online: https://commission.europa.eu/energy-climate-change-environment/implementation-eu-countries/energy-and-climate-governance-and-reporting/national-energy-and-climate-plans_en (accessed on 12 May 2023).
- Mise; Mattm; Mit Piano Nazionale Integrato per l’energia e Il Clima. 2019. Available online: https://www.mase.gov.it/energia/energia-e-clima-2030 (accessed on 7 June 2021).
- Istat Indagine Sulle Spese Delle Famiglie 2018. Available online: https://www.istat.it/it/archivio/180356 (accessed on 17 May 2022).
- Faiella, I.; Lavecchia, L.; Borgarello, M. Una Nuova Misura Della Povertà Energetica Delle Famiglie. In Questioni di Economia e Finanza; Banca d’Italia: Rome, Italy, 2017; Volume 404, Available online: https://moodle2.units.it/pluginfile.php/273817/mod_resource/content/1/Povert%C3%A0%20Energetica%20-%20Banca%20dItalia.pdf (accessed on 19 November 2023).
- UNITS 11300 Part 1-Energy Performance of Buildings—Part 1: Evaluation of Energy Need for Space Heating and Cooling. 2014. Available online: https://store.uni.com/uni-ts-11300-1-2014 (accessed on 19 November 2023).
- EN ISO 13790 Energy Performance of Buildings Calculation of Energy Use for Space Heating and Cooling. Available online: https://store.uni.com/uni-en-iso-13790-2008 (accessed on 19 November 2023).
- Termolog. Available online: https://www.logical.it/software-per-la-termotecnica (accessed on 2 January 2021).
- HERA Energy Distribuitor Website. Available online: https://eng.gruppohera.it/group_eng/ (accessed on 13 July 2023).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Koppen- Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Köppen, W.; Geiger, R. Das Geographische System Der Klimate. In Handbuch der Klimatologie; Verlag von Gebrüder Borntraeger: Berlin, Germany, 1936; pp. 7–30. [Google Scholar]
- Iperbole Bologna. Available online: https://www.comune.bologna.it/home (accessed on 12 May 2023).
- Fabbri, K.; Marinosci, C. EPBD Independent Control System for Energy Performance Certification: The Emilia-Romagna Region (Italy) Pioneering Experience. Energy 2018, 165, 563–576. [Google Scholar] [CrossRef]
- Emilia-Romagna, R. Deliberazione Della Giunta Regionale 20 Luglio 2015, N.967: Approvazione Dell’atto Di Coordinamento Tecnico Regionale per La Definizione Dei Requisiti Minimi Di Prestazione Energetica Degli Edifici (Artt. 25 e 25-Bis L.R. 26/2004 e s.m.). 2015, 2, 1–90. Available online: https://energia.regione.emilia-romagna.it/leggi-atti-bandi-1/norme-e-atti-amministrativi/certificazione-energetica/certificazione-energetica/dgr-967_2015-_allegati (accessed on 19 November 2023).
- Calise, F.; Cappiello, F.L.; Cimmino, L.; Dentice d’Accadia, M.; Vicidomini, M. Dynamic Modelling and Thermoeconomic Analysis for the Energy Refurbishment of the Italian Building Sector: Case Study for the “Superbonus 110%” Funding Strategy. Appl. Therm. Eng. 2022, 213, 118689. [Google Scholar] [CrossRef]
- Macchiaroli, M.; Dolores, L.; De Mare, G.; Nicodemo, L. Tax Policies for Housing Energy Efficiency in Italy: A Risk Analysis Model for Energy Service Companies. Buildings 2023, 13, 582. [Google Scholar] [CrossRef]
Building Technical Unit | U “As It Is” (W/m2K) | U “As Designed” (W/m2K) |
---|---|---|
Vertical opaque envelope | 0.95 | 0.20 |
Windows | 2.82 | 1.00 |
Ground floor slab | 1.15 | 0.18 |
Attic slab | 1.86 | 0.19 |
Scenario 0 | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | |
---|---|---|---|---|---|---|
(A) Building input data | ||||||
E: Total envelope surface (m2) | 10,458 | 10,458 | 10,458 | 10,458 | 10,458 | 10,458 |
I: Insulated surface (m2) | 0 | 1638 | 5521 | 7159 | 8804 | 10,458 |
Ratio I/E (% insulated surface/total) | 0% | 16% | 53% | 68% | 84% | 100% |
(B) Building heat transfer | ||||||
Hd (W/K) | 5177.28 | 4152.73 | 2473.10 | 1545.38 | 1545.38 | 1545.38 |
Hu (W/K) | 6220.45 | 6204.54 | 6209.83 | 6210.21 | 3706.45 | 2555.77 |
Htot (W/K) | 11,397.73 | 10,357.27 | 8682.93 | 7755.59 | 5251.82 | 4101.15 |
H’T (W/m2K) | 1.09 | 0.99 | 0.83 | 0.74 | 0.50 | 0.39 |
H’t decrease compared to Sc. 0 (%) | 0% | 9% | 24% | 32% | 54% | 64% |
(C) Energy needs for heating and cooling | ||||||
QH,nd (kW) | 2174.77 | 1979.72 | 1702.77 | 1530.48 | 1069.28 | 952.66 |
QC,nd (kW) | 69.79 | 44.58 | 28.72 | 8.16 | 9.25 | 10.91 |
(D) Primary energy | ||||||
Qp,H,tot (kWh/yr) | 104,5364 | 941,535.1 | 810,394.5 | 724,288.2 | 508,068 | 451,601.2 |
Qp,W,tot (kWh/yr) | 9111.1 | 8882.8 | 8514.1 | 8284.7 | 7815 | 7691.3 |
Qp,gl,TOT (kWh/yr) | 1,054,475.1 | 950,417.9 | 818,908.6 | 732,572.8 | 515,883.4 | 459,292.5 |
(E) Energy index EP | ||||||
EPH (kWh/m2yr) | 157.53 | 142.21 | 122.4 | 109.4 | 76.74 | 68.21 |
EPW (kWh/m2yr) | 1.37 | 1.34 | 1.29 | 1.25 | 1.18 | 1.16 |
EPgl,TOT (kWh/m2yr) | 158.91 | 143.55 | 123.69 | 110.65 | 77.92 | 69.37 |
EPgl,TOT decrease compared to Sc. 0 (%) | 0% | 10% | 22% | 30% | 51% | 56% |
2021 | ||||||
Scenario 0 | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | |
EUR/building/year | EUR 84,216 | EUR 76,076 | EUR 65,551 | EUR 58,640 | EUR 41,294 | EUR 36,763 |
EUR/unit/year | EUR 794 | EUR 718 | EUR 618 | EUR 553 | EUR 390 | EUR 347 |
2023 | ||||||
Scenario 0 | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | |
EUR/building/year | EUR 203,566 | EUR 183,889 | EUR 158,448 | EUR 141,744 | EUR 99,816 | EUR 88,864 |
EUR/unit/year | EUR 1920 | EUR 1735 | EUR 1495 | EUR 1337 | EUR 942 | EUR 838 |
2021 | ||||||
Family income in Bolognina | Scenario 0 | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
EUR 12,125 migrants | 6.55% | 5.92% | 5.10% | 4.56% | 3.21% | 2.86% |
EUR 21,062 total | 3.77% | 3.41% | 2.94% | 2.63% | 1.85% | 1.65% |
EUR 23,080 Italians | 3.44% | 3.11% | 2.68% | 2.40% | 1.69% | 1.50% |
2023 | ||||||
Family income in Bolognina | Scenario 0 | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
EUR 12,125 migrants | 15.84% | 14.31% | 12.33% | 11.03% | 7.77% | 6.91% |
EUR 21,062 total | 9.12% | 8.24% | 7.10% | 6.35% | 4.47% | 3.98% |
EUR 23,080 Italians | 8.32% | 7.52% | 6.48% | 5.79% | 4.08% | 3.63% |
2021 | ||||||
Rent per month | Scenario 0 | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
EUR 50 | EUR 1394 | EUR 1318 | EUR 1218 | EUR 1153 | EUR 990 | EUR 947 |
0% | 6% | 13% | 17% | 29% | 32% | |
EUR 100 | EUR 1994 | EUR 1918 | EUR 1818 | EUR 1753 | EUR 1590 | EUR 1547 |
0% | 4% | 9% | 12% | 20% | 22% | |
EUR 150 | EUR 2594 | EUR 2518 | EUR 2418 | EUR 2353 | EUR 2190 | EUR 2147 |
0% | 3% | 7% | 9% | 16% | 17% | |
EUR 200 | EUR 3194 | EUR 3118 | EUR 3018 | EUR 2953 | EUR 2790 | EUR 2747 |
0% | 2% | 6% | 8% | 13% | 14% | |
EUR 250 | EUR 3794 | EUR 3718 | EUR 3618 | EUR 3553 | EUR 3390 | EUR 3347 |
0% | 2% | 5% | 6% | 11% | 12% | |
EUR 300 | EUR 4394 | EUR 4318 | EUR 4218 | EUR 4153 | EUR 3990 | EUR 3947 |
0% | 2% | 4% | 5% | 9% | 10% | |
EUR 350 | EUR 4994 | EUR 4918 | EUR 4818 | EUR 4753 | EUR 4590 | EUR 4547 |
0% | 2% | 4% | 5% | 8% | 9% | |
EUR 400 | EUR 5594 | EUR 5518 | EUR 5418 | EUR 5353 | EUR 5190 | EUR 5147 |
0% | 1% | 3% | 4% | 7% | 8% | |
2023 | ||||||
Rent per month | Scenario 0 | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
EUR 50 | EUR 2520 | EUR 2335 | EUR 2095 | EUR 1937 | EUR 1542 | EUR 1438 |
0% | 7% | 17% | 23% | 39% | 43% | |
EUR 100 | EUR 3120 | EUR 2935 | EUR 2695 | EUR 2537 | EUR 2142 | EUR 2038 |
0% | 6% | 14% | 19% | 31% | 35% | |
EUR 150 | EUR 3720 | EUR 3535 | EUR 3295 | EUR 3137 | EUR 2742 | EUR 2638 |
0% | 5% | 11% | 16% | 26% | 29% | |
EUR 200 | EUR 4320 | EUR 4135 | EUR 3895 | EUR 3737 | EUR 3342 | EUR 3238 |
0% | 4% | 10% | 13% | 23% | 25% | |
EUR 250 | EUR 4920 | EUR 4735 | EUR 4495 | EUR 4337 | EUR 3942 | EUR 3838 |
0% | 4% | 9% | 12% | 20% | 22% | |
EUR 300 | EUR 5520 | EUR 5335 | EUR 5095 | EUR 4937 | EUR 4542 | EUR 4438 |
0% | 3% | 8% | 11% | 18% | 20% | |
EUR 350 | EUR 6120 | EUR 5935 | EUR 5695 | EUR 5537 | EUR 5142 | EUR 5038 |
0% | 3% | 7% | 10% | 16% | 18% | |
EUR 400 | EUR 6720 | EUR 6535 | EUR 6295 | EUR 6137 | EUR 5742 | EUR 5638 |
0% | 3% | 6% | 9% | 15% | 16% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabbri, K.; Marchi, L.; Antonini, E.; Gaspari, J. Exploring the Role of Building Envelope in Reducing Energy Poverty Risk: A Case Study on Italian Social Housing. Energies 2023, 16, 8093. https://doi.org/10.3390/en16248093
Fabbri K, Marchi L, Antonini E, Gaspari J. Exploring the Role of Building Envelope in Reducing Energy Poverty Risk: A Case Study on Italian Social Housing. Energies. 2023; 16(24):8093. https://doi.org/10.3390/en16248093
Chicago/Turabian StyleFabbri, Kristian, Lia Marchi, Ernesto Antonini, and Jacopo Gaspari. 2023. "Exploring the Role of Building Envelope in Reducing Energy Poverty Risk: A Case Study on Italian Social Housing" Energies 16, no. 24: 8093. https://doi.org/10.3390/en16248093
APA StyleFabbri, K., Marchi, L., Antonini, E., & Gaspari, J. (2023). Exploring the Role of Building Envelope in Reducing Energy Poverty Risk: A Case Study on Italian Social Housing. Energies, 16(24), 8093. https://doi.org/10.3390/en16248093