Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using SimscapeTM
Abstract
:1. Introduction
1.1. Research Background
1.2. Research Survey
2. System Configuration
2.1. Hydrogen Supply System
2.2. Air Supply System
2.3. Fuel Cell Stack
2.4. Battery
2.5. DC–DC Converter
2.6. Powertrain System
2.6.1. Motor
2.6.2. Reducer
2.6.3. Powertrain
2.7. Thermal Management System
3. Results and Discussion
3.1. Xcient Dynamic Simulation Model
3.2. Simulation Scenario
3.3. PMS
3.4. Response Characteristics of the Cooling System Considering Ram Air
4. Conclusions
- To develop the fuel cell–battery hybrid truck model, two 90 kW fuel cell stack modules, a hydrogen supply system, and an air supply system were created based on the Hyundai Xcient hydrogen truck data. Furthermore, a 72 kWh battery pack model was developed using three 24 kWh batteries.
- The model was designed to calculate the motor’s RPM and torque for the target speed through considering the rolling resistance, air resistance, and gradient resistance that occur during the operation of an Xcient hydrogen truck.
- The driving results based on the slopes of domestic roads and seasons verified the power distribution of the stack and battery based on the load power and the battery’s SOC through the developed PMS. Furthermore, it was confirmed that the fuel cell stack operates to charge the battery when the load power is low and the SOC is below the lower limit.
- The power outputs required to drive the vehicle were compared based on the summer and winter wind data for the same speed and slope. It was confirmed that the demand power to drive the vehicle in winter increases by 9.5% on average owing to strong winds compared to summer.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | Active area [cm2] |
c | Capacity rate ratio [-] |
F | Faraday constant [C/mol] |
F | Force [N] |
gratio | Gear ratio [-] |
i | Current [A] |
m | Mass [kg] |
n | Number of cells [ea] |
NTU | Number of transfer units [-] |
P | Power [kW] |
p | Partial pressure [-] |
Q | Heat transfer [kW] |
R | Ideal gas constant [J/K∙mol] |
r | Radius [m] |
T | Temperature [K] |
V | Voltage [V] |
Subscripts and superscripts | |
act | Activation |
air | Air |
b | Base gear |
coolant | Coolant |
con | Concentration |
cond | Condenser |
elec | Electric |
f | Follow gear |
FC | Fuel cell |
grill | Vehicle front grill |
H2 | Hydrogen |
H2O | Water |
O2 | Oxygen |
ohmic | Ohmic |
rad | Radiator |
ram | Ram air |
Greek | |
α | Activity [-] |
ρ | Density [kg/m3] |
ε | Effectiveness [-] |
τ | Torque [Nm] |
ω | Angular velocity [RPM] |
References
- Hanif, I.; Faraz Raza, S.M.; Gago-de-Santos, P.; Abbas, Q. Fossil Fuels, Foreign Direct Investment, and Economic Growth Have Triggered CO2 Emissions in Emerging Asian Economies: Some Empirical Evidence. Energy 2019, 171, 493–501. [Google Scholar] [CrossRef]
- Zhong, W.; An, H.; Shen, L.; Dai, T.; Fang, W.; Gao, X.; Dong, D. Global Pattern of the International Fossil Fuel Trade: The Evolution of Communities. Energy 2017, 123, 260–270. [Google Scholar] [CrossRef]
- Wang, J.; Wang, B.; Zhang, L.; Wang, J.; Shchurov, N.I.; Malozyomov, B.V. Review of Bidirectional DC–DC Converter Topologies for Hybrid Energy Storage System of New Energy Vehicles. Green Energy Intell. Transp. 2022, 1, 100010. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, L. Can the Development of Electric Vehicles Reduce the Emission of Air Pollutants and Greenhouse Gases in Developing Countries? Transp. Res. Part D Transp. Environ. 2017, 51, 129–145. [Google Scholar] [CrossRef]
- Chang, C.-C.; Liao, Y.-T.; Chang, Y.-W. Life cycle assessment of alternative energy types–including hydrogen–for public city buses in Taiwan. Int. J. Hydrogen Energy 2019, 44, 18472–18482. [Google Scholar] [CrossRef]
- Castro-Santos, L.; Martins, E.; Guedes Soares, C. Economic Comparison of Technological Alternatives to Harness Offshore Wind and Wave Energies. Energy 2017, 140, 1121–1130. [Google Scholar] [CrossRef]
- Panagi, K.; Laycock, C.J.; Reed, J.P.; Guwy, A.J. Highly Efficient Coproduction of Electrical Power and Synthesis Gas from Biohythane Using Solid Oxide Fuel Cell Technology. Appl. Energy 2019, 255, 113854. [Google Scholar] [CrossRef]
- Bizon, N. Efficient Fuel Economy Strategies for the Fuel Cell Hybrid Power Systems under Variable Renewable/Load Power Profile. Appl. Energy 2019, 251, 113400. [Google Scholar] [CrossRef]
- Chang, W.-T.; Chao, Y.-H.; Li, C.-W.; Lin, K.-L.; Wang, J.-J.; Kumar, S.R.; Lue, S.J. Graphene Oxide Synthesis Using Microwave-Assisted vs. Modified Hummer’s Methods: Efficient Fillers for Improved Ionic Conductivity and Suppressed Methanol Permeability in Alkaline Methanol Fuel Cell Electrolytes. J. Power Sources 2019, 414, 86–95. [Google Scholar] [CrossRef]
- Pophali, A.; Yadav, A.; Verma, N. Efficient Oxygen Reduction in a Microbial Fuel Cell Based on Carbide-Derived Carbon Electrode Synthesized Using Thiourea as the Single Source of Electroconductive Heteroatoms and Graphitic Carbon. Int. J. Hydrogen Energy 2019, 44, 10982–10995. [Google Scholar] [CrossRef]
- Simmons, K.; Guezennec, Y.; Onori, S. Modeling and Energy Management Control Design for a Fuel Cell Hybrid Passenger Bus. J. Power Sources 2014, 246, 736–746. [Google Scholar] [CrossRef]
- Morrison, G.; Stevens, J.; Joseck, F. Relative Economic Competitiveness of Light-Duty Battery Electric and Fuel Cell Electric Vehicles. Transp. Res. Part C Emerg. Technol. 2018, 87, 183–196. [Google Scholar] [CrossRef]
- Yu, S.S.; Kim, H.S.; Lee, S.M.; Lee, Y.D.; Ahn, K.Y. Thermal Management of Proton Exchange Membrane Fuel Cell. Trans. Korean Hydrog. New Energy Soc. 2007, 18, 292–300. [Google Scholar]
- Xu, J.; Zhang, C.; Wan, Z.; Chen, X.; Chan, S.H.; Tu, Z. Progress and Perspectives of Integrated Thermal Management Systems in PEM Fuel Cell Vehicles: A Review. Renew. Sustain. Energy Rev. 2022, 155, 111908. [Google Scholar] [CrossRef]
- Chen, H.; Pei, P.; Song, M. Lifetime Prediction and the Economic Lifetime of Proton Exchange Membrane Fuel Cells. Appl. Energy 2015, 142, 154–163. [Google Scholar] [CrossRef]
- Pei, P.; Chen, H. Main Factors Affecting the Lifetime of Proton Exchange Membrane Fuel Cells in Vehicle Applications: A Review. Appl. Energy 2014, 125, 60–75. [Google Scholar] [CrossRef]
- Zhang, G.; Zhou, S.; Gao, J.; Fan, L.; Lu, Y. Stacks Multi-Objective Allocation Optimization for Multi-Stack Fuel Cell Systems. Appl. Energy 2023, 331, 120370. [Google Scholar] [CrossRef]
- Do, T.-C.; Trinh, H.-A.; Ahn, K.-K. Hierarchical Control Strategy with Battery Dynamic Consideration for a Dual Fuel Cell/Battery Tramway. Mathematics 2023, 11, 2269. [Google Scholar] [CrossRef]
- Zhou, S.; Fan, L.; Zhang, G.; Gao, J.; Lu, Y.; Zhao, P.; Wen, C.; Shi, L.; Hu, Z. A Review on Proton Exchange Membrane Multi-Stack Fuel Cell Systems: Architecture, Performance, and Power Management. Appl. Energy 2022, 310, 118555. [Google Scholar] [CrossRef]
- Zhang, C.; Zeng, T.; Wu, Q.; Deng, C.; Chan, S.H.; Liu, Z. Improved Efficiency Maximization Strategy for Vehicular Dual-Stack Fuel Cell System Considering Load State of Sub-Stacks through Predictive Soft-Loading. Renew. Energy 2021, 179, 929–944. [Google Scholar] [CrossRef]
- de-Troya, J.J.; Álvarez, C.; Fernández-Garrido, C.; Carral, L. Analysing the Possibilities of Using Fuel Cells in Ships. Int. J. Hydrogen Energy 2016, 41, 2853–2866. [Google Scholar] [CrossRef]
- Psoma, A.; Sattler, G. Fuel Cell Systems for Submarines: From the First Idea to Serial Production. J. Power Sources 2002, 106, 381–383. [Google Scholar] [CrossRef]
- Feng, Y.; Dong, Z. Integrated Design and Control Optimization of Fuel Cell Hybrid Mining Truck with Minimized Lifecycle Cost. Appl. Energy 2020, 270, 115164. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, Z.; Jiao, K.; Hao, D.; Du, Q. Development of a comprehensive transient fuel cell-battery hybrid system model and rule-based energy management strategy. Int. J. Green Energy 2023, 20, 844–858. [Google Scholar] [CrossRef]
- Guo, L.; Li, Z.; Outbib, R.; Gao, F. Function approximation reinforcement learning of energy management with the fuzzy REINFORCE for fuel cell hybrid electric vehicles. Energy AI 2023, 13, 100246. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Fan, L.; Du, Q.; Jiao, K. Application progress of small-scale proton exchange membrane fuel cell. Energy Rev. 2023, 2, 100017. [Google Scholar] [CrossRef]
- Abuzant, S.; Jemei, S.; Hissel, D.; Boulon, L.; Agbossou, K.; Gustin, F. A Review of Multi-Stack PEM Fuel Cell Systems: Advantages, Challenges and On-Going Applications in the Industrial Market. In Proceedings of the 2017 IEEE Vehicle Power and Propulsion Conference (VPPC), Belfort, France, 11–14 December 2017; IEEE: New York City, NY, USA, 2017; pp. 1–6. [Google Scholar]
- Marx, N.; Boulon, L.; Gustin, F.; Hissel, D.; Agbossou, K. A Review of Multi-Stack and Modular Fuel Cell Systems: Interests, Application Areas and on-Going Research Activities. Int. J. Hydrogen Energy 2014, 39, 12101–12111. [Google Scholar] [CrossRef]
- Marx, N.; Hissel, D.; Gustin, F.; Boulon, L.; Agbossou, K. On the Sizing and Energy Management of an Hybrid Multistack Fuel Cell—Battery System for Automotive Applications. Int. J. Hydrogen Energy 2017, 42, 1518–1526. [Google Scholar] [CrossRef]
- De Bernardinis, A.; Péra, M.-C.; Garnier, J.; Hissel, D.; Coquery, G.; Kauffmann, J.-M. Fuel Cells Multi-Stack Power Architectures and Experimental Validation of 1kW Parallel Twin Stack PEFC Generator Based on High Frequency Magnetic Coupling Dedicated to on Board Power Unit. Energy Convers. Manag. 2008, 49, 2367–2383. [Google Scholar] [CrossRef]
- Ramezanizadeh, M.; Alhuyi Nazari, M.; Hossein Ahmadi, M.; Chen, L. A Review on the Approaches Applied for Cooling Fuel Cells. Int. J. Heat Mass Transf. 2019, 139, 517–525. [Google Scholar] [CrossRef]
- Choi, E.J.; Park, J.Y.; Kim, M.S. A Comparison of Temperature Distribution in PEMFC with Single-Phase Water Cooling and Two-Phase HFE-7100 Cooling Methods by Numerical Study. Int. J. Hydrogen Energy 2018, 43, 13406–13419. [Google Scholar] [CrossRef]
- Mahdavi, A.; Ranjbar, A.A.; Gorji, M.; Rahimi-Esbo, M. Numerical Simulation Based Design for an Innovative PEMFC Cooling Flow Field with Metallic Bipolar Plates. Appl. Energy 2018, 228, 656–666. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Li, W.; Wang, S.; Qi, Y.; Li, X.; Zhao, Y.; Zhu, T.; Ma, T.; Xie, X. Experimental Study on Cooling Performance of Microencapsulated Phase Change Suspension in a PEMFC. Int. J. Hydrogen Energy 2017, 42, 30004–30012. [Google Scholar] [CrossRef]
- Ghasemi, M.; Ramiar, A.; Ranjbar, A.A.; Rahgoshay, S.M. A Numerical Study on Thermal Analysis and Cooling Flow Fields Effect on PEMFC Performance. Int. J. Hydrogen Energy 2017, 42, 24319–24337. [Google Scholar] [CrossRef]
- Choi, E.J.; Hwang, S.H.; Park, J.; Kim, M.S. Parametric Analysis of Simultaneous Humidification and Cooling for PEMFCs Using Direct Water Injection Method. Int. J. Hydrogen Energy 2017, 42, 12531–12542. [Google Scholar] [CrossRef]
- Huang, L.; Chen, J.; Liu, Z.; Becherif, M. Adaptive Thermal Control for PEMFC Systems with Guaranteed Performance. Int. J. Hydrogen Energy 2018, 43, 11550–11558. [Google Scholar] [CrossRef]
- Alizadeh, E.; Rahgoshay, S.M.; Rahimi-Esbo, M.; Khorshidian, M.; Saadat, S.H.M. A Novel Cooling Flow Field Design for Polymer Electrolyte Membrane Fuel Cell Stack. Int. J. Hydrogen Energy 2016, 41, 8525–8532. [Google Scholar] [CrossRef]
- Baek, S.M.; Yu, S.H.; Nam, J.H.; Kim, C.-J. A Numerical Study on Uniform Cooling of Large-Scale PEMFCs with Different Coolant Flow Field Designs. Appl. Therm. Eng. 2011, 31, 1427–1434. [Google Scholar] [CrossRef]
- Cho, K.-H.; Chang, W.-P.; Kim, M.-H. A Numerical and Experimental Study to Evaluate Performance of Vascularized Cooling Plates. Int. J. Heat Fluid Flow 2011, 32, 1186–1198. [Google Scholar] [CrossRef]
- Afshari, E.; Ziaei-Rad, M.; Dehkordi, M.M. Numerical Investigation on a Novel Zigzag-Shaped Flow Channel Design for Cooling Plates of PEM Fuel Cells. J. Energy Inst. 2017, 90, 752–763. [Google Scholar] [CrossRef]
- Kandlikar, S.G.; Lu, Z. Thermal Management Issues in a PEMFC Stack—A Brief Review of Current Status. Appl. Therm. Eng. 2009, 29, 1276–1280. [Google Scholar] [CrossRef]
- Liso, V.; Nielsen, M.P.; Kær, S.K.; Mortensen, H.H. Thermal Modeling and Temperature Control of a PEM Fuel Cell System for Forklift Applications. Int. J. Hydrogen Energy 2014, 39, 8410–8420. [Google Scholar] [CrossRef]
- Hu, D.; Wang, Y.; Li, J.; Yang, Q.; Wang, J. Investigation of Optimal Operating Temperature for the PEMFC and Its Tracking Control for Energy Saving in Vehicle Applications. Energy Convers. Manag. 2021, 249, 114842. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Qin, F.-F.; Ou, K.; Kim, Y.-B. Temperature Control for a Polymer Electrolyte Membrane Fuel Cell by Using Fuzzy Rule. IEEE Trans. Energy Convers. 2016, 31, 667–675. [Google Scholar] [CrossRef]
- O’Keefe, D.; El-Sharkh, M.Y.; Telotte, J.C.; Palanki, S. Temperature Dynamics and Control of a Water-Cooled Fuel Cell Stack. J. Power Sources 2014, 256, 470–478. [Google Scholar] [CrossRef]
- Cheng, S.; Fang, C.; Xu, L.; Li, J.; Ouyang, M. Model-Based Temperature Regulation of a PEM Fuel Cell System on a City Bus. Int. J. Hydrogen Energy 2015, 40, 13566–13575. [Google Scholar] [CrossRef]
- Saygili, Y.; Eroglu, I.; Kincal, S. Model Based Temperature Controller Development for Water Cooled PEM Fuel Cell Systems. Int. J. Hydrogen Energy 2015, 40, 615–622. [Google Scholar] [CrossRef]
- Tang, Y.-Q.; Fang, W.-Z.; Lin, H.; Tao, W.-Q. Thin Film Thermocouple Fabrication and Its Application for Real-Time Temperature Measurement inside PEMFC. Int. J. Heat Mass Transf. 2019, 141, 1152–1158. [Google Scholar] [CrossRef]
- Yang, Z.; Du, Q.; Jia, Z.; Yang, C.; Jiao, K. Effects of Operating Conditions on Water and Heat Management by a Transient Multi-Dimensional PEMFC System Model. Energy 2019, 183, 462–476. [Google Scholar] [CrossRef]
- Wang, B.; Wu, K.; Xi, F.; Xuan, J.; Xie, X.; Wang, X.; Jiao, K. Numerical Analysis of Operating Conditions Effects on PEMFC with Anode Recirculation. Energy 2019, 173, 844–856. [Google Scholar] [CrossRef]
- Wang, B.; Lin, R.; Liu, D.; Xu, J.; Feng, B. Investigation of the Effect of Humidity at Both Electrode on the Performance of PEMFC Using Orthogonal Test Method. Int. J. Hydrogen Energy 2019, 44, 13737–13743. [Google Scholar] [CrossRef]
- Cha, D.; Jeon, S.W.; Yang, W.; Kim, D.; Kim, Y. Comparative Performance Evaluation of Self-Humidifying PEMFCs with Short-Side-Chain and Long-Side-Chain Membranes under Various Operating Conditions. Energy 2018, 150, 320–328. [Google Scholar] [CrossRef]
- Available online: https://trucknbus.hyundai.com/hydrogen/ko/hydrogen-vehicles/xcient-fuel-cell (accessed on 11 December 2023).
- Liu, Z.; Zhang, B.; Xu, S. Research on Air Mass Flow-Pressure Combined Control and Dynamic Performance of Fuel Cell System for Vehicles Application. Appl. Energy 2022, 309, 118446. [Google Scholar] [CrossRef]
- Deng, S.; Zhang, J.; Zhang, C.; Luo, M.; Ni, M.; Li, Y.; Zeng, T. Prediction and Optimization of Gas Distribution Quality for High-Temperature PEMFC Based on Data-Driven Surrogate Model. Appl. Energy 2022, 327, 120000. [Google Scholar] [CrossRef]
- Qiu, Y.; Zeng, T.; Zhang, C.; Wang, G.; Wang, Y.; Hu, Z.; Yan, M.; Wei, Z. Progress and Challenges in Multi-Stack Fuel Cell System for High Power Applications: Architecture and Energy Management. Green Energy Intell. Transp. 2023, 2, 100068. [Google Scholar] [CrossRef]
- Zhou, S.; Han, Y.; Chen, S.; Yang, P.; Wang, C.; Zalhaf, A.S. Joint Expansion Planning of Distribution Network with Uncertainty of Demand Load and Renewable Energy. Energy Rep. 2022, 8, 310–319. [Google Scholar] [CrossRef]
- Depature, C.; Boulon, L.; Sicard, P.; Fournier, M. Simulation Model of a Multi-Stack Fuel Cell System. In Proceedings of the 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2–6 September 2013; IEEE: New York City, NY, USA, 2013; pp. 1–10. [Google Scholar]
- Chen, H.; He, Y.; Zhang, X.; Zhao, X.; Zhang, T.; Pei, P. A Method to Study the Intake Consistency of the Dual-Stack Polymer Electrolyte Membrane Fuel Cell System under Dynamic Operating Conditions. Appl. Energy 2018, 231, 1050–1058. [Google Scholar] [CrossRef]
- Ehret, O.; Bonhoff, K. Hydrogen as a Fuel and Energy Storage: Success Factors for the German Energiewende. Int. J. Hydrogen Energy 2015, 40, 5526–5533. [Google Scholar] [CrossRef]
- Song, J. A Study on Two-Stage 700 Bar Hydrogen Regulator for FCEV. Master’s Thesis, Graduate School of Technology and Education, Cheonan-si, Republic of Korea, 2020. [Google Scholar]
- Available online: https://ecv.hyundai.com/global/en/products/xcient-fuel-cell-truck-fcev (accessed on 11 November 2023).
- Li, S.; Shen, J.; Hua, Q.; Lee, K. Data-driven oxygen excess ratio control for proton exchange membrane fuel cell. Appl. Energy 2018, 231, 866–875. [Google Scholar]
- Chen, J.; Liu, Z.; Wang, F.; Ouyang, Q.; Su, H. Optimal Oxygen Excess Ratio Control for PEM Fuel Cells. IEEE Trans. Contr. Syst. Technol. 2018, 26, 1711–1721. [Google Scholar] [CrossRef]
- Pukrushpan, J.T.; Stefanopoulou, A.G.; Peng, H. Control of Fuel Cell Breathing. IEEE Control Syst. 2004, 24, 30–46. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, X.; Chen, B.; Liu, X. Coordination Control Strategy for the Air Management of Heavy Vehicle Fuel Cell Engine. Int. J. Hydrogen Energy 2020, 45, 20360–20368. [Google Scholar] [CrossRef]
- Zhao, D.; Xu, L.; Huangfu, Y.; Dou, M.; Liu, J. Semi-Physical Modeling and Control of a Centrifugal Compressor for the Air Feeding of a PEM Fuel Cell. Energy Convers. Manag. 2017, 154, 380–386. [Google Scholar] [CrossRef]
- Zhao, D.; Blunier, B.; Gao, F.; Dou, M.; Miraoui, A. Control of an Ultrahigh-Speed Centrifugal Compressor for the Air Management of Fuel Cell Systems. IEEE Trans. Ind. Appl. 2014, 50, 2225–2234. [Google Scholar] [CrossRef]
- Tirnovan, R.; Giurgea, S.; Miraoui, A.; Cirrincione, M. Surrogate Modelling of Compressor Characteristics for Fuel-Cell Applications. Appl. Energy 2008, 85, 394–403. [Google Scholar] [CrossRef]
- Zhao, D.; Zheng, Q.; Gao, F.; Bouquain, D.; Dou, M.; Miraoui, A. Disturbance Decoupling Control of an Ultra-High Speed Centrifugal Compressor for the Air Management of Fuel Cell Systems. Int. J. Hydrogen Energy 2014, 39, 1788–1798. [Google Scholar] [CrossRef]
- Hwang, J.-J.; Chen, Y.-J.; Kuo, J.-K. The Study on the Power Management System in a Fuel Cell Hybrid Vehicle. Int. J. Hydrogen Energy 2012, 37, 4476–4489. [Google Scholar] [CrossRef]
- Sulaiman, N.; Hannan, M.A.; Mohamed, A.; Majlan, E.H.; Wan Daud, W.R. A Review on Energy Management System for Fuel Cell Hybrid Electric Vehicle: Issues and Challenges. Renew. Sustain. Energy Rev. 2015, 52, 802–814. [Google Scholar] [CrossRef]
- Hannan, M.A.; Azidin, F.A.; Mohamed, A. Multi-Sources Model and Control Algorithm of an Energy Management System for Light Electric Vehicles. Energy Convers. Manag. 2012, 62, 123–130. [Google Scholar] [CrossRef]
- Tran, H.N.; Le, T.-T.; Jeong, H.; Kim, S.; Kieu, H.-P.; Choi, S. High Power Density DC-DC Converter for 800V Fuel Cell Electric Vehicles. In Proceedings of the 2021 IEEE 12th Energy Conversion Congress & Exposition—Asia (ECCE-Asia), Singapore, 24–27 May 2021; IEEE: New York City, NY, USA, 2021; pp. 2224–2228. [Google Scholar]
- Chiu, H.-J.; Lin, L.-W. A Bidirectional DC–DC Converter for Fuel Cell Electric Vehicle Driving System. IEEE Trans. Power Electron. 2006, 21, 950–958. [Google Scholar] [CrossRef]
- Hyundai Transys. Available online: https://www.hyundai-transys.com/ko/main.do (accessed on 1 November 2023).
- Peng, M.; Lin, J.; Liu, X. Optimizing Design of Powertrain Transmission Ratio of Heavy Duty Truck. IFAC-PapersOnLine 2018, 51, 892–897. [Google Scholar] [CrossRef]
- Yu, S.; Jung, D. A Study of Operation Strategy of Cooling Module with Dynamic Fuel Cell System Model for Transportation Application. Renew. Energy 2010, 35, 2525–2532. [Google Scholar] [CrossRef]
- Han, J.; Yu, S. Ram Air Compensation Analysis of Fuel Cell Vehicle Cooling System under Driving Modes. Appl. Therm. Eng. 2018, 142, 530–542. [Google Scholar] [CrossRef]
- Kays, W.M.; London, A.L. Compact Heat Exchangers; Krieger Publishing Company: Malabar, FL, USA, 1984. [Google Scholar]
- Kim, M.; Lee, J.; Lee, H. Development of Model Predictive Controller for Electrified Vehicles through System Identification Considering Road Slope. In Proceedings of the Korea Automotive Engineering Society Spring Conference, Busan, Republic of Korea, 2–4 June 2022. [Google Scholar]
- An, Y.; Lee, N.; Park, J.; Lee, J.; Kim, W.; Woo, N. Comparative analysis of road gradient measurement method. In Proceedings of the Korea Automotive Engineering Society Spring Conference, Gunsan, Republic of Korea, 12–14 August 2016. [Google Scholar]
- Korea Meteorological Administration Weather Nuri. Available online: https://www.weather.go.kr/w/index.do (accessed on 6 November 2023).
System | Components | Parameters | Unit |
---|---|---|---|
Fuel processing system | Number of tanks | 7 | ea |
Hydrogen tank pressure | 70 | MPa | |
Hydrogen tank temperature | 293.15 | K | |
Hydrogen volume in single tank | 80 | L | |
Hydrogen mass in single tank | 4.5 | kg | |
Mole fraction of hydrogen in tank | 0.9997 | - | |
Fuel cell stack | Number of cells | 545 | ea |
Active area | 280 | cm2 | |
Membrane thickness | 125 | μm | |
Anode gas diffusion layer | 250 | μm | |
Cathode gas diffusion layer | 250 | μm | |
Exchange current density | 0.00008 | A/cm2 | |
Limiting current density | 1.4 | A/cm2 | |
Charge transfer coefficient | 0.5 | - |
System | Components | Parameters | Unit |
---|---|---|---|
Lithium-ion battery | Nominal voltage | 630 | V |
Energy capacity | 24 | kWh | |
Number of batteries | 3 | ea |
System | Components | Parameters | Unit |
---|---|---|---|
PMSM | Maximum Torque | 2237 | Nm |
Maximum Power | 350 | kW |
System | Components | Parameters | Unit |
---|---|---|---|
Vehicle specification | Vehicle mass | 28,000 | kg |
Tire rolling radius | 11.25 | In | |
Tire rolling coefficient | 0.008 | - | |
Air drag coefficient | 1.15 | - | |
Vehicle front area | 2.54 × 3.73 | m2 | |
Gravitational acceleration | 9.81 | m/s2 |
Season | Region | Parameters | Unit |
---|---|---|---|
Summer | Mountain | 1.9 | m/s |
Urban | 2.2 | m/s | |
Winter | Mountain | 3.3 | m/s |
Urban | 2.4 | m/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, S.; Yun, J.; Han, J. Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using SimscapeTM. Energies 2023, 16, 8092. https://doi.org/10.3390/en16248092
Yun S, Yun J, Han J. Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using SimscapeTM. Energies. 2023; 16(24):8092. https://doi.org/10.3390/en16248092
Chicago/Turabian StyleYun, Sanghyun, Jinwon Yun, and Jaeyoung Han. 2023. "Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using SimscapeTM" Energies 16, no. 24: 8092. https://doi.org/10.3390/en16248092
APA StyleYun, S., Yun, J., & Han, J. (2023). Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using SimscapeTM. Energies, 16(24), 8092. https://doi.org/10.3390/en16248092