A Numerical Analysis of the Hybrid Nanofluid (Ag+TiO2+Water) Flow in the Presence of Heat and Radiation Fluxes
Abstract
:1. Introduction
2. Problem Formulation
3. Similarity Transformations
4. Numerical Solution
Important Physical Quantities
5. Results and Discussion
6. Conclusions
- It is observed that the velocity distribution initially augments and then decreases with increasing Grashof number values in suction as well as injection.
- The rising M values first augment and then drop the velocity distribution in the presence of a radiation source of maximum strength.
- The increasing strength of the injection parameter drops the velocity distribution.
- The temperature increases with the increasing Eckert number, radiation and heat sources’ strength and nanomaterial concentration, and declines with the larger values of injection and Prandtl parameter.
- The skin friction rises with M and nanomaterial concentrations, and drops with the larger Grashof number values.
- The heat energy transport due to convection enhances with the rising strength of the pertinent parameters.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Porosity parameter | |
Thermal expansion coefficient | |
Grashof number | |
Q | Heat source/sink parameter |
Radiation parameter | |
Rotational parameter | |
Eckert number | |
Absorption coefficient | |
Rotational parameter | |
Stefan constant | |
Electrical conductivity | |
Time defendant magnetic parameter | |
Magnetic field strength | |
Rotation angle | |
Stretching velocity | |
Velocity of suction/injection mass transfer | |
Hybrid nanofluid density | |
Hybrid nanofluid dynamic viscosity mPa | |
Hybrid nanofluid kinematic viscosity | |
Hybrid nanofluid thermal conductivity | |
Hybrid nanofluid electrical conductivity | |
and | Dimensionless constants |
Local Nusslet number | |
Local Reynolds number | |
Local Skin friction | |
Prandtl number | |
T | Fluid temperature (K) |
Specific heat | |
f | Dimensionless velocity |
g | Dimensionless velocity |
Dimensionless temperature | |
∞ | Condition at infinity |
h | Reference condition |
x, y, and z | Coordinates (m) |
Similarity variable | |
t | Time (s) |
m | Hall parameter |
S | Suction/injection parameter |
First and second nanoaprticles volume fractions | |
HN | Hybrid nanofluid |
B.Cs. | Hybrid nanofluid |
PDEs | Partial differential equations |
ODEs | Ordinary differential equations |
M | Magnetic field interaction parameter |
References
- Alsabery, A.; Chamkha, A.; Saleh, H.; Hashim, I. Natural convection flow of a nanofluid in an inclined square enclosure partially filled with a porous medium. Sci. Rep. 2017, 7, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.J.; Xing, Z.B.; Wang, F.; Cheng, Z. Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications. Chem. Eng. Sci. 2019, 195, 462–483. [Google Scholar] [CrossRef]
- Choi, S.U.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; Technical Report; Argonne National Lab.: Lemont, IL, USA, 1995. [Google Scholar]
- Al-Srayyih, B.M.; Gao, S.; Hussain, S.H. Effects of linearly heated left wall on natural convection within a superposed cavity filled with composite nanofluid-porous layers. Adv. Powder Technol. 2019, 30, 55–72. [Google Scholar] [CrossRef]
- Mehryan, S.; Ghalambaz, M.; Izadi, M. Conjugate natural convection of nanofluids inside an enclosure filled by three layers of solid, porous medium and free nanofluid using Buongiorno’s and local thermal non-equilibrium models. J. Therm. Anal. Calorim. 2019, 135, 1047–1067. [Google Scholar] [CrossRef]
- Khanafer, K.; Vafai, K. A review on the applications of nanofluids in solar energy field. Renew. Energy 2018, 123, 398–406. [Google Scholar] [CrossRef]
- Basha, H.T.; Sivaraj, R.; Reddy, A.S.; Chamkha, A. SWCNH/diamond-ethylene glycol nanofluid flow over a wedge, plate and stagnation point with induced magnetic field and nonlinear radiation–solar energy application. Eur. Phys. J. Spec. Top. 2019, 228, 2531–2551. [Google Scholar] [CrossRef]
- Izadi, A.; Siavashi, M.; Xiong, Q. Impingement jet hydrogen, air and CuH2O nanofluid cooling of a hot surface covered by porous media with non-uniform input jet velocity. Int. J. Hydrog. Energy 2019, 44, 15933–15948. [Google Scholar] [CrossRef]
- Sabaghan, A.; Edalatpour, M.; Moghadam, M.C.; Roohi, E.; Niazmand, H. Nanofluid flow and heat transfer in a microchannel with longitudinal vortex generators: Two-phase numerical simulation. Appl. Therm. Eng. 2016, 100, 179–189. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Rikhtegar, F.; Sabaghan, A.; Roohi, E. Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids. Energy 2016, 101, 190–201. [Google Scholar] [CrossRef]
- Siavashi, M.; Joibary, S.M.M. Numerical performance analysis of a counter-flow double-pipe heat exchanger with using nanofluid and both sides partly filled with porous media. J. Therm. Anal. Calorim. 2019, 135, 1595–1610. [Google Scholar] [CrossRef]
- Ghadikolaei, S.; Hosseinzadeh, K.; Ganji, D.; Jafari, B. Nonlinear thermal radiation effect on magneto Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet. Case Stud. Therm. Eng. 2018, 12, 176–187. [Google Scholar] [CrossRef]
- Kumar, M.A.; Reddy, Y.D.; Rao, V.S.; Goud, B.S. Thermal radiation impact on MHD heat transfer natural convective nano fluid flow over an impulsively started vertical plate. Case Stud. Therm. Eng. 2021, 24, 100826. [Google Scholar] [CrossRef]
- Naranjani, B.; Roohi, E.; Ebrahimi, A. Thermal and hydraulic performance analysis of a heat sink with corrugated channels and nanofluids. J. Therm. Anal. Calorim. 2020, 146, 2549–2560. [Google Scholar] [CrossRef]
- Mebarek-Oudina, F. Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source. Heat Transf. Res. 2019, 48, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, T.; Alamri, S.Z.; Waqas, H.; Habib, D.; Ellahi, R. Bioconvection flow of magnetized Carreau nanofluid under the influence of slip over a wedge with motile microorganisms. J. Therm. Anal. Calorim. 2021, 143, 945–957. [Google Scholar] [CrossRef]
- Fatima, N. New homotopy perturbation method for solving nonlinear differential equations and Fisher type equation. In Proceedings of the 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, India, 21–22 September 2017; pp. 1669–1673. [Google Scholar]
- Saif, R.S.; Hayat, T.; Ellahi, R.; Muhammad, T.; Alsaedi, A. Darcy–Forchheimer flow of nanofluid due to a curved stretching surface. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 2–20. [Google Scholar] [CrossRef]
- Khan, A.A.; Naeem, S.; Ellahi, R.; Sait, S.M.; Vafai, K. Dufour and Soret effects on Darcy-Forchheimer flow of second-grade fluid with the variable magnetic field and thermal conductivity. Int. J. Numer. Methods Heat Fluid Flow 2020, 30, 4331–4347. [Google Scholar] [CrossRef]
- Qasim, M.; Khan, Z.H.; Khan, W.A.; Ali Shah, I. MHD boundary layer slip flow and heat transfer of ferrofluid along a stretching cylinder with prescribed heat flux. PLoS ONE 2014, 9, e83930. [Google Scholar] [CrossRef]
- Afridi, M.I.; Qasim, M. Entropy generation in three dimensional flow of dissipative fluid. Int. J. Appl. Comput. Math. 2018, 4, 1–11. [Google Scholar] [CrossRef]
- Qasim, M. Heat and mass transfer in a Jeffrey fluid over a stretching sheet with heat source/sink. Alex. Eng. J. 2013, 52, 571–575. [Google Scholar] [CrossRef]
- Mahalakshmi, T.; Nithyadevi, N.; Oztop, H.F.; Abu-Hamdeh, N. MHD mixed convective heat transfer in a lid-driven enclosure filled with Ag-water nanofluid with center heater. Int. J. Mech. Sci. 2018, 142, 407–419. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Rezaeianjouybari, B.; Darzi, M.; Shafee, A.; Li, Z.; Nguyen, T.K. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int. J. Heat Mass Transf. 2019, 141, 974–980. [Google Scholar] [CrossRef]
- Zhang, L.; Bhatti, M.M.; Ellahi, R.; Michaelides, E.E. Oxytactic microorganisms and thermo-bioconvection nanofluid flow over a porous Riga plate with Darcy–Brinkman–Forchheimer medium. J. Non-Equilib. Thermodyn. 2020, 45, 257–268. [Google Scholar] [CrossRef]
- Kumar, P.; Poonia, H.; Ali, L.; Areekara, S. The numerical simulation of nanoparticle size and thermal radiation with the magnetic field effect based on tangent hyperbolic nanofluid flow. Case Stud. Therm. Eng. 2022, 37, 102247. [Google Scholar] [CrossRef]
- Shutaywi, M.; Shah, Z. Mathematical Modeling and numerical simulation for nanofluid flow with entropy optimization. Case Stud. Therm. Eng. 2021, 26, 101198. [Google Scholar] [CrossRef]
- Taylor-Pashow, K.M.; Della Rocca, J.; Huxford, R.C.; Lin, W. Hybrid nanomaterials for biomedical applications. Chem. Commun. 2010, 46, 5832–5849. [Google Scholar] [CrossRef] [PubMed]
- Babazadeh, H.; Shah, Z.; Ullah, I.; Kumam, P.; Shafee, A. Analysis of hybrid nanofluid behavior within a porous cavity including Lorentz forces and radiation impacts. J. Therm. Anal. Calorim. 2020, 143, 1129–1137. [Google Scholar] [CrossRef]
- Mehryan, S.; Izadpanahi, E.; Ghalambaz, M.; Chamkha, A. Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu–Al2O3/water hybrid nanofluid. J. Therm. Anal. Calorim. 2019, 137, 965–982. [Google Scholar] [CrossRef]
- Suresh, S.; Venkitaraj, K.; Selvakumar, P.; Chandrasekar, M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf. A Physicochem. Eng. Asp. 2011, 388, 41–48. [Google Scholar] [CrossRef]
- Chamkha, A.J.; Miroshnichenko, I.V.; Sheremet, M.A. Numerical analysis of unsteady conjugate natural convection of hybrid water-based nanofluid in a semicircular cavity. J. Therm. Sci. Eng. Appl. 2017, 9, 041004. [Google Scholar] [CrossRef]
- Momin, G.G. Experimental investigation of mixed convection with water-Al2O3 & hybrid nanofluid in inclined tube for laminar flow. Int. J. Sci. Technol. Res. 2013, 2, 195–202. [Google Scholar]
- Qadeer, M.; Khan, U.; Ahmad, S. Irreversibility analysis for three-dimensional squeezing flow of hybrid nanofluids: A numerical study. Waves Random Complex Media 2022, 1–27. [Google Scholar] [CrossRef]
- Sundar, L.S.; Singh, M.K.; Sousa, A.C. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int. Commun. Heat Mass Transf. 2014, 52, 73–83. [Google Scholar] [CrossRef]
- Ghachem, K.; Aich, W.; Kolsi, L. Computational analysis of hybrid nanofluid enhanced heat transfer in cross flow micro heat exchanger with rectangular wavy channels. Case Stud. Therm. Eng. 2021, 24, 100822. [Google Scholar] [CrossRef]
- Lund, L.A.; Omar, Z.; Khan, I.; Seikh, A.H.; Sherif, E.S.M.; Nisar, K.S. Stability analysis and multiple solution of Cu–Al2O3/H2O nanofluid contains hybrid nanomaterials over a shrinking surface in the presence of viscous dissipation. J. Mater. Res. Technol. 2020, 9, 421–432. [Google Scholar] [CrossRef]
- Suresh, S.; Venkitaraj, K.; Selvakumar, P.; Chandrasekar, M. Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Exp. Therm. Fluid Sci. 2012, 38, 54–60. [Google Scholar] [CrossRef]
- Afridi, M.; Qasim, M.; Khan, N.A.; Hamdani, M. Heat transfer analysis of Cu–Al2O3–water and Cu–Al2O3–kerosene oil hybrid nanofluids in the presence of frictional heating: Using 3-stage Lobatto IIIA formula. J. Nanofluids 2019, 8, 885–891. [Google Scholar] [CrossRef]
- Usman, M.; Hamid, M.; Zubair, T.; Haq, R.U.; Wang, W. Cu-Al2O3/Water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM. Int. J. Heat Mass Transf. 2018, 126, 1347–1356. [Google Scholar] [CrossRef]
- Mohebbi, R.; Izadi, M.; Delouei, A.A.; Sajjadi, H. Effect of MWCNT–Fe3O4/water hybrid nanofluid on the thermal performance of ribbed channel with apart sections of heating and cooling. J. Therm. Anal. Calorim. 2019, 135, 3029–3042. [Google Scholar] [CrossRef]
- Minea, A.; Moldoveanu, M. Overview of hybrid nanofluids development and benefits. J. Eng. Thermophys. 2018, 27, 507–514. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Ullah, A.; Alrabaiah, H.; Ikramullah; Ayaz, M.; Khan, W.; Khan, I.; Khan, H.U. Thermal radiations and mass transfer analysis of the three-dimensional magnetite carreau fluid flow past a horizontal surface of paraboloid of revolution. Processes 2020, 8, 656. [Google Scholar] [CrossRef]
- Rizk, D.; Ullah, A.; Elattar, S.; Alharbi, K.A.M.; Sohail, M.; Khan, R.; Khan, A.; Mlaiki, N. Impact of the KKL Correlation Model on the Activation of Thermal Energy for the Hybrid Nanofluid (GO+ ZnO+ Water) Flow through Permeable Vertically Rotating Surface. Energies 2022, 15, 2872. [Google Scholar] [CrossRef]
- Sinha, A.; Misra, J.; Shit, G. Effect of heat transfer on unsteady MHD flow of blood in a permeable vessel in the presence of non-uniform heat source. Alex. Eng. J. 2016, 55, 2023–2033. [Google Scholar] [CrossRef] [Green Version]
- Khashi’ie, N.S.; Waini, I.; Arifin, N.M.; Pop, I. Unsteady squeezing flow of Cu-Al2O3/water hybrid nanofluid in a horizontal channel with magnetic field. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Riahi, A.; Ben-Cheikh, N.; Campo, A. Water-based nanofluids for natural convection cooling of a pair of symmetrical heated blocks placed inside a rectangular enclosure of aspect ratio two. Int. J. Therm. Environ. Eng. 2018, 16, 1–10. [Google Scholar]
- Verma, V.K.; Mondal, S. A brief review of numerical methods for heat and mass transfer of Casson fluids. Partial Differ. Equations Appl. Math. 2021, 3, 100034. [Google Scholar] [CrossRef]
- Rai, N.; Mondal, S. Spectral methods to solve nonlinear problems: A review. Partial Differ. Equations Appl. Math. 2021, 4, 100043. [Google Scholar] [CrossRef]
- Oyelakin, I.S.; Mondal, S.; Sibanda, P.; Motsa, S.S. A multi-domain bivariate approach for mixed convection in a Casson nanofluid with heat generation. Walailak J. Sci. Technol. 2019, 16, 681–699. [Google Scholar] [CrossRef]
Properties | |||
---|---|---|---|
Ag | 429 | 10.5 | 235 |
Water | 0.613 | 997.1 | 4179 |
TiO | 8.95 | 4250 | 686 |
Quantity | Hybrid Models |
---|---|
Thermal Conductivity | |
Electrical Conductivity | |
Specific Heat | |
Viscosity | |
Density |
M | ||||
---|---|---|---|---|
0.1 | 0.01 | 0.1 | 0.1 | 1.35340 |
0.3 | 1.56322 | |||
0.5 | 0.02 | 1.61480 | ||
0.04 | 1.70841 | |||
0.5 | 1.81831 | |||
0.3 | 1.88298 | |||
0.5 | 1.80101 | |||
0.7 | 1.67691 |
M | Q | |||||
---|---|---|---|---|---|---|
0.02 | 0.1 | 0.1 | 0.1 | 2 | 5.0 | 0.112352 |
0.04 | 0.266434 | |||||
0.06 | 0.3 | 0.270780 | ||||
0.5 | 0.410970 | |||||
0.4 | 0.490223 | |||||
0.8 | 0.611523 | |||||
0.4 | 0.699960 | |||||
0.8 | 0.823056 | |||||
3 | 0.935024 | |||||
4 | 0.999068 | |||||
5.2 | 0.611976 | |||||
5.3 | 0.634667 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, A.; Fatima, N.; Alharbi, K.A.M.; Elattar, S.; Ikramullah; Khan, W. A Numerical Analysis of the Hybrid Nanofluid (Ag+TiO2+Water) Flow in the Presence of Heat and Radiation Fluxes. Energies 2023, 16, 1220. https://doi.org/10.3390/en16031220
Ullah A, Fatima N, Alharbi KAM, Elattar S, Ikramullah, Khan W. A Numerical Analysis of the Hybrid Nanofluid (Ag+TiO2+Water) Flow in the Presence of Heat and Radiation Fluxes. Energies. 2023; 16(3):1220. https://doi.org/10.3390/en16031220
Chicago/Turabian StyleUllah, Asad, Nahid Fatima, Khalid Abdulkhaliq M. Alharbi, Samia Elattar, Ikramullah, and Waris Khan. 2023. "A Numerical Analysis of the Hybrid Nanofluid (Ag+TiO2+Water) Flow in the Presence of Heat and Radiation Fluxes" Energies 16, no. 3: 1220. https://doi.org/10.3390/en16031220
APA StyleUllah, A., Fatima, N., Alharbi, K. A. M., Elattar, S., Ikramullah, & Khan, W. (2023). A Numerical Analysis of the Hybrid Nanofluid (Ag+TiO2+Water) Flow in the Presence of Heat and Radiation Fluxes. Energies, 16(3), 1220. https://doi.org/10.3390/en16031220