Heat Transfer Calculations during Flow in Mini-Channels with Estimation of Temperature Uncertainty Measurements
Abstract
:1. Introduction
2. The Experimental Rig
2.1. Loops and Systems
2.2. Test Section
2.3. Temperature Measurement Apparatus
- The FLIR A655SC infrared camera used with FLIR ResearchIR Max software (v.4.4) to measure the temperature distribution on the surface.
- Main specifications of the FLIR A655SC infrared camera:
- ◦
- a spectral range of 7.5–14.0 µm,
- ◦
- a resolution of 640 × 480 pixels,
- ◦
- an accuracy of temperature measurement of 2% in the range of 0–120 °C or 2 °C.
- Furthermore, FLIR ResearchIR Max software allows for indicating the temperature at the points of thermograms.
- The thermoelements manufactured by Czaki Thermo-Product, Raszyn-Rybie, Poland, helped measure the temperature at selected points on the heated surface.
- Main specifications of the thermoelements:
- ◦
- NiCr-NiAl thermoelement: a K-type sheathed thermoelement sensor with an outer diameter of 0.5 mm, model TP-221,
- ◦
- a nominal range of temperature measurement from −40 °C to 600 °C,
- ◦
- a temperature sensor with a galvanically isolated weld (type b),
- ◦
- a wire length of 100 mm,
- ◦
- a temperature measurement accuracy of 1.5 °C according to international standards.
3. Experimental Procedures and Parameters
3.1. The Experiment for Estimation of Temperature Uncertainty Measurements
3.2. The Heat Transfer Experiment
4. Method of Estimation of Temperature Uncertainty Measurements
5. Determination of the Heat Transfer Coefficient
6. Presentation and Discussion of the Results
6.1. Estimation of Temperature Uncertainty Measurements
6.1.1. Experimental Outline
6.1.2. Experimental Data
6.1.3. Estimation of Temperature Measurement Uncertainty
6.2. Heat Transfer Investigation
6.2.1. Main Characteristics
6.2.2. The Temperature Measurements and Boiling Curves
6.2.3. The Heat Transfer Coefficient Results
6.2.4. The Heat Transfer Coefficient Uncertainty
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- de Oliveira, J.D.; Copetti, J.B.; Passos, J.C.; van der Geld, C.W.M. On Flow Boiling of R-1270 in a Small Horizontal Tube: Flow Patterns and Heat Transfer. Appl. Therm. Eng. 2020, 178, 115403. [Google Scholar] [CrossRef]
- Piasecka, M.; Strąk, K. Boiling Heat Transfer during Flow in Vertical Mini-Channels with a Modified Heated Surface. Energies 2022, 15, 7050. [Google Scholar] [CrossRef]
- Dąbek, L.; Kapjor, A.; Orman, Ł.J. Boiling Heat Transfer Augmentation on Surfaces Covered with Phosphor Bronze Meshes. MATEC Web Conf. 2018, 168, 07001. [Google Scholar] [CrossRef] [Green Version]
- Dąbek, L.; Kapjor, A.; Orman, Ł.J. Distilled Water and Ethyl Alcohol Boiling Heat Transfer on Selected Meshed Surfaces. Mech. Ind. 2019, 20, 701. [Google Scholar] [CrossRef]
- Kruzel, M.; Bohdal, T.; Sikora, M. Heat Transfer and Pressure Drop during Refrigerants Condensation in Compact Heat Exchangers. Int. J. Heat Mass Transf. 2020, 161, 120283. [Google Scholar] [CrossRef]
- Bohdal, T.; Kruzel, M. Refrigerant Condensation in Vertical Pipe Minichannels under Various Heat Flux Density Level. Int. J. Heat Mass Transf. 2020, 146, 118849. [Google Scholar] [CrossRef]
- Rastan, H.; Abdi, A.; Hamawandi, B.; Ignatowicz, M.; Meyer, J.P.; Palm, B. Heat Transfer Study of Enhanced Additively Manufactured Minichannel Heat Exchangers. Int. J. Heat Mass Transf. 2020, 161, 120271. [Google Scholar] [CrossRef]
- Klugmann, M.; Dabrowski, P.; Mikielewicz, D. Flow Distribution and Heat Transfer in Minigap and Minichannel Heat Exchangers during Flow Boiling. Appl. Therm. Eng. 2020, 181, 116034. [Google Scholar] [CrossRef]
- Grabowski, M.; Hozejowska, S.; Maciejewska, B.; Placzkowski, K.; Poniewski, M.E. Application of the 2-D Trefftz Method for Identification of Flow Boiling Heat Transfer Coefficient in a Rectangular MiniChannel. Energies 2020, 13, 3973. [Google Scholar] [CrossRef]
- Liu, G.; He, C.; Wen, Q.; Wang, Z.; Wang, X.; Shittu, S.; Zhao, X.; Hu, M. Investigation on Visualization and Heat Transfer Performance Study of the Mini-Channel Flow Boiling. Int. Commun. Heat Mass Transf. 2022, 138, 106360. [Google Scholar] [CrossRef]
- Enoki, K.; Ono, M.; Okawa, T.; Kristiawan, B.; Wijayanta, A.T. Water Flow Boiling Heat Transfer in Vertical Minichannel. Exp. Therm. Fluid Sci. 2020, 117, 110147. [Google Scholar] [CrossRef]
- Carlomagno, G.M.; Cardone, G. Infrared Thermography for Convective Heat Transfer Measurements. Exp. Fluids 2010, 49, 1187–1218. [Google Scholar] [CrossRef] [Green Version]
- Poniewski, M.E.; Hożejowska, S.; Kaniowski, R.; Maciejewska, B.; Pastuszko, R.; Piasecka, M.; Wójcik, T.M. Encyclopedia of Two-Phase Heat Transfer and Flow I: Fundamentals and Methods Volume 4: Special Topics in Pool and Flow Boiling; Thome, J.R., Ed.; World Scientific: Singapore, 2015; ISBN 978-981-4623-20-9. [Google Scholar]
- Piasecka, M.; Piasecki, A.; Dadas, N. Experimental Study and CFD Modeling of Fluid Flow and Heat Transfer Characteristics in a Mini-Channel Heat Sink Using Simcenter STAR-CCM+ Software. Energies 2022, 15, 536. [Google Scholar] [CrossRef]
- Maciejewska, B.; Piasecka, M.; Piasecki, A. The Study of the Onset of Flow Boiling in Minichannels—Time-Dependent Heat Transfer Results. Heat Transf. Eng. 2022, 43, 223–237. [Google Scholar] [CrossRef]
- Shah, N.A.; Wakif, A.; El-Zahar, E.R.; Thumma, T.; Yook, S.-J. Heat Transfers Thermodynamic Activity of a Second-Grade Ternary Nanofluid Flow over a Vertical Plate with Atangana-Baleanu Time-Fractional Integral. Alexandria Eng. J. 2022, 61, 10045–10053. [Google Scholar] [CrossRef]
- Abderrahmane, A.; Qasem, N.A.A.; Younis, O.; Marzouki, R.; Mourad, A.; Shah, N.A.; Chung, J.D. MHD Hybrid Nanofluid Mixed Convection Heat Transfer and Entropy Generation in a 3-D Triangular Porous Cavity with Zigzag Wall and Rotating Cylinder. Mathematics 2022, 10, 769. [Google Scholar] [CrossRef]
- Grabowski, M.; Poniewski, M.E.; Hożejowska, S.; Pawińska, A. Numerical Simulation of the Temperature Fields in a Single-Phase Flow in an Asymmetrically Heated Mininchannel. J. Eng. Phys. Thermophys. 2020, 93, 355–363. [Google Scholar] [CrossRef]
- Zaborowska, I.; Grzybowski, H.; Rafalko, G.; Mosdorf, R. Boiling Dynamics in Parallel Minichannel System with Different Inlet Solutions. Int. J. Heat Mass Transf. 2021, 165, 120655. [Google Scholar] [CrossRef]
- Kuczynski, W.; Bohdal, T.; Meyer, J.P.; Denis, A. A Regressive Model for Dynamic Instabilities during the Condensation of R404A and R507 Refrigerants. Int. J. Heat Mass Transf. 2019, 141, 1025–1035. [Google Scholar] [CrossRef]
- Maciejewska, B. The Application of Beck’s Method Combined with FEM and Trefftz Functions to Determine the Heat Transfer Coefficient in a Minichannel. J. Theor. Appl. Mech. 2017, 55, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Maciejewska, B.; Piasecka, M. Trefftz Function-Based Thermal Solution of Inverse Problem in Unsteady-State Flow Boiling Heat Transfer in a Minichannel. Int. J. Heat Mass Transf. 2017, 107, 925–933. [Google Scholar] [CrossRef]
- Maciejewska, B.; Piasecka, M. Time-Dependent Study of Boiling Heat Transfer Coefficient in a Vertical Minichannel. Int. J. Numer. Methods Heat Fluid Flow 2019, 30, 2953–2969. [Google Scholar] [CrossRef]
- Piasecka, M.; Hożejowska, S.; Maciejewska, B.; Pawińska, A. Time-Dependent Heat Transfer Calculations with Trefftz and Picard Methods for Flow Boiling in a Mini-Channel Heat Sink. Energies 2021, 14, 1832. [Google Scholar] [CrossRef]
- Piasecka, M.; Maciejewska, B.; Łabędzki, P. Heat Transfer Coefficient Determination during FC-72 Flow in a Minichannel Heat Sink Using the Trefftz Functions and ADINA Software. Energies 2020, 13, 6647. [Google Scholar] [CrossRef]
- Piasecka, M.; Maciejewska, B.; Łabędzki, P. Development of FEM Calculation Methods to Analyse Subcooled Boiling Heat Transfer in Minichannels Based on Experimental Results. Appl. Sci. 2022, 12, 12982. [Google Scholar] [CrossRef]
- Maciejewska, B.; Błasiak, S.; Piasecka, M. Determination of the Temperature Distribution in a Minichannel Using ANSYS CFX and a Procedure Based on the Trefftz Functions. EPJ Web Conf. 2017, 143, 02071. [Google Scholar] [CrossRef] [Green Version]
- Joint Committee for Guides in Metrology (JCGM/WG 1). Evaluation of Measurement Data—Supplement 1 to the “Guide to the Expression of Uncertainty in Measurement”—Propagation of Distributions Using a Monte Carlo Method; Joint Committee for Guides in Metrology (JCGM): Sèvres, France, 2008. [Google Scholar]
- Joint Committee for Guides in Metrology (JCGM/WG 1). Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement; Joint Committee for Guides in Metrology (JCGM/WG 1): Sèvres, France, 2008. [Google Scholar]
- Piasecka, M.; Strąk, K.; Maciejewska, B. Heat Transfer Characteristics during Flow along Horizontal and Vertical Minichannels. Int. J. Multiph. Flow 2021, 137, 103559. [Google Scholar] [CrossRef]
Parameter | Value/Range |
---|---|
Heat Flux (entire experiment), q (kW/m2) | 4.9–63.7 |
Heat Flux (selected part of the experiment), q (kW/m2) | 36.7–49.8 |
Mass Flow Rate, (kg/s) | 0.004 |
Inlet Pressure, (kPa) | 118–167 |
Input Quantity | Estimate of Input Quantity [°C] | Estimate of Input Quantity Variance [°C2] | Estimate of Input Quantity Standard Variation [°C] |
---|---|---|---|
88.75 | 0.00261 | 0.05108 | |
90.92 | 0.00237 | 0.04872 | |
88.73 | 0.00109 | 0.03307 | |
91.13 | 0.00081 | 0.02850 | |
0 | 0.5625 | 0.75 | |
0 | 1 | 1 | |
0 | 0.00083 | 0.02887 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piasecka, M.; Maciejewska, B.; Piasecki, A. Heat Transfer Calculations during Flow in Mini-Channels with Estimation of Temperature Uncertainty Measurements. Energies 2023, 16, 1222. https://doi.org/10.3390/en16031222
Piasecka M, Maciejewska B, Piasecki A. Heat Transfer Calculations during Flow in Mini-Channels with Estimation of Temperature Uncertainty Measurements. Energies. 2023; 16(3):1222. https://doi.org/10.3390/en16031222
Chicago/Turabian StylePiasecka, Magdalena, Beata Maciejewska, and Artur Piasecki. 2023. "Heat Transfer Calculations during Flow in Mini-Channels with Estimation of Temperature Uncertainty Measurements" Energies 16, no. 3: 1222. https://doi.org/10.3390/en16031222
APA StylePiasecka, M., Maciejewska, B., & Piasecki, A. (2023). Heat Transfer Calculations during Flow in Mini-Channels with Estimation of Temperature Uncertainty Measurements. Energies, 16(3), 1222. https://doi.org/10.3390/en16031222