Development of SOFC Interconnects Based on Industrial Steels with Oxide Coating
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, J.; Liu, X. Recent Development of SOFC Metallic Interconnect. J. Mater. Sci. Technol. 2010, 26, 293–305. [Google Scholar] [CrossRef]
- Piccardo, P.; Spotorno, R.; Geipel, C. Investigation of a Metallic Interconnect Extracted from an SOFC Stack after 40,000 h of Operation. Energies 2022, 15, 3548. [Google Scholar] [CrossRef]
- Skilbred, A.W.B.; Haugsrud, R. Sandvik Sanergy HT—A Potential Interconnect Material for LaNbO4-Based Proton Ceramic Fuel Cells. J. Power Sources 2012, 206, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Bianco, M.; Ouweltjes, J.P.; Van herle, J. Degradation Analysis of Commercial Interconnect Materials for Solid Oxide Fuel Cells in Stacks Operated up to 18000 Hours. Int. J. Hydrogen Energy 2019, 44, 31406–31422. [Google Scholar] [CrossRef]
- Jablonski, P.D.; Cowen, C.J.; Sears, J.S. Exploration of Alloy 441 Chemistry for Solid Oxide Fuel Cell Interconnect Application. J. Power Sources 2010, 195, 813–820. [Google Scholar] [CrossRef]
- Ebrahimifar, H.; Zandrahimi, M. Mn Coating on AISI 430 Ferritic Stainless Steel by Pack Cementation Method for SOFC Interconnect Applications. Solid State Ion. 2011, 183, 71–79. [Google Scholar] [CrossRef]
- Mah, J.C.W.; Muchtar, A.; Somalu, M.R.; Ghazali, M.J. Metallic Interconnects for Solid Oxide Fuel Cell: A Review on Protective Coating and Deposition Techniques. Int. J. Hydrogen Energy 2017, 42, 9219–9229. [Google Scholar] [CrossRef]
- Spotorno, R.; Paravidino, D.; Delsante, S.; Piccardo, P. Volatilization of Chromium from AISI 441 Stainless Steel: Time and Temperature Dependence. Surf. Coat. Technol. 2022, 433, 128125. [Google Scholar] [CrossRef]
- Singheiser, L.; Huczkowski, P.; Markus, T.; Quadakkers, W.J. 1.19—High Temperature Corrosion Issues for Metallic Materials in Solid Oxide Fuel Cells. In Shreir’s Corrosion; Cottis, B., Graham, M., Lindsay, R., Lyon, S., Richardson, T., Scantlebury, D., Stott, H., Eds.; Elsevier: Oxford, UK, 2010; pp. 482–517. ISBN 978-0-444-52787-5. [Google Scholar]
- Zhu, W.Z.; Deevi, S.C. Development of Interconnect Materials for Solid Oxide Fuel Cells. Mater. Sci. Eng. A 2003, 348, 227–243. [Google Scholar] [CrossRef]
- Zhang, H.H.; Zeng, C.L. Preparation and Performances of Co–Mn Spinel Coating on a Ferritic Stainless Steel Interconnect Material for Solid Oxide Fuel Cell Application. J. Power Sources 2014, 252, 122–129. [Google Scholar] [CrossRef]
- Ananyev, M.V.; Solodyankin, A.A.; Eremin, V.A.; Farlenkov, A.S.; Khodimchuk, A.V.; Fetisov, A.V.; Chernik, A.A.; Yaskelychik, V.V.; Ostanina, T.N.; Zaikov, Y.P. Protective Coatings La–Mn–Cu–O for Stainless-Steel Interconnector 08X17T for SOFC, Obtained by the Electrocrystallization Method from Non-Aqueous Solutions. Russ. J. Non-Ferr. Metals 2018, 59, 102–110. [Google Scholar] [CrossRef]
- Ranjbar-Nouri, Z.; Soltanieh, M.; Rastegari, S. Applying the Protective CuMn2O4 Spinel Coating on AISI-430 Ferritic Stainless Steel Used as Solid Oxide Fuel Cell Interconnects. Surf. Coat. Technol. 2018, 334, 365–372. [Google Scholar] [CrossRef]
- Wei, P.; Bateni, M.R.; Petric, A. Conversion of Copper and Manganese Metallic Films to Spinel Coating. J. Mater. Sci. 2012, 47, 5205–5215. [Google Scholar] [CrossRef]
- Geng, S.; Qi, S.; Zhao, Q.; Zhu, S.; Wang, F. Electroplated Ni–Fe2O3 Composite Coating for Solid Oxide Fuel Cell Interconnect Application. Int. J. Hydrogen Energy 2012, 37, 10850–10856. [Google Scholar] [CrossRef]
- Pan, Y.; Geng, S.; Chen, G.; Wang, F. CuFe2O4/CuO Coating for Solid Oxide Fuel Cell Steel Interconnects. Int. J. Hydrogen Energy 2021, 46, 22942–22955. [Google Scholar] [CrossRef]
- Pinto, R.; Carmezim, M.J.; Montemor, M.F. Electrodeposition and Isothermal Aging of Co and Mn Layers on Stainless Steel for Interconnectors: Initial Stages of Spinel Phase Formation. J. Power Sources 2014, 255, 251–259. [Google Scholar] [CrossRef]
- Geng, S.; Li, Y.; Ma, Z.; Wang, L.; Li, L.; Wang, F. Evaluation of Electrodeposited Fe–Ni Alloy on Ferritic Stainless Steel Solid Oxide Fuel Cell Interconnect. J. Power Sources 2010, 195, 3256–3260. [Google Scholar] [CrossRef]
- Zhu, J.H.; Chesson, D.A.; Yu, Y.T. Review—(Mn,Co)3O4-Based Spinels for SOFC Interconnect Coating Application. J. Electrochem. Soc. 2021, 168, 114519. [Google Scholar] [CrossRef]
- Yang, Z.; Xia, G.; Simner, S.P.; Stevenson, J.W. Thermal Growth and Performance of Manganese Cobaltite Spinel Protection Layers on Ferritic Stainless Steel SOFC Interconnects. J. Electrochem. Soc. 2005, 152, A1896. [Google Scholar] [CrossRef]
- Bianco, M.; Caliandro, P.; Diethelm, S.; Yang, S.; Dellai, A.; Van herle, J.; Steinberger-Wilckens, R. In-Situ Experimental Benchmarking of Solid Oxide Fuel Cell Metal Interconnect Solutions. J. Power Sources 2020, 461, 228163. [Google Scholar] [CrossRef]
- Shen, Z.; Rong, J.; Yu, X. MnxCo3-XO4 Spinel Coatings: Controlled Synthesis and High Temperature Oxidation Resistance Behavior. Ceram. Int. 2020, 46, 5821–5827. [Google Scholar] [CrossRef]
- Si, X.; Wang, D.; Li, C.; Qi, J.; Cao, J. Exploring the Role of Mn–Co Spinel Coating on Crofer 22 APU in Adjusting Reactions with the Ag Based Sealant during Reactive Air Brazing. J. Mater. Res. Technol. 2022, 16, 608–618. [Google Scholar] [CrossRef]
- Sabato, A.G.; Zanchi, E.; Molin, S.; Cempura, G.; Javed, H.; Herbrig, K.; Walter, C.; Boccaccini, A.R.; Smeacetto, F. Mn-Co Spinel Coatings on Crofer 22 APU by Electrophoretic Deposition: Up Scaling, Performance in SOFC Stack at 850 °C and Compositional Modifications. J. Eur. Ceram. Soc. 2021, 41, 4496–4504. [Google Scholar] [CrossRef]
- Gong, J.; Zangari, G. Electrodeposition and Characterization of Manganese Coatings. J. Electrochem. Soc. 2002, 149, C209. [Google Scholar] [CrossRef]
- Cetina-Dorantes, M.; Lizama-Tzec, F.I.; Estrella-Gutiérrez, M.A.; Herrera-Zamora, D.M.; Arés-Muzio, O.; Oskam, G. Electrodeposition of Cobalt-Manganese Oxide Selective Coatings for Solar-Thermal Applications. Electrochim. Acta 2021, 391, 138906. [Google Scholar] [CrossRef]
- Joshi, S.; Petric, A. Nickel Substituted CuMn2O4 Spinel Coatings for Solid Oxide Fuel Cell Interconnects. Int. J. Hydrogen Energy 2017, 42, 5584–5589. [Google Scholar] [CrossRef]
- Eremin, V.A.; Solodyankin, A.A.; Belyakov, S.A.; Khodimchuk, A.V.; Farlenkov, A.S.; Krainova, D.A.; Saetova, N.S.; Kuzmin, A.V.; Artamonov, A.S.; Steinberger-Wilckens, R.; et al. Formation of Conductive Oxide Scale on 33NK and 47ND Interconnector Alloys for Solid Oxide Fuel Cells. Energies 2019, 12, 4795. [Google Scholar] [CrossRef] [Green Version]
- Kale, V.N.; Kumaraguru, S.; Saravanan, G.; Jalaluddeen, A.S.; Rajkumar, P.; Subadevi, R.; Sivakumar, M.; Gnanamuthu, R.M. Influence of Nickel Strike as Adhesive Layer on Electrodeposited Zn-Co-Ni Alloy and Their Performance in Metal-Finishing. Mater. Today Proc. 2021, 40, S248–S253. [Google Scholar] [CrossRef]
- Yavuz, A.; Ozdemir, N.; Yilmaz Erdogan, P.; Zengin, H.; Zengin, G.; Bedir, M. Effect of Electrodeposition Potential and Time for Nickel Film Generation from Ionic Liquid Electrolytes for Asymmetric Supercapacitor Production. Thin Solid Film. 2020, 711, 138309. [Google Scholar] [CrossRef]
- Bateni, M.R.; Wei, P.; Deng, X.; Petric, A. Spinel Coatings for UNS 430 Stainless Steel Interconnects. Surf. Coat. Technol. 2007, 201, 4677–4684. [Google Scholar] [CrossRef]
- Ebrahimifar, H.; Zandrahimi, M. Oxidation and Electrical Behavior of Mn-Co-Coated Crofer 22 APU Steel Produced by a Pack Cementation Method for SOFC Interconnect Applications. Oxid Met 2015, 84, 129–149. [Google Scholar] [CrossRef]
- Shong, W.-J.; Liu, C.-K.; Kao, W.-X.; Cheng, Y.-N.; Lee, R.-Y. High Temperature (800 °C) Oxidation of AISI 441 Stainless Steel with Mn–Co Contact Layers for SOFC Stacks. Int. J. Hydrogen Energy 2022, 47, 6811–6826. [Google Scholar] [CrossRef]
- Zhang, Y.; Javed, A.; Zhou, M.; Liang, S.; Xiao, P. Fabrication of Mn-Co Spinel Coatings on Crofer 22 APU Stainless Steel by Electrophoretic Deposition for Interconnect Applications in Solid Oxide Fuel Cells. Int. J. Appl. Ceram. Technol. 2014, 11, 332–341. [Google Scholar] [CrossRef]
- Chen, X.; Hou, P.; Jacobson, C.; Visco, S.; Dejonghe, L. Protective Coating on Stainless Steel Interconnect for SOFCs: Oxidation Kinetics and Electrical Properties. Solid State Ion. 2005, 176, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Froitzheim, J.; Canovic, S.; Nikumaa, M.; Sachitanand, R.; Johansson, L.G.; Svensson, J.E. Long Term Study of Cr Evaporation and High Temperature Corrosion Behaviour of Co Coated Ferritic Steel for Solid Oxide Fuel Cell Interconnects. J. Power Sources 2012, 220, 217–227. [Google Scholar] [CrossRef]
- Palcut, M.; Mikkelsen, L.; Neufeld, K.; Chen, M.; Knibbe, R.; Hendriksen, P.V. Efficient Dual Layer Interconnect Coating for High Temperature Electrochemical Devices. Int. J. Hydrogen Energy 2012, 37, 14501–14510. [Google Scholar] [CrossRef]
- Lobnig, R.E.; Schmidt, H.P.; Hennesen, K.; Grabke, H.J. Diffusion of Cations in Chromia Layers Grown on Iron-Base Alloys. Oxid. Met. 1992, 37, 81–93. [Google Scholar] [CrossRef]
- Kurokawa, H. Oxidation Behavior of Fe–16Cr Alloy Interconnect for SOFC under Hydrogen Potential Gradient. Solid State Ion. 2004, 168, 13–21. [Google Scholar] [CrossRef]
- Grolig, J.G.; Froitzheim, J.; Svensson, J.-E. Coated Stainless Steel 441 as Interconnect Material for Solid Oxide Fuel Cells: Evolution of Electrical Properties. J. Power Sources 2015, 284, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Xia, G.; Li, X.; Stevenson, J. (Mn,Co)3O4 Spinel Coatings on Ferritic Stainless Steels for SOFC Interconnect Applications. Int. J. Hydrogen Energy 2007, 32, 3648–3654. [Google Scholar] [CrossRef]
- Shao, Y.; Guo, P.Y.; Sun, H.; Zhou, T.C.; Ding, J.T.; Xu, K.X.; Wang, Y.X.; Guo, Y.X.; Wang, D.P.; Hou, X.H. Structure and Properties of Composite Ni–Co–Mn Coatings on Metal Interconnects by Electrodeposition. J. Alloy. Compd. 2019, 811, 152006. [Google Scholar] [CrossRef]
- Ebrahimifar, H.; Zandrahimi, M. Oxidation and Electrical Behavior of a Ferritic Stainless Steel with a Mn–Co-Based Coating for SOFC Interconnect Applications. Oxid. Met. 2015, 84, 329–344. [Google Scholar] [CrossRef]
Element | Cr | Fe | C | Si | Cu | S | P | Ti | Mn | Ni |
---|---|---|---|---|---|---|---|---|---|---|
Content, wt % | 16–18 | bal. | <0.08 | <0.8 | <0.3 | <0.025 | <0.04 | <0.8 | <0.8 | <0.6 |
Component | Adhesive Nickel Layer | Main Nickel Layer | Cobalt Layer | Manganese Layer |
---|---|---|---|---|
NiCl2, g/L | 200 | 50 | – | – |
NiSO4, g/L | – | 250 | – | – |
CoSO4, g/L | – | – | 440 | – |
MnSO4, g/L | – | – | – | 170 |
HCl, g/L | 150 | – | – | – |
H3BO3, g/L | – | 40 | 45 | – |
(NH4)2SO4, g/L | – | – | – | 160 |
pH | <1 | 4–5 | 4–5 | 4–5 |
i, mA/cm2 | 80 | 50 | 40 | 130 |
t, °C | 25 | 55–60 | 55–60 | 25 |
Anode material | nickel | nickel | cobalt | platinum |
1 (Bare Steel) | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
δCo, µm | – | 3.0 | 3.0 | 1.0 | 1.5 |
δMn, µm | – | 1.0 | 1.5 | 0.5 | 0.5 |
1 (Bare Steel) | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
δCo/δMn, µm | - | 3.0/1.0 | 3.0/1.5 | 1.0/0.5 | 1.5/0.5 |
kp, g2·cm−4·s−1 | 9.74·10−13 | 4.37·10−13 | 2.87·10−13 | 1.59·10−13 | 2.76·10−13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bushuev, A.; El’kin, O.; Tolstobrov, I.; Chetvertnykh, Y.; Bobro, M.; Saetova, N.; Kuzmin, A. Development of SOFC Interconnects Based on Industrial Steels with Oxide Coating. Energies 2023, 16, 1237. https://doi.org/10.3390/en16031237
Bushuev A, El’kin O, Tolstobrov I, Chetvertnykh Y, Bobro M, Saetova N, Kuzmin A. Development of SOFC Interconnects Based on Industrial Steels with Oxide Coating. Energies. 2023; 16(3):1237. https://doi.org/10.3390/en16031237
Chicago/Turabian StyleBushuev, Andrey, Oleg El’kin, Ivan Tolstobrov, Yulia Chetvertnykh, Mark Bobro, Nailya Saetova, and Anton Kuzmin. 2023. "Development of SOFC Interconnects Based on Industrial Steels with Oxide Coating" Energies 16, no. 3: 1237. https://doi.org/10.3390/en16031237
APA StyleBushuev, A., El’kin, O., Tolstobrov, I., Chetvertnykh, Y., Bobro, M., Saetova, N., & Kuzmin, A. (2023). Development of SOFC Interconnects Based on Industrial Steels with Oxide Coating. Energies, 16(3), 1237. https://doi.org/10.3390/en16031237