The Nexus between Economic Growth, Energy Consumption, Agricultural Output, and CO2 in Africa: Evidence from Frequency Domain Estimates
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
Methodology
4. Results
5. Discussion
Frequency Domain Results
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wesseh, P.K.; Lin, B.; Owusu, M. Delving into Liberia’ s energy economy: Technical change, inter-factor and inter-fuel substitution. Renew. Sustain. Energy Rev. 2013, 24, 122–130. [Google Scholar] [CrossRef]
- Aydin, C.; Esen, Ö. Does the level of energy intensity matter in the effect of energy consumption on the growth of transition economies? Evidence from dynamic panel threshold analysis. Energy Econ. 2018, 69, 185–195. [Google Scholar] [CrossRef]
- Kumar, A.; Ranjan, B.; Adebola, S. Analysing the spillovers between crude oil prices, stock prices and metal prices: The importance of frequency domain in USA. Energy 2021, 220, 119732. [Google Scholar] [CrossRef]
- Al Khars, M.; Miah, F.; Qudrat-Ullah, H.; Kayal, A. A systematic review of the relationship between energy consumption and economic growth in GCC countries. Sustainability 2020, 12, 3845. [Google Scholar] [CrossRef]
- Nesticò, A.; Maselli, G. Declining discount rate estimate in the long-term economic evaluation of environmental projects. J. Environ. Account. Manag. 2020, 8, 93–110. [Google Scholar] [CrossRef]
- Emir, F.; Bekun, F.V. Energy intensity, carbon emissions, renewable energy, and economic growth nexus: New insights from Romania. Energy Environ. 2019, 30, 427–443. [Google Scholar] [CrossRef]
- Tariq, M.; Khan, I.; Ali, Q.; Ashfaq, M. The nexus between greenhouse gas emission, electricity production, renewable energy and agriculture in Pakistan. Renew. Energy 2018, 118, 437–451. [Google Scholar] [CrossRef]
- Akram, R.; Chen, F.; Khalid, F.; Ye, Z.; Tariq, M. Heterogeneous effects of energy ef fi ciency and renewable energy on carbon emissions: Evidence from developing countries. J. Clean. Prod. 2020, 247, 119122. [Google Scholar] [CrossRef]
- Sarkodie, S.A. Science of the Total Environment Causal effect of environmental factors, economic indicators and domestic material consumption using frequency domain causality test. Sci. Total Environ. 2020, 736, 139602. [Google Scholar] [CrossRef]
- Inegbedion, H.; Sunday, E.; Asaleye, A.; Lawal, A.; Adebanji, A. Managing Diversity for Organizational Efficiency. SAGE Open 2020, 10, 2158244019900173. [Google Scholar] [CrossRef]
- Adedoyin Isola, L.; Frank, A.; Kehinde Leke, B. Can Nigeria Achieve Millennium Development Goals? J. Soc. Sci. Res. 2015, 1, 72–78. [Google Scholar]
- Okere, W.; Eluyela, D.F.; Lawal, A.I.; Oyebisi, I.; Eseyin, O.; Popoola, O.; Awe, T.E. Foreign expatriates on board and financial performance: A study of listed deposit money banks in Nigeria. J. Soc. Sci. Res. 2019, 5, 418–423. [Google Scholar] [CrossRef] [Green Version]
- Lawson, L.A. GHG emissions and fossil energy use as consequences of efforts of improving human well-being in Africa. J. Environ. Manag. 2020, 273, 111136. [Google Scholar] [CrossRef]
- Isola, A.; Ozturk, I.; Olanipekun, I.O.; John, A. Examining the linkages between electricity consumption and economic growth in African economies. Energy 2020, 208, 118363. [Google Scholar] [CrossRef]
- Garba, I.; Bellingham, R. Energy poverty: Estimating the impact of solid cooking fuels on GDP per capita in developing countries—Case of sub-Saharan Africa. Energy 2021, 221, 119770. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Zhang, Q. The relationship of renewable energy consumption to financial development and economic growth in China. Renew. Energy 2021, 170, 897–904. [Google Scholar] [CrossRef]
- Omri, A.; Belaïd, F. Does renewable energy modulate the negative effect of environmental issues on the socio-economic welfare? J. Environ. Manag. 2021, 278, 111483. [Google Scholar]
- Adewuyi, A.O.; Awodumi, O.B. Biomass energy consumption, economic growth and carbon emissions: Fresh evidence from West Africa using a simultaneous equation model United States of America. Energy 2017, 119, 453–471. [Google Scholar] [CrossRef]
- Mensah, I.A.; Sun, M.; Gao, C.; Omari-Sasu, A.Y.; Zhu, D.; Ampimah, B.C.; Quarcoo, A. Analysis on the nexus of economic growth, fossil fuel energy consumption, CO2 emissions and oil price in Africa based on a PMG panel ARDL approach. J. Clean. Prod. 2019, 228, 161–174. [Google Scholar] [CrossRef]
- Udemba, E.N.; Güngör, H.; Bekun, F.V.; Kirikkaleli, D. Economic performance of India amidst high CO2 emissions. Sustain. Prod. Consum. 2020, 27, 52–60. [Google Scholar] [CrossRef]
- Khan, Z.; Malik, M.Y.; Latif, K.; Jiao, Z. Heterogeneous effect of eco-innovation and human capital on renewable & non-renewable energy consumption: Disaggregate analysis for G-7 countries. Energy 2020, 209, 118405. [Google Scholar] [CrossRef]
- Hilfa, N.; Mohamad, A.; Fakhzan, N.; Khalid, N.; Helmi, M. Resources, Conservation & Recycling Effects of agriculture, renewable energy, and economic growth on carbon dioxide emissions: Evidence of the environmental Kuznets curve. Resour. Conserv. Recycl. 2020, 160, 104879. [Google Scholar] [CrossRef]
- Jin, T.; Kim, J. What is better for mitigating carbon emissions—Renewable energy or nuclear energy? A panel data analysis. Renew. Sustain. Energy Rev. 2018, 91, 464–471. [Google Scholar] [CrossRef]
- Vidanagama, J.; Lokupitiya, E. Author’s Accepted Manuscript Emissions Associated with Tea and to Appear in: Environmental Development. Environ. Dev. 2018. [Google Scholar] [CrossRef]
- Muhammad, B. Energy consumption, CO2 emissions and economic growth in developed, emerging and Middle East and North Africa countries. Energy 2019, 179, 232–245. [Google Scholar] [CrossRef]
- Hamit-Haggar, M. Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective. Energy Econ. 2012, 34, 358–364. [Google Scholar] [CrossRef]
- Lawal, A.I.; Nwanji, T.I.; Adama, J.I.; Otekunrin, A.O. Examining the Nigerian stock market efficiency: Empirical evidence from wavelet unit root test approach. J. Appl. Econ. Sci. 2017, in press. [Google Scholar]
- Jacques, L.; Keho, Y. Energy consumption, economic growth and carbon emissions: Cointegration and causality evidence from selected African countries. Energy 2016, 114, 492–497. [Google Scholar] [CrossRef]
- Bamisile, O.; Obiora, S.; Huang, Q.; Yimen, N. ScienceDirect Impact of economic development on CO2 emission in Africa; the role of BEVs and hydrogen production in renewable energy integration. Int. J. Hydrogen Energy 2022, 46, 2755–2773. [Google Scholar] [CrossRef]
- Radmehr, R.; Rastegari, S.; Shayanmehr, S. Renewable Energy Consumption, CO2 Emissions, and Economic Growth Nexus: A Simultaneity Spatial Modeling Analysis of EU Countries. Struct. Chang. Econ. Dyn. 2021, 57, 13–27. [Google Scholar] [CrossRef]
- Usman, M.; Sohail, M.; Makhdum, A.; Kousar, R. Does financial inclusion, renewable and non-renewable energy utilization accelerate ecological footprints and economic growth? Fresh evidence from 15 highest emitting countries. Sustain. Cities Soc. 2021, 65, 102590. [Google Scholar] [CrossRef]
- Shahbaz, M.; Raghutla, C.; Reddy, K.; Jiao, Z.; Vinh, X. The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index. Energy 2020, 207, 118162. [Google Scholar] [CrossRef]
- Saidi, K.; Omri, A. The impact of renewable energy on carbon emissions and economic growth in 15 major renewable energy-consuming countries. Environ. Res. 2020, 186, 109567. [Google Scholar] [CrossRef]
- Vural, G. Analyzing the impacts of economic growth, pollution, technological innovation and trade on renewable energy production in selected Latin American countries. Renew. Energy 2021, 171, 210–216. [Google Scholar] [CrossRef]
- Wesseh, P.K., Jr.; Lin, B. Can African countries efficiently build their economies on renewable energy? Renew. Sustain. Energy Rev. 2016, 54, 161–173. [Google Scholar] [CrossRef]
- Ozcan, B.; Ozturk, I. Renewable energy consumption-economic growth nexus in emerging countries: A bootstrap panel causality test. Renew. Sustain. Energy Rev. 2019, 104, 30–37. [Google Scholar] [CrossRef]
- Balsalobre-lorente, D.; Shahbaz, M.; Roubaud, D.; Farhani, S. How economic growth, renewable electricity and natural resources contribute to CO2 emissions? Energy Policy 2018, 113, 356–367. [Google Scholar] [CrossRef] [Green Version]
- Salahuddin, M.; Alam, K.; Ozturk, I.; Sohag, K. The effects of electricity consumption, economic growth, financial development and foreign direct investment on CO2 emissions in Kuwait. Renew. Sustain. Energy Rev. 2018, 81, 2002–2010. [Google Scholar] [CrossRef] [Green Version]
- Foon, C.; Wah, B.; Ozturk, I. Energy consumption and economic growth in Vietnam. Renew. Sustain. Energy Rev. 2016, 54, 1506–1514. [Google Scholar] [CrossRef]
- Azam, M.; Qayyum, A. Testing the Environmental Kuznets Curve hypothesis: A comparative empirical study for low, lower middle, upper middle and high income countries. Renew. Sustain. Energy Rev. 2016, 63, 556–567. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. Energy consumption and economic growth in Central America: Evidence from a panel cointegration and error correction model. Energy Econ. 2009, 31, 211–216. [Google Scholar] [CrossRef]
- Cowan, W.N.; Chang, T.; Inglesi-Lotz, R.; Gupta, R. The nexus of electricity consumption, economic growth and CO2 emissions in the BRICS countries. Energy Policy 2014, 66, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Sarwar, S.; Chen, W.; Nasir, M. Dynamics of electricity consumption, oil price and economic growth: Global perspective. Energy Policy 2017, 108, 256–270. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Normee, C.; Che, B. The impact of energy consumption and CO2 emission on the economic growth and financial development in the Sub Saharan African countries. Energy 2012, 39, 180–186. [Google Scholar] [CrossRef]
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Ivanovski, K.; Hailemariam, A.; Smyth, R. The effect of renewable and non-renewable energy consumption on economic growth: Non-parametric evidence. J. Clean. Prod. 2021, 286, 124956. [Google Scholar] [CrossRef]
- Waheed, R.; Sarwar, S.; Dignah, A. The role of non-oil exports, tourism and renewable energy to achieve sustainable economic growth: What we learn from the experience of Saudi Arabia. Struct. Chang. Econ. Dyn. 2020, 55, 49–58. [Google Scholar] [CrossRef]
- Ma, M.; Velayutham, E. Renewable and non-renewable energy consumption-economic growth nexus: New evidence from South Asia. Renew. Energy 2022, 147, 399–408. [Google Scholar]
- Baz, K.; Xu, D.; Ali, H.; Ali, I.; Khan, I.; Khan, M.M.; Cheng, J. Science of the Total Environment Asymmetric impact of energy consumption and economic growth on ecological footprint: Using asymmetric and nonlinear approach. Sci. Total Environ. 2020, 718, 137364. [Google Scholar] [CrossRef]
- Sun, Q.; Gao, X.; An, H.; Guo, S.; Liu, X.; Wang, Z. International Review of Financial Analysis Which time-frequency domain dominates spillover in the Chinese energy stock market? Int. Rev. Financ. Anal. 2021, 73, 101641. [Google Scholar] [CrossRef]
- Ahn, S.; Neary, V.S. Wave energy resource characterization employing joint distributions in frequency-direction-time domain. Appl. Energy 2021, 285, 116407. [Google Scholar] [CrossRef]
- Bozoklu, S.; Yilanci, V. Energy consumption and economic growth for selected OECD countries: Further evidence from the Granger causality test in the frequency domain. Energy Policy 2013, 63, 877–881. [Google Scholar] [CrossRef]
- Omoju, O.E.; Li, J.; Zhang, J.; Rauf, A.; Sosoo, V.E. Implications of shocks in energy consumption for energy policy in sub-Saharan Africa. Energy Environ. 2019, 31, 1077–1097. [Google Scholar] [CrossRef]
- Prince, S.; Adeleye, N. Environmental preservation amidst carbon emissions, energy consumption, and urbanization in selected african countries: Implication for sustainability. J. Clean. Prod. 2021, 285, 125409. [Google Scholar] [CrossRef]
- Brini, R. Renewable and non-renewable electricity consumption, economic growth and climate change: Evidence from a panel of selected African countries. Energy 2021, 223, 120064. [Google Scholar] [CrossRef]
- Ndlovu, V.; Inglesi-Lotz, R. The causal relationship between energy and economic growth through research and development (R&D): The case of BRICS and lessons for South Africa. Energy 2020, 199, 117428. [Google Scholar] [CrossRef]
- Akadiri SSaint Bekun, F.V.; Sarkodie, S.A. Contemporaneous interaction between energy consumption, economic growth and environmental sustainability in South Africa: What drives what? Sci. Total Environ. 2019, 686, 468–475. [Google Scholar] [CrossRef]
- Moutinho, V.; Madaleno, M.; Elheddad, M. Determinants of the Environmental Kuznets Curve considering economic activity sector diversification in the OPEC countries. J. Clean. Prod. 2020, 271, 122642. [Google Scholar] [CrossRef]
- Khan, H.; Khan, I.; Tien, T. The heterogeneity of renewable energy consumption, carbon emission and financial development in the globe: A panel quantile regression approach. Energy Rep. 2020, 6, 859–867. [Google Scholar] [CrossRef]
- Stefan, D.; Catalina, C.; Cristian, S.; Vasile, J. Understanding the multidimensional linkages among renewable energy, pollution, economic growth and urbanization in contemporary economies: Quantitative assessments across different income countries’ groups. Renew. Sustain. Energy Rev. 2021, 142, 110818. [Google Scholar] [CrossRef]
- Ma, M.; Benjamin, X.V. The nexus between renewable energy, economic growth, trade, urbanisation and environmental quality: A comparative study for Australia and Canada. Renew. Energy 2020, 155, 617–627. [Google Scholar]
- Sharma, R.; Sinha, A.; Kautish, P. Does renewable energy consumption reduce ecological footprint? Evidence from eight developing countries of Asia. J. Clean. Prod. 2021, 285, 124867. [Google Scholar] [CrossRef]
- Shahzad, U.; Fareed, Z.; Shahzad, F.; Shahzad, K. Investigating the nexus between economic complexity, energy consumption and ecological footprint for the United States: New insights from quantile methods. J. Clean. Prod. 2021, 279, 123806. [Google Scholar] [CrossRef]
- Osadume, R.; University, E.O. Impact of economic growth on carbon emissions in selected West African countries, 1980–2019. J. Money Bus. 2021, 1, 8–23. [Google Scholar] [CrossRef]
- Fatai, F.; Ozturk, I.; Oluwatoyin, M.; Agboola, P.O.; Victor, F. The implications of renewable and non-renewable energy generating in Sub-Saharan Africa: The role of economic policy uncertainties. Energy Policy 2021, 150, 112115. [Google Scholar] [CrossRef]
- Yasmeen, H.; Tan, Q.; Zameer, H.; Vinh, X.; Shahbaz, M. Discovering the relationship between natural resources, energy consumption, gross capital formation with economic growth: Can lower financial openness change the curse into blessing. Resour. Policy 2021, 71, 102013. [Google Scholar] [CrossRef]
- Kouton, J. The asymmetric linkage between energy use and economic growth in selected African countries: Evidence from a nonlinear panel autoregressive distributed lag model. Energy Econ. 2019, 83, 475–490. [Google Scholar] [CrossRef]
- Maji, I.K.; Adamu, S. The impact of renewable energy consumption on sectoral environmental quality in Nigeria. Clean. Environ. Syst. 2021, 2, 100009. [Google Scholar] [CrossRef]
- Gerard, T.; Hamilton, A.; Kelly, S. Low carbon energy scenarios for sub-Saharan Africa: An input-output analysis on the e ff ects of universal energy access and economic growth. Energy Policy 2017, 105, 303–319. [Google Scholar] [CrossRef]
- Adams, S.; Nsiah, C. Science of the Total Environment Reducing carbon dioxide emissions; Does renewable energy matter? Sci. Total Environ. 2019, 693, 133288. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L. Renewable energy consumption and economic growth in OECD countries: A nonlinear panel data analysis. Energy 2020, 207, 118200. [Google Scholar] [CrossRef]
- Dogan, E.; Altinoz, B.; Madaleno, M.; Taskin, D. The impact of renewable energy consumption to economic growth: A replication and extension of Inglesi-Lotz (2016). Energy Econ. 2020, 90, 104866. [Google Scholar] [CrossRef]
- Chica-Olmo, J.; Sari-Hassoun, S.; Moya-Fernández, P. Spatial relationship between economic growth and renewable energy consumption in 26 European countries. Energy Econ. 2020, 92, 104962. [Google Scholar] [CrossRef]
- Akram, R.; Chen, F.; Khalid, F.; Huang, G.; Irfan, M. Heterogeneous effects of energy efficiency and renewable energy on economic growth of BRICS countries: A fixed effect panel quantile regression analysis. Energy 2021, 215, 119019. [Google Scholar] [CrossRef]
- Vellingiri, B.; Jayaramayya, K.; Iyer, M.; Narayanasamy, A.; Govindasamy, V.; Giridharan, B.; Ganesan, S.; Venugopal, A.; Venkatesan, D.; Ganesan, H.; et al. Science of the Total Environment COVID-19: A promising cure for the global panic. Sci. Total Environ. 2020, 725, 138277. [Google Scholar] [CrossRef] [PubMed]
- Ito, K. CO2 emissions, renewable and non-renewable energy consumption, and economic growth: Evidence from panel data for developing countries. Int. Econ. 2017, 151, 1–6. [Google Scholar] [CrossRef]
- Alvarado, R.; Deng, Q.; Tillaguango, B.; Ahmad, M.; Bravo, D. Do economic development and human capital decrease non-renewable energy consumption? Evidence for OECD countries. Energy 2021, 215, 119147. [Google Scholar] [CrossRef]
- Korkut, U.; Emre, A. Investigating the EKC hypothesis with renewable energy consumption, human capital, globalization and trade openness for China: Evidence from augmented ARDL approach with a structural break. Energy 2021, 216, 119220. [Google Scholar] [CrossRef]
- Assi, A.F.; Isiksal, A.Z.; Tursoy, T. Renewable energy consumption, financial development, environmental pollution, and innovations in the ASEAN þ 3 group: Evidence from (P-ARDL) model. Renew. Energy 2021, 165, 689–700. [Google Scholar] [CrossRef]
- Sharif, A.; Baris-Tuzemen, O.; Uzuner, G.; Ozturk, I.; Sinha, A. Revisiting the role of renewable and non-renewable energy consumption on Turkey’ s ecological footprint: Evidence from Quantile ARDL approach. Sustain. Cities Soc. 2020, 57, 102138. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Awaworyi, S.; Reddy, S. The dynamic impact of renewable energy and institutions on economic output and CO2 emissions across regions. Renew. Energy 2017, 111, 157–167. [Google Scholar] [CrossRef]
- Sharif, A.; Ali, S.; Ozturk, I.; Afshan, S. The dynamic relationship of renewable and nonrenewable energy consumption with carbon emission: A global study with the application of heterogeneous panel estimations. Renew. Energy 2019, 133, 685–691. [Google Scholar] [CrossRef]
- Tansel, C.; Topcu, M. Total, renewable and non-renewable energy consumption and economic growth: Revisiting the issue with an asymmetric point of view. Energy 2018, 152, 64–74. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.; Jia, X.; Tan, R.R.; Wang, F. Targeting carbon emissions mitigation in the transport sector—A case study in Urumqi, China. J. Clean. Prod. 2020, 259, 120811. [Google Scholar] [CrossRef]
- Aydin, M.; Korkut, U. Are shocks to disaggregated renewable energy consumption permanent or temporary for the USA? Wavelet based unit root test with smooth structural shifts. Energy 2020, 207, 118245. [Google Scholar] [CrossRef]
- Lawal, A.I.; Oseni, E.; Lawal-adedoyin, B.B.; Dicktonye, A.O.; Ogunwole, E.B. Examining rational bubbles in global natural gas prices: Evidence from frequency domain estimates. Energy Strategy Rev. 2022, 44, 100979. [Google Scholar] [CrossRef]
- Lawal, A.I.; Salisu, A.A.; Asaleye, A.J.; Oseni, E.; Lawal-Adedoyin, B.B.; Dahunsi, S.O.; Omoju, E.O.; DickTonye, A.O.; Ogunwole, E.B.; Babajide, A.A. Economic Growth, Exchange Rate and Remittance Nexus: Evidence from Africa. J. Risk Financ. Manag. 2022, 15, 235. [Google Scholar] [CrossRef]
- Mensi, W.; Tiwari, A.K.; Al-Yahyaee, K.H. An analysis of the weak form efficiency, multifractality and long memory of global, regional and European stock markets. Q. Rev. Econ. Financ. 2018, 72, 168–177. [Google Scholar] [CrossRef]
- Saberi, A.; Athienitis, A.K. A frequency domain transfer function methodology for thermal characterization and design for energy flexibility of zones with radiant systems. Renew. Energy 2021, 163, 1033–1045. [Google Scholar] [CrossRef]
- Breitung, J. Rank Tests for Nonlinear Cointegration. J. Bus. Econ. Stat. 2001, 19, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Bodart, V.; Candelon, B.; Carpantier, J. Real exchanges rates, commodity prices and structural factors in developing countries. J. Int. Money 2015, 51, 264–284. [Google Scholar] [CrossRef]
- Croux, C.; Reusens, P. Do stock prices contain predictive power for the future economic activity? A Granger causality analysis in the frequency domain. J. Macroecon. 2013, 35, 93–103. [Google Scholar] [CrossRef]
- Gorus, M.S.; Aydin, M. The relationship between energy consumption, economic growth, and CO2 emission in MENA countries: Causality analysis in the frequency domain. Energy 2019, 168, 815–822. [Google Scholar] [CrossRef]
- Aydin, M. Natural gas consumption and economic growth nexus for top 10 natural Gas–Consuming countries: A granger causality analysis in the frequency domain. Energy 2018, 165, 179–186. [Google Scholar] [CrossRef]
- Aydin, M. Renewable and non-renewable electricity consumption e economic growth nexus: Evidence from OECD countries. Renew. Energy 2019, 136, 599–606. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Yamagata, T. Testing slope homogeneity in large panels. J. Econ. 2008, 142, 50–93. [Google Scholar] [CrossRef] [Green Version]
- Adewuyi, A.O.; Awodumi, O.B.; Abodunde, T.T. Analysing the gold-stock nexus using VARMA-BEKK-AGARCH and Quantile regression models: New evidence from South Africa and Nigeria. Resour. Policy 2019, 61, 348–362. [Google Scholar] [CrossRef]
S/n | Authors | Period of Study | Variable | Methods | Countries | |
---|---|---|---|---|---|---|
1 | [55] | 1980–2014 | Renewable energy, non-renewable, economic growth, climate change | Group-ARDL-PMG, ARDL-MG, Granger causality | 16 African countries | Non-Renewable ↔ Climate change Climate change → Renewable energy Feedback hypothesis holds. |
2 | [64] | 1980–2019 | Economic growth; CO2 emission, inflation, population | Panel econometric methods of statistical analysis, Granger causality | 6 west African countries | Positive relationship exists between the variables |
3 | [13] | 1990–2013 | GHG, fossil energy and economic growth | A recursive system of three equations | 41 sub-Saharan African economies | GHG, Economic growth does not Granger cause CO2 emissions |
4. | [65] | 1996–2014 | RGDP, non-renewable energy, CO2, policy uncertainly | One-step-system GMM | 32 sub-Sahara African countries | CO2 |
5 | [15] | 2000–2015 | RGDP, solid cooking fuels | Panel unit root, panel cointegration panel Granger causality | 46 sub-Sahara African countries | A negative causal relationship exists from solid cooking fuel to RGDP |
6. | [16] | 1997–2017 | Renewable energy, economic growth and financial development | Granger causality ARDL-PMG | China, Western China Eastern China | RE (long run), financial development negatively impacts RE in the long run. RGDP negatively impacts RE in the short run; financial development positively impacts RE in of S/R |
7 | [17] | 1990–2015 | RGDP, NRE, RE, CO2 | System GMM | 31 transitional economies | |
8 | [66] | 1990–2018 | Natural resources, energy consumption, gross capital formation, financial openness, RGDP | Structural equation modeling techniques | Pakistan | RGDP RGDP. RGDP |
9 | [67] | 1971–2014 | Fossil oil RGDP | N-ARDL, asymmetric panel causality test | 19 African countries | Mixed results |
10 | [14] | 1971–2017 | Electricity consumption, RGDP, agricultural output, govt. effectiveness trade | System GMM, advanced dynamic panel threshold regression model | 17 African economies | RGDP Growth hypothesis |
11 | [18] | 1980–2015 | Petroleum, natural gas, CO2, RGDP | N-ARDL | Oil producing Africa economies | RE reduces CO2 (Nigeria) RGDP (Gabon) RE does not Granger cause CO2 (Angola and Egypt). Growth and Neutrality hypotheses hold |
12 | [68] | 1995–2014 | Renewable energy labor, capital, RGDP | P-DOLS, F MOLS | 15–Western Africa countries | RE slows down growth |
13 | [56] | 1996–2015 | RE, NRE, R&D, RGDP | Unit root tests, panel Granger causality | BRICS | NRE (India and SA) Feedback hypothesis hold RE does not granger cause NRE (Brazil) GDP (Brazil and SA) Growth hypothesis NRE–R&D (Russia, India, SA) Neutrality hypothesis hold |
14 | [6] | 1960–2016 | Capital, labor, CO2, RGDP, energy consumption | ARDL, Granger causality test | South Africa | RGDP growth hypothesis holds |
15 | [19] | 1990–2015 | Oil price, CO2, RGDP, fossil energy consumption | PMG panel ARDL, bootstrap panel cointegration | 22 African countries | RGDP CO2 RGDP for non-oil exporter oil exporter RGDP, CO2 and oil consumption for all |
16 | [25] | 2001–2017 | Energy consumption CO2, RGDP | System GMM | 68 developed, emerging and MENA countries | RGDP CO2 RGDP in all countries except in MENA |
17 | [57] | 1973–2014 | Growth role of kg oil equivalent per capital energy usage, RGDP ecological foot print | ARDL Toda–Yamamoto | South Africa | RGDP eco. footprint RGDP |
18 | [69] | 1990–2012 | CO2-equivalent, RGDP, energy usage, international trade | Environmental input-output model | Angola, Ethiopia, Kenya, Nigeria, south Africa | RE reduces CO2-equivalent |
19 | [28] | 1971–2010 | Energy consumption CO2, economic growth | ARDL, Granger causality | 12 sub-Sahara Africa | Mixed results CO2 short run for Benin, DRC, Ghana, Nigeria, and Senegal CO2, Long run for Congo, Gabon CO2 in of long run for Benin, DRC, Nigeria, Senegal, South Africa, and Togo |
20 | [58] | 1973–2017 | Energy consumption, oil prices, trade openness, urbanization and RGDP | ARDL, ECM | African OPEC Countries | No causality between energy consumption and RGDP. Energy consumption does not Granger cause RGDP |
21 | [29] | 1990–2017 | RDGP, energy consumption, renewable energy | Neural network analysis | 25 African economies | |
22 | [6] | 1990–2014 | , RGDP | ARDL, Toda Yamamoto | Romania | RGDP |
23 | [20] | 1975–2017 | , RGDP, carbon income, trade openness, energy use | ARDL, Toda-Yamamoto | India | GDP |
24 | [59] | 1980–2018 | , financial devt., trade openness, FDI, urbanization | A panel quantile regression | Global panel of 192 countries | |
25 | [21] | 1990–2017 | , trade, RGDP, RE, environmental innovation | A battery of panel co-integration methodologies | G7 countries | |
26 | [70] | 1980–2014 | , RGDP, RE, urbanization, NRE | FMOLS and GMM | 28 sub-Sahara African Countries | (S/R) (L/R) |
27 | [22] | 1978–2016 | , RGDP, RE, urbanization and Agriculture | ARDL | Malaysia | |
28 | [23] | 1990–2014 | , RGDP, RE, nuclear energy real coal prices | Panel cointegration and Granger causality test | 30 developed and emerging economies | reduction reduction RGDP |
29 | [24] | 2012–2014 | , electricity consumption, fossil fuel, biomass | ANOVA and Tukey multiple comparison test | Sri Lanka | , RGDP does not |
30 | [16] | 1997–2017 | RE, fin. devt and economic growth | ARDL-PMG Granger causality test | China | RE Negative relationship exists between fin. devt and RE |
31 | [30] | 1995–2014 | , RGDP | GS2SLS | EU | RE feedback |
32 | [46] | 1990–2015 | RE, NRE, RGDP | Local liner dummy variable estimation (LLDVE) | 40 OECD and non-OECD countries | Both NRE and RE impact economic growth positively |
33 | [31] | 1990–2017 | , trade openness | Augmented mean group, Dumitrescu –Hurlin non-causality test | 15 highest emitting countries | Bidirectional causality exists between fin. devt, economic growth, renewable energy utilization and ecological footprint; unidirectional causality runs from non-renewable energy and trade openness to ecological footprint, unidirectional relationship runs from economic growth to RE and trade openness. Feedback hypothesis holds |
34 | [32] | 1990–2018 | , NRE, Capital and labor | DOLS, FMOLS and Heterogeneous non-causality model | 38 renewable energy consuming countries | LR relationship exist between RE and RGDP; RE, NRE, capital and labor impacts on RGDP |
35 | [71] | 2005–2016 | NRE intensity, urbanization, per capital income | Panel threshold regression | OECD countries | Positive and non-linear relationships exist between renewable energy and economic growth |
36 | [72] | 1990–2010 | GDP, GDPPC, Total renewable energy, share of renewable energy to total energy consumption, gross fixed capital formation, number of employed people in of economy; R&D | Panel quantile regression | OECD economies | The impact of RE on economic growth is at best unused, i.e., positive for lower, and low-middle–quantities, and negative for middle, high middle and higher quantities |
37 | [73] | 1991–2015 | GDP and RE | Spatial Dublin model | 26 European economies | Spatial dependences impact on the nexus between RE and GDP |
38 | [33] | 1990–2014 | , RE, EC | FMOLS and VECM | 15 major RE consuming nations | both in the LR and SR |
39 | [60] | 1990–2014 | RE, pollution, EC, urbanization | Cointegration, Granger causality, impulse response function | Selected 106 countries | Both bidirectional and unidirectional relationship exists among the variables |
40 | [34] | 1991–2014 | , technological innovation, trade and RE | Pedroni and Westerlund panel cointegration tests | Argentina, Brazil, Mexico, Colombia, Chile and Guatemala | RGDP, technological innovation, and trade positively and significantly impact on RE production |
41 | [47] | 1980–2017 | Non-oil exports, tourism, RE and RGDP | ARDL, Johansen cointegration and Gregory –Hensen cointegration | Saudi Arabia | Non-oil export and tourism impact growth positively, long run cointegration exist between RE tourism, capital and RGDP |
42 | [61] | 1960–2015 | ARDL, VECM Granger Causality tests | Australia and Canada | in of LR | |
43 | [48] | 1990–2014 | RE, NRE, RGDP | Pedroni unit root tests, FMOLS, P-DOLS, Dumitrescue–Hurlin (2012) | 5 South Asia countries | Positive impact of RE, NRE and fixed capital formation on growth RE |
44 | [74] | 1990–2014 | Energy, efficiency, RE, RGDP | Fixed-effect panel quantity regression analysis | BRICS | Feedback hypothesis is valid EE RE RE |
45 | [75] | 1981–2016 | Energy production, energy consumption, GDP | Hatemi –J cointegration, structural breaks, FMOLS, CCR VECM, Granger causality test | China | Gas consumption (supporting conservation hypothesis) |
46 | [49] | 1971–2014 | Ecological footprint, GDP, EC, GFCF | N-ARDL; asymmetric causality techniques | Pakistan | EC neutrality hypothesis is valid among environmental quality, economic growth and capital |
47 | [76] | 2002–2011 | , RE, NRE, RGDP | GMM and PMG | 42 | ; RE has positive impact on RGDP; NRE has negative effect on RGDP in LR, substitute relationship exists between NRE and RE |
48 | [77] | 1980–2015 | NRE, GDP, human capital index, globalization, urbanization, added value of services | Threshold regression FEMOLS | 27 developed OECD countries | Economic development does not reduce non-renewable energy consumption; Human capital development reduces NRE. LR relationship exist among globalization, urbanization, services and RE |
49 | [62] | 1990–2015 | Ecological footprint, per capital income, RE, life expectancy, population density | Cointegration tests, cross-sectional augmented autoregressive distributed lag | 8 developing South and South-East Asian economies | The association between per capital income and ecological footprint is N-shaped, RE reduces ecological footprint, increase in population leads to increase in pollution emissions. |
50 | [54] | 1992–2016 | EC, financial development, urbanization, per capital GDP, gross domestic capital formation | A battery of static and dynamic econometric models | 44 African economies | EC and fin devt, deteriorates the environment; urbanization impacts on the environment asymmetrically; per capital GDP has an asymmetric effect on the environment. |
51 | [63] | 1995–2017 | Total energy consumption RE, NRE, HCI, FD; eco-innovation, energy intensity, GDP, gross fixed capital formation R&D | Westerlund and Edgerton panel cointegration and augmented mean group | G7 countries | Negative relationship exists among HCI, eco-innovation, energy price, R&D and TEC, NREC. Positive relationship exists between financial development, and each of TEC and NREC. HCI, eco-innovation, energy price, R&D enhances REC. Financial development reduces REC |
52 | [8] | 1990–2014 | , NE | Panel quantity regression (PQR) | 66 developing economies | with substantial effect at 10th quartile. |
53 | [78] | 1980–2016 | , RE, HCI, globalization, trade openness | ARDL | China | , HCI reduces environmental degradation; globalization, trade openness, and income impact on pollution |
54 | [63] | 1965Q1–2017Q4 | EC, ecological footprint, NRE economic complexity | QARDL quantile Granger causality test | USA | Economic complexity and fossil fuel energy consumption significantly enhance ecological footprint; causality exist among economic complexity, energy consumption and ecological footprint |
55 | [36] | 1990–2016 | RE, RGDP | Bootstrap panel causality test | 17 Emerging economies | RGDP for Poland |
56 | [79] | 1998–2018 | , Innovation RGDP | P-ARDL Dumitrescu–Hurlin Panel causality test | ASEAN + 3 group | RE and economic freedom has negative impact on RE positive relationship exist between innovation, RGDP and RE |
57 | [80] | 1965Q1–2017Q4 | RE, NRE, RGDP ecological footprint | QARDL Granger causality | Turkey | RE decreases ecological footprint in of LR; NRE and RGDP positively impact ecological footprint |
58 | [81] | 1991–2012 | System-GMM FMOLS | 85 developed and developing countries | ||
59 | [82] | 1990–2015 | , RGDP, financial development | CIPS, FMOLS, bootstrap cointegration | 74 countries | . . |
60 | [83] | 1980–2014 | TE, RE, NRE, RGDP | NARDL | G7 countries | Asymmetric relationship exists between TE and RGDP |
61 | [22] | 1978–2016 | , RGDP, RE, urbanization, agriculture | ARDL | Malaysia | significantly decrease due to RGDP and urbanization |
Variables | Descriptive Analysis | Normality Analysis (Natural Log-Form) | ||||||
---|---|---|---|---|---|---|---|---|
Mean | Max. | Min. | SD | Skewness | Kurtosis | Jarque-Bera | Probability | |
175.98 | 298.77 | 142.67 | 39.09 | −0.78 | 2.44 | 4.97 | 0.07 | |
63.18 | 28.07 | 32.62 | 32.12 | −0.48 | 2.14 | 4.22 | 0.06 | |
158.78 | 197.09 | 102.11 | 28.09 | −0.55 | 3.09 | 498 | 0.08 | |
1.97 | 2.41 | 1.66 | 0.31 | 0.17 | 1.55 | 3.21 | 0.22 | |
2.99 | 4.01 | 1.98 | 0.55 | 0.05 | 1.61 | 2.76 | 0.22 |
Variables | CDBP | CDLM | CD | CIPS Statistics |
---|---|---|---|---|
457.899 *** | 76.558 *** | 3.234 *** | −0.988 | |
417.219 *** | 51.521 *** | 3.004 *** | −0.918 | |
398.881 *** | 47.908 *** | 9.176 *** | −2.955 ** | |
366.098 *** | 56.897 *** | 8.077 *** | −2.344 ** | |
564.092 *** | 41.179 *** | 12.098 *** | −3.756 ** | |
- | - | - | −3.665 *** |
Panel A | ||||||||
---|---|---|---|---|---|---|---|---|
Countries | ||||||||
w = 0.5 | w = 1.5 | w = 2.5 | c.v. = 10% | w = 0.5 | w = 1.5 | w = 2.5 | c.v. = 10% | |
Algeria | 0.013 *** | 0.055 *** | 0.128 *** | 0.111 | 0.023 | 0.027 | 0.034 | 0.111 |
Angola | 0.017 *** | 0.005 *** | 0.005 *** | 0.009 | 0.034 | 0.036 | 0.044 | 0.113 |
Burkina Faso | 0.096 *** | 0006 *** | 0.001 *** | 0.009 | 0.023 | 0.027 | 0.054 | 0.112 |
Benin | 0.073 *** | 0.054 *** | 0.022 *** | 0.072 | 0.026 | 0.028 | 0.034 | 0.114 |
Cameron | 0.091 | 0.071 | 0.004 | 0.014 | 0.019 | 0.016 | 0.045 | 0.116 |
Congo (Brazzaville) | 0.009 | 0.002 | 0.005 | 0.012 | 0.029 | 0.019 | 0.034 | 0.112 |
Congo (DRC) | 0.047 *** | 0.008 *** | 0.006 | 0.009 | 0.03 * | 0.021 ** | 0.045 | 0.111 |
Egypt | 0.004 *** | 0.044 *** | 0.007 *** | 0.008 | 0.023 | 0.028 | 0.054 | 0.112 |
Ethiopia | 0.021 | 0.046 | 0.017 | 0.065 | 0.033 | 0.038 | 0.048 | 0.118 |
Gabon | 0.009 | 0.032 | 0.014 | 0.008 | 0.035 | 0.037 | 0.039 | 0.112 |
Ghana | 0.019 *** | 0.044 *** | 0.011 *** | 0.011 | 0.045 | 0.054 | 0.037 | 0.114 |
Guinea | 0.009 | 0.008 | 0.012 | 0.116 | 0.037 | 0.031 | 0.038 | 0.132 |
Kenya | 0.022 *** | 0.045 *** | 0.011 *** | 0.113 | 0.039 | 0.032 | 0.045 | 0.161 |
Lesotho | 0.031 | 0.032 | 0.012 | 0.114 | 0.029 | 0.024 | 0.055 | 0.115 |
Madagascar | 0.011 *** | 0.017 *** | 0.014 | 0.111 | 0.018 ** | 0.021 ** | 0.034 | 0.113 |
Malawi | 0.032 | 0.019 | 0.001 | 0.102 | 0.024 | 0.027 | 0.049 | 0.112 |
Mali | 0.022 *** | 0.039 *** | 0.009 | 0.019 | 0.032 | 0.036 | 0.054 | 0.122 |
Mauritius | 0.005 | 0.033 | 0.004 | 0.112 | 0.036 | 0.037 | 0.032 | 0.141 |
Morocco | 0.007 *** | 0.032 *** | 0.007 *** | 0.133 | 0.029 | 0.031 | 0.035 | 0.112 |
Mozambique | 0.046 | 0.037 | 0.006 | 0.121 | 0.017 | 0.021 | 0.041 | 0.116 |
Namibia | 0.033 | 0.081 | 0.009 | 0.114 | 0.029 | 0.037 | 0.039 | 0.114 |
Nigeria | 0.044 *** | 0.033 *** | 0.014 *** | 0.111 | 0.025 | 0.028 | 0.057 | 0.123 |
Rwanda | 0.006 *** | 0.023 *** | 0.012 | 0.112 | 0.044 ** | 0.034 ** | 0.045 | 0.114 |
Sao Tome and Principe | 0.045 | 0.012 | 0.009 | 0.115 | 0.031 | 0.028 | 0.055 | 0.152 |
Senegal | 0.044 *** | 0.008 *** | 0.006 *** | 0.117 | 0.022 | 0.026 | 0.055 | 0.143 |
Sierra Leone | 0.032 | 0.091 | 0.008 | 0.111 | 0.019 | 0.021 | 0.053 | 0.122 |
South Africa | 0.031 | 0.023 | 0.005 | 0.112 | 0.022 * | 0.026 * | 0.058 * | 0.144 |
Tanzania | 0.029 | 0.033 | 0.006 | 0.111 | 0.027 | 0.029 | 0.059 | 0.115 |
Togo | 0.031 | 0.034 | 0.009 | 0.122 | 0.032 | 0.035 | 0.077 | 0.122 |
Tunisia | 0.033 | 0.023 | 0.008 | 0.111 | 0.028 | 0.031 | 0.056 | 0.127 |
Uganda | 0.045 | 0.031 | 0.006 | 0.121 | 0.029 | 0.031 | 0.055 | 0.157 |
Zambia | 0.033 | 0.022 | 0.009 | 0.111 | 0.019 | 0.022 | 0.054 | 0.138 |
Zimbabwe | 0.046 | 0.036 | 0.045 | 0.123 | 0.021 | 0.023* | 0.067* | 0.136 |
Countries | ||||||||
---|---|---|---|---|---|---|---|---|
w = 0.5 | w = 1.5 | w = 2.5 | c.v. = 10% | w = 0.5 | w = 1.5 | w = 2.5 | c.v. = 10% | |
Algeria | 0.023 *** | 0.031 *** | 0.022 *** | 0.012 | 0.031 *** | 0.029 *** | 0.027 *** | 0.111 |
Angola | 0.001 | 0.004 | 0.003 | 0.002 | 0.041 *** | 0.037 *** | 0.034 *** | 0.112 |
Burkina Faso | 0.007 | 0.012 | 0.011 | 0.005 | 0.029 | 0.044 | 0.027 | 0.099 |
Benin | 0.012 | 0.014 | 0.019 | 0.006 | 0.031 | 0.039 | 0.027 | 0.122 |
Cameron | 0.018 | 0.019 * | 0.012 | 0.009 | 0.014 | 0.037 * | 0.034 | 0.117 |
Congo (Brazzaville) | 0.021 | 0.016 | 0.014 | 0.021 | 0.016 | 0.039 | 0.029 | 0.112 |
Congo (DRC) | 0.064 | 0.044 | 0.032 | 0.017 | 0.018 | 0.068 | 0.029 | 0.110 |
Egypt | 0.017 | 0.022 *** | 0.026 *** | 0.005 | 0.031 | 0.039 *** | 0.033 *** | 0.117 |
Ethiopia | 0.024 | 0.022 | 0.033 | 0.006 | 0.042 | 0.054 | 0.039 *** | 0.102 |
Gabon | 0.021 *** | 0.019 *** | 0.017 *** | 0.011 | 0.033 | 0.056 | 0.027 | 0.115 |
Ghana | 0.031 *** | 0.021 *** | 0.019 *** | 0.013 | 0.067 *** | 0.011 *** | 0.034 *** | 0.111 |
Guinea | 0.026 | 0.024 * | 0.021 | 0.004 | 0.028 | 0.032 * | 0.045 | 0.115 |
Kenya | 0.021 *** | 0.019 *** | 0.017 *** | 0.021 | 0.028 *** | 0.034 *** | 0.054 *** | 0.119 |
Lesotho | 0.016 | 0.019 | 0.022 | 0.024 | 0.021 | 0.044 | 0.048 | 0.167 |
Madagascar | 0.017 | 0.021 * | 0.025 | 0.031 | 0.027 | 0.045 * | 0.039 *** | 0.109 |
Malawi | 0.014 | 0.017 | 0.022 | 0.024 | 0.029 | 0.056 | 0.037 | 0.114 |
Mali | 0.022 | 0.025 | 0.029 | 0.001 | 0.41 | 0.059 | 0.038 | 0.112 |
Mauritius | 0.019 | 0.015 | 0.011 | 0.005 | 0.039 | 0.041 | 0.045 | 0.109 |
Morocco | 0.021 *** | 0.022 *** | 0.023 *** | 0.017 | 0.033 *** | 0.039 *** | 0.055 *** | 0.112 |
Mozambique | 0.022 | 0.021 | 0.029 | 0.013 | 0.028 | 0.034 ** | 0.034 | 0.119 |
Namibia | 0.031 | 0.023 | 0.034 | 0.014 | 0.032 | 0.041 ** | 0.049 | 0.166 |
Nigeria | 0.027 *** | 0.028 *** | 0.029 *** | 0.011 | 0.031 *** | 0.044 *** | 0.054 *** | 0.112 |
Rwanda | 0.003 | 0.031 | 0.022 | 0.009 | 0.027 | 0.033 | 0.032 | 0.114 |
Sao Tome and Principe | 0.009 | 0.010 | 0.013 | 0.002 | 0.025 | 0.029 | 0.035 | 0.141 |
Senegal | 0.023 *** | 0.025 *** | 0.027 *** | 0.003 | 0.029 | 0.049 | 0.041 | 0.117 |
Sierra Leone | 0.031 | 0.041 | 0.034 | 0.008 | 0.023 | 0.044 | 0.039 | 0.118 |
South Africa | 0.052 *** | 0.024 *** | 0.027 | 0.003 | 0.028 | 0.046 *** | 0.057 *** | 0.114 |
Tanzania | 0.023 | 0.022 | 0.027 | 0.011 | 0.031 | 0.041 ** | 0.045 | 0.119 |
Togo | 0.054 | 0.042 | 0.034 | 0.014 | 0.038 | 0.038 | 0.055 | 0.109 |
Tunisia | 0.037 *** | 0.031 *** | 0.029 *** | 0.011 | 0.037 | 0.039 | 0.045 | 0.115 |
Uganda | 0.044 | 0.032 | 0.029 | 0.023 | 0.033 *** | 0.031 *** | 0.054 *** | 0.167 |
Zambia | 0.022 | 0.031 | 0.033 | 0.015 | 0.028 | 0.033 | 0.048 | 0.117 |
Zimbabwe | 0.023 | 0.034 | 0.039 | 0.014 | 0.024 | 0.032 | 0.039 | 0.115 |
Countries | ||||||||
---|---|---|---|---|---|---|---|---|
w = 0.5 | w = 1.5 | w = 2.5 | c.v. = 10% | w = 0.5 | w = 1.5 | w = 2.5 | c.v. = 10% | |
Algeria | 0.023 *** | 0.027 *** | 0.031 *** | 0.091 | 0.029 *** | 0.028 *** | 0.034 *** | 0.032 |
Angola | 0.034 | 0.036 | 0.041 | 0.007 | 0.023 *** | 0.031 *** | 0.044 *** | 0.014 |
Burkina Faso | 0.023 | 0.027 | 0.029 | 0.012 | 0.028 | 0.010 | 0.054 | 0.006 |
Benin | 0.026 | 0.028 | 0.031 | 0.014 | 0.031 | 0.025 | 0.034 | 0.044 |
Cameron | 0.019 ** | 0.016 ** | 0.014 ** | 0.017 | 0.038 *** | 0.041 *** | 0.045 *** | 0.009 |
Congo (Brazzaville) | 0.029 | 0.019 | 0.016 | 0.019 | 0.037 | 0.024 | 0.034 | 0.018 |
Congo (DRC) | 0.037 | 0.021 | 0.018 | 0.081 | 0.033 | 0.022 | 0.045 | 0.092 |
Egypt | 0.023 *** | 0.028 *** | 0.031 *** | 0.089 | 0.028 | 0.042 | 0.054 | 0.078 |
Ethiopia | 0.033 | 0.038 | 0.042 | 0.091 | 0.024 | 0.031 | 0.048 | 0.099 |
Gabon | 0.035 | 0.037 | 0.033 | 0.071 | 0.029 | 0.032 | 0.039 | 0.077 |
Ghana | 0.045 *** | 0.054 *** | 0.067 *** | 0.009 | 0.023 | 0.031 | 0.037 | 0.101 |
Guinea | 0.037 | 0.031 | 0.028 | 0.008 | 0.028 | 0.034 | 0.038 | 0.111 |
Kenya | 0.039 | 0.032 | 0.028 | 0.045 | 0.029 | 0.028 | 0.045 | 0.098 |
Lesotho | 0.029 | 0.024 | 0.021 | 0.076 | 0.018 | 0.031 | 0.055 | 0.102 |
Madagascar | 0.018 | 0.021 | 0.027 | 0.089 | 0.024 | 0.010 | 0.034 | 0.111 |
Malawi | 0.024 | 0.027 | 0.029 | 0.090 | 0.032 | 0.025 | 0.049 | 0.133 |
Mali | 0.032 | 0.036 | 0.41 | 0.039 | 0.036 | 0.041 | 0.054 | 0.122 |
Mauritius | 0.036 | 0.037 | 0.039 | 0.051 | 0.029 | 0.024 | 0.032 | 0.121 |
Morocco | 0.029 | 0.031 | 0.033 | 0.044 | 0.017 | 0.022 | 0.035 | 0.090 |
Mozambique | 0.017 | 0.021 | 0.028 | 0.062 | 0.029 | 0.042 | 0.041 | 0.112 |
Namibia | 0.029 | 0.037 | 0.032 | 0.082 | 0.025 | 0.031 | 0.039 | 0.122 |
Nigeria | 0.025 *** | 0.028 *** | 0.031 *** | 0.095 | 0.044 | 0.032 | 0.057 | 0.124 |
Rwanda | 0.044 | 0.034 | 0.027 | 0.083 | 0.031 | 0.031 | 0.045 | 0.154 |
Sao Tome and Principe | 0.031 | 0.028 | 0.025 | 0.076 | 0.029 | 0.034 | 0.055 | 0.101 |
Senegal | 0.022 | 0.026 | 0.029 | 0.049 | 0.018 | 0.028 | 0.055 | 0.111 |
Sierra Leone | 0.019 | 0.021 | 0.023 | 0.078 | 0.024 | 0.031 | 0.053 | 0.121 |
South Africa | 0.022 | 0.026 | 0.028 | 0.065 | 0.024 | 0.010 | 0.058 | 0.132 |
Tanzania | 0.027 | 0.029 | 0.031 | 0.007 | 0.032 | 0.025 | 0.059 | 0.122 |
Togo | 0.032 | 0.035 | 0.038 | 0.009 | 0.036 | 0.041 | 0.077 | 0.176 |
Tunisia | 0.028 *** | 0.031 *** | 0.037 *** | 0.065 | 0.029 ** | 0.024 ** | 0.056 ** | 0.109 |
Uganda | 0.029 | 0.031 | 0.033 | 0.098 | 0.017 ** | 0.022 ** | 0.055 ** | 0.101 |
Zambia | 0.019 | 0.022 | 0.028 | 0.097 | 0.029 | 0.042 | 0.054 | 0.102 |
Zimbabwe | 0.021 | 0.023 | 0.024 | 0.008 | 0.025 | 0.031 | 0.067 | 0.111 |
Countries | ||||||||
---|---|---|---|---|---|---|---|---|
w = 0.5 | w = 1.5 | w = 2.5 | c.v. = 10% | w = 0.5 | w = 1.5 | w = 2.5 | c.v. = 10% | |
Algeria | 0.029 *** | 0.031 *** | 0.034 *** | 0.023 | 0.014 *** | 0.045 *** | 0.035 *** | 0.019 |
Angola | 0.038 *** | 0.042 *** | 0.045 *** | 0.009 | 0.015 *** | 0.015 *** | 0.045 *** | 0.098 |
Burkina Faso | 0.034 ** | 0.044 ** | 0.047 * | 0.008 | 0.093 * | 0008 ** | 0.053 ** | 0.116 |
Benin | 0.022 ** | 0.026 * | 0.029 *** | 0.012 | 0.072 ** | 0.053 ** | 0.034 * | 0.122 |
Cameron | 0.023 * | 0.027 ** | 0.029 * | 0.019 | 0.093 * | 0.072 ** | 0.047 ** | 0.138 |
Congo (Brazzaville) | 0.021 ** | 0.026 ** | 0.029 ** | 0.076 | 0.007 ** | 0.009 * | 0.034 *** | 0.129 |
Congo (DRC) | 0.022 ** | 0.025 ** | 0.028 * | 0.027 | 0.043 * | 0.005 ** | 0.045 * | 0.147 |
Egypt | 0.019 ** | 0.023 ** | 0.029 ** | 0.098 | 0.007 ** | 0.042 ** | 0.053 ** | 0.126 |
Ethiopia | 0.018 * | 0.022 ** | 0.027 ** | 0.056 | 0.027 *** | 0.041 ** | 0.047 ** | 0.091 |
Gabon | 0.016 ** | 0.019 ** | 0.022 ** | 0.039 | 0.005 ** | 0.033 ** | 0.041 ** | 0.125 |
Ghana | 0.022 * | 0.025 ** | 0.029 *** | 0.044 | 0.015 ** | 0.042 ** | 0.037 * | 0.087 |
Guinea | 0.018 ** | 0.021 ** | 0.027 * | 0.087 | 0.005 * | 0.006 ** | 0.034 *** | 0.099 |
Kenya | 0.007 *** | 0.012 ** | 0.019 *** | 0.069 | 0.027 * | 0.046 *** | 0.053 ** | 0.102 |
Lesotho | 0.018 ** | 0.011 ** | 0.019 ** | 0.081 | 0.038 ** | 0.036 ** | 0.059 ** | 0.009 |
Madagascar | 0.019 ** | 0.022 ** | 0.026 ** | 0.072 | 0.016 * | 0.016 * | 0.039 * | 0.122 |
Malawi | 0.022 * | 0.023 ** | 0.026 ** | 0.098 | 0.036 * | 0.016 * | 0.047 ** | 0.134 |
Mali | 0.027 * | 0.029 * | 0.031 * | 0.099 | 0.026 * | 0.036 ** | 0.054 * | 0.177 |
Mauritius | 0.032 * | 0.028 * | 0.024 * | 0.062 | 0.009 ** | 0.038 * | 0.045 ** | 0.187 |
Morocco | 0.009 * | 0.014 * | 0.019 ** | 0.073 | 0.009 * | 0.037 ** | 0.065 ** | 0.138 |
Mozambique | 0.007 ** | 0.009 * | 0.011 ** | 0.079 | 0.047 * | 0.034 ** | 0.044 *** | 0.166 |
Namibia | 0.009 *** | 0.012 ** | 0.019 *** | 0.092 | 0.037 ** | 0.083 ** | 0.098 * | 0.147 |
Nigeria | 0.011 *** | 0.014 * | 0.019 ** | 0.095 | 0.047 *** | 0.034 ** | 0.059 ** | 0.123 |
Rwanda | 0.021 ** | 0.025 ** | 0.028 * | 0.093 | 0.009 * | 0.024 ** | 0.043 ** | 0.122 |
Sao Tome and Principe | 0.012 * | 0.018 * | 0.022 ** | 0.091 | 0.047 ** | 0.015 ** | 0.058 *** | 0.111 |
Senegal | 0.024 ** | 0.027 * | 0.032 *** | 0.084 | 0.049 ** | 0.005** | 0.058 * | 0.145 |
Sierra Leone | 0.022 ** | 0.026 *** | 0.029 * | 0.079 | 0.039 ** | 0.094 * | 0.054 ** | 0.118 |
South Africa | 0.011 * | 0.016 * | 0.019 ** | 0.099 | 0.039 ** | 0.025 ** | 0.056 ** | 0.128 |
Tanzania | 0.022 ** | 0.026 * | 0.028 ** | 0.078 | 0.041 ** | 0.035 ** | 0.055 * | 0.101 |
Togo | 0.021 ** | 0.025 ** | 0.029 * | 0.055 | 0.033 ** | 0.035 * | 0.074 * | 0.109 |
Tunisia | 0.009 ** | 0.011 * | 0.016 ** | 0.089 | 0.034 * | 0.025 ** | 0.053 ** | 0.154 |
Uganda | 0.019 * | 0.023 ** | 0.029 ** | 0.037 | 0.047 * | 0.035 ** | 0.055 * | 0.111 |
Zambia | 0.021 * | 0.026 * | 0.031 * | 0.088 | 0.037 * | 0.025 ** | 0.055 * | 0.122 |
Zimbabwe | 0.007 * | 0.011 ** | 0.019 * | 0.089 | 0.043 ** | 0.035 ** | 0.064 ** | 0.143 |
Countries | ||||||||
---|---|---|---|---|---|---|---|---|
w = 0.5 | w = 1.5 | w = 2.5 | c.v. = 10% | w = 0.5 | w = 1.5 | w = 2.5 | c.v. = 10% | |
Algeria | 0.009 | 0.011 * | 0.019 | 0.091 | 0.005 | 0.033 | 0.044 | 0.093 |
Angola | 0.004 | 0.012 * | 0.019 | 0.009 | 0.009 | 0.005 | 0.048 | 0.098 |
Burkina Faso | 0.011 * | 0.015 | 0.019 | 0.017 | 0007 | 0.023 | 0.056 | 0.099 |
Benin | 0.003 | 0.009 | 0.011 | 0.019 | 0.005 | 0.024 | 0.037 | 0.092 |
Cameron | 0.005 *** | 0.009 *** | 0.012 *** | 0.089 | 0.001 | 0.029 | 0.048 | 0.091 |
Congo (Brazzaville) | 0.002 *** | 0.006 *** | 0.009 *** | 0.079 | 0.002 | 0.036 | 0.037 | 0.078 |
Congo (DRC) | 0.003 *** | 0.007 *** | 0.022 *** | 0.097 | 0.008 | 0.034 | 0.049 | 0.103 |
Egypt | 0.006 | 0.009 * | 0.011 | 0.087 | 0.004 | 0.032 | 0.057 | 0.099 |
Ethiopia | 0.011 | 0.017 * | 0.021 | 0.057 | 0.006 | 0.032 | 0.056 | 0.094 |
Gabon | 0.008 | 0.012 * | 0.022 | 0.023 | 0.002 | 0.039 | 0.044 | 0.109 |
Ghana | 0.007 | 0.014 * | 0.021 | 0.028 | 0.004 | 0.041 | 0.039 | 0.111 |
Guinea | 0.003 | 0.008 * | 0.011 | 0.055 | 0.008 | 0.034 | 0.040 | 0.104 |
Kenya | 0.008 *** | 0.013 *** | 0.019 *** | 0.089 | 0.005 * | 0.039 ** | 0.047 * | 0.101 |
Lesotho | 0.009 | 0.022 ** | 0.029 | 0.082 | 0.002 | 0.039 | 0.058 | 0.099 |
Madagascar | 0.014 | 0.023 * | 0.029 | 0.044 | 0.007 | 0.031 | 0.038 | 0.102 |
Malawi | 0.021 | 0.022 ** | 0.028 | 0.043 | 0.009 | 0.037 | 0.056 | 0.101 |
Mali | 0.008 | 0.044 * | 0.054 | 0.049 | 0.009 | 0.045 | 0.057 | 0.078 |
Mauritius | 0.014 | 0.021 * | 0.034 | 0.076 | 0.003 | 0.045 | 0.055 | 0.099 |
Morocco | 0.022 | 0.025 * | 0.029 | 0.077 | 0.002 | 0.042 | 0.053 | 0.089 |
Mozambique | 0.028 | 0.031 * | 0.045 * | 0.073 | 0.007 | 0.031 | 0.045 | 0.098 |
Namibia | 0.027 | 0.031 * | 0.048 * | 0.071 | 0.001 | 0.043 | 0.048 | 0.067 |
Nigeria | 0.021 *** | 0.027 *** | 0.037 *** | 0.082 | 0.003 | 0.048 | 0.057 | 0.089 |
Rwanda | 0.011 | 0.033 | 0.054 | 0.091 | 0.003 | 0.041 | 0.045 | 0.098 |
Sao Tome and Principe | 0.023 * | 0.043 | 0.055 | 0.027 | 0.002 | 0.020 | 0.054 | 0.044 |
Senegal | 0.011 *** | 0.033 *** | 0.058 | 0.031 | 0.008 | 0.035 | 0.053 | 0.056 |
Sierra Leone | 0.012 | 0.027 | 0.039 | 0.036 | 0.001 | 0.051 | 0.054 | 0.019 |
South Africa | 0.009 *** | 0.014 *** | 0.051 *** | 0.042 | 0.003 | 0.034 | 0.052 | 0.110 |
Tanzania | 0.019 | 0.026 | 0.031 | 0.043 | 0.003 | 0.032 | 0.053 | 0.101 |
Togo | 0.008 | 0.015 | 0.029 | 0.055 | 0.004 | 0.052 | 0.071 | 0.089 |
Tunisia | 0.007 | 0.017 | 0.032 | 0.069 | 0.003 | 0.041 | 0.052 | 0.091 |
Uganda | 0.009 *** | 0.032 *** | 0.054 *** | 0.072 | 0.001 | 0.042 | 0.052 | 0.088 |
Zambia | 0.011 | 0.028 | 0.038 | 0.058 | 0.002 | 0.041 | 0.052 | 0.078 |
Zimbabwe | 0.013 | 0.029 | 0.054 | 0.098 | 0.006 | 0.044 | 0.062 | 0.098 |
Countries | ||||||||
---|---|---|---|---|---|---|---|---|
w = 0.5 | w = 1.5 | w = 2.5 | c.v. = 10% | w = 0.5 | w = 1.5 | w = 2.5 | c.v. = 10% | |
Algeria | 0.009 | 0.014 | 0.029 | 0.121 | 0.024 | 0.029 | 0.033 | 0.101 |
Angola | 0.011 *** | 0.026 *** | 0.037 *** | 0.019 | 0.024 | 0.032 | 0.042 | 0.103 |
Burkina Faso | 0.008 | 0.039 | 0.044 | 0.019 | 0.024 | 0.012 | 0.052 | 0.102 |
Benin | 0.029 | 0.044 | 0.039 | 0.082 | 0.034 | 0.023 | 0.032 | 0.104 |
Cameron | 0.011 | 0.029 | 0.037 | 0.024 | 0.034 | 0.043 | 0.041 | 0.106 |
Congo (Brazzaville) | 0.028 | 0.031 | 0.039 | 0.032 | 0.034 | 0.022 | 0.031 | 0.102 |
Congo (DRC) | 0.027 | 0.058 | 0.068 | 0.019 | 0.035 | 0.023 | 0.041 | 0.101 |
Egypt | 0.013 *** | 0.025 *** | 0.039 *** | 0.018 | 0.025 | 0.043 | 0.052 | 0.102 |
Ethiopia | 0.029 | 0.033 | 0.054 | 0.095 | 0.025 | 0.032 | 0.044 | 0.108 |
Gabon | 0.011 | 0.023 | 0.056 | 0.008 | 0.024 | 0.033 | 0.035 | 0.102 |
Ghana | 0.013 *** | 0.028 *** | 0.011 *** | 0.101 | 0.025 | 0.033 | 0.034 | 0.104 |
Guinea | 0.016 | 0.022 | 0.032 | 0.016 | 0.025 | 0.035 | 0.034 | 0.102 |
Kenya | 0.012 | 0.024 | 0.034 | 0.013 | 0.024 | 0.024 | 0.043 | 0.101 |
Lesotho | 0.014 | 0.026 | 0.044 | 0.104 | 0.019 | 0.035 | 0.053 | 0.105 |
Madagascar | 0.011 | 0.033 | 0.045 | 0.101 | 0.023 | 0.014 | 0.033 | 0.103 |
Malawi | 0.009 | 0.045 | 0.056 | 0.101 | 0.033 | 0.024 | 0.042 | 0.102 |
Mali | 0.006 | 0.054 | 0.059 | 0.009 | 0.032 | 0.045 | 0.051 | 0.102 |
Mauritius | 0.008 | 0.023 | 0.041 | 0.102 | 0.021 | 0.025 | 0.037 | 0.101 |
Morocco | 0.007 | 0.033 | 0.039 | 0.103 | 0.019 | 0.024 | 0.034 | 0.102 |
Mozambique | 0.004 | 0.021 | 0.034 | 0.101 | 0.022 | 0.044 | 0.043 | 0.106 |
Namibia | 0.006 | 0.025 | 0.041 | 0.104 | 0.023 | 0.034 | 0.033 | 0.104 |
Nigeria | 0.009 *** | 0.029 *** | 0.044 *** | 0.101 | 0.041 *** | 0.033 *** | 0.054 *** | 0.103 |
Rwanda | 0.012 | 0.028 | 0.033 | 0.102 | 0.034 | 0.036 | 0.043 | 0.104 |
Sao Tome and Principe | 0.009 | 0.026 | 0.029 | 0.105 | 0.019 | 0.033 | 0.052 | 0.112 |
Senegal | 0.007 | 0.028 | 0.049 | 0.107 | 0.019 | 0.023 | 0.057 | 0.103 |
Sierra Leone | 0.006 | 0.039 | 0.044 | 0.101 | 0.021 | 0.034 | 0.056 | 0.102 |
South Africa | 0.005 *** | 0.028 *** | 0.046 *** | 0.114 | 0.022 *** | 0.014 *** | 0.054 *** | 0.104 |
Tanzania | 0.017 | 0.021 | 0.041 | 0.113 | 0.033 | 0.023 | 0.053 | 0.195 |
Togo | 0.022 | 0.029 | 0.038 | 0.124 | 0.031 | 0.043 | 0.073 | 0.102 |
Tunisia | 0.017 *** | 0.022 *** | 0.039 *** | 0.112 | 0.021 | 0.023 | 0.053 | 0.107 |
Uganda | 0.018 *** | 0.023 *** | 0.031 *** | 0.123 | 0.019 | 0.024 | 0.053 | 0.107 |
Zambia | 0.012 | 0.028 | 0.033 | 0.112 | 0.019 | 0.041 | 0.052 | 0.108 |
Zimbabwe | 0.014 | 0.029 | 0.032 | 0.124 | 0.021 | 0.032 | 0.062 | 0.119 |
Panel G | ||||||||
---|---|---|---|---|---|---|---|---|
Countries | ||||||||
w = 0.5 | w = 1.5 | w = 2.5 | c.v. = 10% | w = 0.5 | w = 1.5 | w = 2.5 | c.v. = 10% | |
Algeria | 0.006 | 0.023 | 0.034 | 0.019 | 0.013 | 0.032 | 0.049 | 0.114 |
Angola | 0.005 | 0.033 | 0.044 | 0.027 | 0.017 | 0.052 | 0.059 | 0.115 |
Burkina Faso | 0.002 | 0.032 | 0.054 | 0.025 | 0.096 | 0.043 | 0.069 | 0.118 |
Benin | 0.009 | 0.029 | 0.034 | 0.025 | 0.073 | 0.056 | 0.061 | 0.117 |
Cameron | 0.011 | 0.023 | 0.045 | 0.023 | 0.091 | 0.058 | 0.062 | 0.111 |
Congo (Brazzaville) | 0.012 | 0.029 | 0.034 | 0.021 | 0.009 | 0.055 | 0.069 | 0.124 |
Congo (DRC) | 0.021 | 0.032 | 0.045 | 0.089 | 0.047 | 0.055 | 0.062 | 0.101 |
Egypt | 0.024 | 0.044 | 0.054 | 0.099 | 0.004 | 0.058 | 0.061 | 0.102 |
Ethiopia | 0.022 | 0.033 | 0.048 | 0.094 | 0.021 | 0.074 | 0.051 | 0.108 |
Gabon | 0.012 | 0.022 | 0.039 | 0.072 | 0.009 | 0.054 | 0.052 | 0.123 |
Ghana | 0.009 | 0.029 | 0.037 | 0.011 | 0.019 | 0.054 | 0.051 | 0.124 |
Guinea | 0.019 | 0.029 | 0.038 | 0.011 | 0.009 | 0.054 | 0.061 | 0.102 |
Kenya | 0.015 | 0.028 | 0.045 | 0.056 | 0.022 | 0.066 | 0.069 | 0.101 |
Lesotho | 0.013 | 0.039 | 0.055 | 0.076 | 0.031 | 0.037 | 0.049 | 0.112 |
Madagascar | 0.021 | 0.029 | 0.034 | 0.019 | 0.011 | 0.052 | 0.059 | 0.117 |
Malawi | 0.025 | 0.023 | 0.049 | 0.091 | 0.032 | 0.044 | 0.058 | 0.115 |
Mali | 0.005 | 0.032 | 0.054 | 0.071 | 0.022 | 0.055 | 0.064 | 0.102 |
Mauritius | 0.014 | 0.024 | 0.032 | 0.080 | 0.005 | 0.051 | 0.054 | 0.101 |
Morocco | 0.011 | 0.028 | 0.035 | 0.049 | 0.007 | 0.051 | 0.069 | 0.102 |
Mozambique | 0.012 | 0.013 | 0.041 | 0.069 | 0.046 | 0.051 | 0.052 | 0.119 |
Namibia | 0.018 | 0.029 | 0.039 | 0.089 | 0.033 | 0.051 | 0.058 | 0.119 |
Nigeria | 0.022 | 0.041 | 0.057 | 0.099 | 0.044 | 0.071 | 0.072 | 0.129 |
Rwanda | 0.021 | 0.032 | 0.045 | 0.089 | 0.006 | 0.051 | 0.064 | 0.117 |
Sao Tome and Principe | 0.012 | 0.039 | 0.055 | 0.072 | 0.045 | 0.056 | 0.065 | 0.155 |
Senegal | 0.022 | 0.033 | 0.055 | 0.091 | 0.044 | 0.056 | 0.058 | 0.141 |
Sierra Leone | 0.014 | 0.023 | 0.053 | 0.071 | 0.032 | 0.067 | 0.069 | 0.128 |
South Africa | 0.022 | 0.034 | 0.058 | 0.069 | 0.031 | 0.034 | 0.071 | 0.148 |
Tanzania | 0.008 | 0.023 | 0.059 | 0.009 | 0.029 | 0.055 | 0.071 | 0.112 |
Togo | 0.006 | 0.032 | 0.077 | 0.011 | 0.031 | 0.044 | 0.059 | 0.121 |
Tunisia | 0.008 | 0.029 | 0.056 | 0.066 | 0.033 | 0.055 | 0.062 | 0.121 |
Uganda | 0.009 | 0.022 | 0.055 | 0.093 | 0.045 | 0.053 | 0.064 | 0.150 |
Zambia | 0.019 | 0.021 | 0.054 | 0.091 | 0.033 | 0.056 | 0.068 | 0.132 |
Zimbabwe | 0.021 | 0.029 | 0.067 | 0.009 | 0.046 | 0.056 | 0.064 | 0.131 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lawal, A.I. The Nexus between Economic Growth, Energy Consumption, Agricultural Output, and CO2 in Africa: Evidence from Frequency Domain Estimates. Energies 2023, 16, 1239. https://doi.org/10.3390/en16031239
Lawal AI. The Nexus between Economic Growth, Energy Consumption, Agricultural Output, and CO2 in Africa: Evidence from Frequency Domain Estimates. Energies. 2023; 16(3):1239. https://doi.org/10.3390/en16031239
Chicago/Turabian StyleLawal, Adedoyin Isola. 2023. "The Nexus between Economic Growth, Energy Consumption, Agricultural Output, and CO2 in Africa: Evidence from Frequency Domain Estimates" Energies 16, no. 3: 1239. https://doi.org/10.3390/en16031239
APA StyleLawal, A. I. (2023). The Nexus between Economic Growth, Energy Consumption, Agricultural Output, and CO2 in Africa: Evidence from Frequency Domain Estimates. Energies, 16(3), 1239. https://doi.org/10.3390/en16031239