A Review of the Energy Policy and Energy Transition Objectives for 2040 in the Canary Islands (Spain)
Abstract
:1. Introduction
2. Materials and Methods—Historical Energy Planning Compliance (1986–2021)
2.1. Introduction to the Canary Islands and Its Energy System
- The Canary Islands are the outermost region of the EU with the largest population (with 40% of its total population), and as an outermost territory has special treatment according to Article 349 of the Treaty on the Functioning of the European Union (TFEU);
- Its energy system is isolated and dependent on external sources of energy [10]. Each island has an independent electrical grid except for the connection between Fuerteventura and Lanzarote. Electricity generation comes mainly from thermal power plants with fossil fuels creating more risks for their energy systems planning [11], provoking a relatively high level of emissions. Penetration of renewable energy sources (hereinafter RES), mainly wind and photovoltaic (hereinafter PV) only reached 20% of the total installed power [12];
- Concern about climate change and the energy transition among the islands’ citizens is affected by its level of environmental protection, with almost 40% of the archipelago facing ecological defense [13] related to the enormous importance of its tourism sector with 35% of its GDP related to tourism [14];
2.2. Historical Energy Policy Plans Compliance: PECAN & EECAN (1986–2021)
2.3. Identifying Historical Barriers for Energy Plans: PECAN & EECan (1986–2021)
- The introduction of natural gas has not been achieved, leaving electric production highly dependent on fuel oil with 80% of electricity produced by fuels [12] and a high level of emissions, with 87% of its GHG emissions, related to energy processing [12]. A new potential solution could be a new project based on a small-scale LNG (liquefied natural gas) offshore facility tailor-made for the needs of the main islands (Tenerife and Gran Canaria) [20]. It is worth mentioning that natural gas is used for electricity production since entails a reduction of GHG emissions [19] compared with electricity production through other fossil fuels (fuel-oil and diesel) and can play an important role in RES integration [21];
- PECAN follow-up was entrusted to the Canary Islands Energy Institute, which later has not been enacted, creating a significant breach, since it should be the body responsible for control, systematic revision, and updating of the plan [22].
- The region has relevant delays in RES introduction with a myriad of PV and wind projects at standstill: (i) 2126 MW of PV and wind projects with permission only to access the grid (connection permits are still pending); (ii) 413 MW are in the process of obtaining access and connection authorizations; and (iii) 590 MW have been rejected due to technical problems [23]. Figure 3 depicts the situation comparing the annual installation of RE capacity, with planned installation during EECan 2025 showing the accumulated difference.
2.4. The Energy Transition of the Canary Islands within the Framework of the EU
- Installation of production, distribution, and transport of energy in its territory;
- Fostering and management of RE and energy efficiency;
- Authorize installation for the production, storage, and transportation of energy;
- The right to participate as a region in regulation and planification at the national level in the energy sector if there is a special impact for the region.
3. Results: PTECAN Analysis
3.1. PTECAN Regulatory Frame and Governance
3.2. PTECAN Objectives
3.3. PTECAN Main Topics Analysis
- General Overview:
- Electricity Generation: Thermal Power Plants:
- Conventional RES Capacity Deployment:
- Energy storage through hydro generation and island connections:
- EV and transportation:
- State of the Art RES:
- Funding the Energy Transition:
- Best Practices Proposals:
4. Discussion of Results and Energy Policy Implications
- Its inability to provide a solution for the highly aged conventional generation thermal plants replacement, since PTECAN does not consider the introduction of natural gas. Moreover, the Canary Islands needs an LNG solution to supply its maritime transportation, according to the last regulations issued by the International Maritime Organization [57]. In this respect, a solution should be a small-scale FLNG regasification facility customized to the size of the Tenerife and Gran Canaria islands. This solution is proposed in the Deloitte/Endesa report, which advocates for actions in the current thermal park to extend their working life using natural gas [58]. Extending current the thermal plants’ working life or installing new thermal power facilities as PTECAN mentioned [29] is probably not the best solution [17].
- The limited electricity transportation network needs to be further developed to allow new RES to be installed. It is of the utmost importance to encourage the REE (Electricity Transportation System of Spain) to develop the necessary investments.
- The lengthy permitting process should be reduced to less than two years. Research investigations [59] studied the Canary Islands’ energy transition through a Delphi methodology survey. The results show that the regulatory obstacle is a threat to the energy transition. Even more, these regulatory constraints deepen the difficulties of achieving a transition with energy justice and collaboration between the involved stakeholders. According to this study, the most significant barrier perceived is the administrative/political sector’s bureaucracy and the grid constraints for further implementation of RE.
- The remuneration of electric activities (including storage) is linked to the peninsular market, and it is necessary to rethink the model to generate the appropriate price incentives to properly align electricity demand with the RES production profile.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. (Eds.) IPCC, 2018: Summary for Policymakers. In Global Warming of 1.5 °C; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018; pp. 3–24. [Google Scholar] [CrossRef]
- ONU. Acuerdo de París; ONU: New York, NY, USA, 2015. [Google Scholar]
- European Commission, Directorate-General for Budget. The EU’s 2021–2027 Long-Term Budget and NextGenerationEU: Facts and Figures. Publications Office of the European Union, 2021. Available online: https://data.europa.eu/doi/10.2761/808559 (accessed on 1 November 2022).
- Comisión Europea Dirección General de Presupuestos. The EU’s 2021–2027 Long-Term Budget and NextGenerationEU: Facts and Figures; Oficina de Publicaciones de la Unión Europea: Luxembourg, 2020; Available online: https://www.portugal2020.pt/wp-content/uploads/enn.en_.pdf (accessed on 1 November 2022).
- Tubiana, L.; Glachant, J.M.; Beck, T.H.L.; Belmans, R.; Colombier, M.; Hancher, L.; Runge-Metzger, A. Between Crises and Decarbonization: Realigning EU Climate and Energy Policy for the New ‘State of the World’. 2022. Florence School of Regulation, [Energy]. Available online: http://hdl.handle.net/1814/74737 (accessed on 1 November 2022).
- Kuzemko, C.; Blondeel, M.; Dupont, C.; Brisbois, M.C. Russia’s war on Ukraine, European energy policy responses & implications for sustainable transformations. Energy Res. Soc. Sci. 2022, 93, 102842. [Google Scholar]
- Comisión Europea. Governance of the Energy Union and Climate Action. 2020. Available online: https://climate.ec.europa.eu/eu-action/climate-strategies-targets/progress-made-cutting-emissions/governance-energy-union-and-climate-action_en (accessed on 1 November 2022).
- Costantini, V.; Morando, V.; Olk, C.; Tausch, L. Fuelling the Fire: Rethinking European Policy in Times of Energy and Climate Crises. Energies 2022, 15, 7781. [Google Scholar] [CrossRef]
- ISTAC (Instituto Canario de Estadística). ISTAC|Población Según Sexos. Provincias por Comunidades Autónomas y Años. 2021. Available online: https://www3.gobiernodecanarias.org/istac/statistical-visualizer/visualizer/data.html?resourceType=dataset&agencyId=ISTAC&resourceId=E30245A_000001&version=1.2#visualization/table (accessed on 1 August 2022).
- Marrero, G.A.; Ramos-Real, F.J. Electricity generation cost in isolated system: The complementarities of natural gas and renewables in the Canary Islands. Renew. Sustain. Energy Rev. 2010, 14, 2808–2818. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yu, S.; Zhu, Y.; Wang, D.; Liu, J. Modeling, planning, application and management of energy systems for isolated areas: A review. Renew. Sustain. Energy Rev. 2018, 82, 460–470. [Google Scholar] [CrossRef]
- Consejería de Transición Ecológica, Lucha contra el Cambio Climático y Planificación Territorial. Anuario Energético de Canarias. 2020, pp. 97, 255–265. Available online: https://www3.gobiernodecanarias.org/ceic/energia/oecan/files/Anuario_Energetico_de_Canarias_2020.pdf (accessed on 1 August 2022).
- Consejo Insular de la Energía del Cabildo de Gran Canaria. Percepción Sobre el Cambio Climático de la Población de la Isla de Gran Canaria; Consejo Insular de la Energía del Cabildo de Gran Canaria: Las Palmas de Gran Canaria, Spain, 2020; p. 20. [Google Scholar]
- Exceltur. Estudio del Impacto Económico del Turismo sobre la Economía y el Empleo en Canarias. 2018, p. 5. Available online: https://www.exceltur.org/wp-content/uploads/2022/12/Impactur-Canarias-2021.pdf (accessed on 1 August 2022).
- INE (Instituto Nacional de Estadística). Renta por Persona y Unidad Consume; INE: Madrid, Spain, 2020. [Google Scholar]
- Streimikiene, D.; Lekavičius, V.; Baležentis, T.; Kyriakopoulos, G.L.; Abrhám, J. Climate change mitigation policies targeting households and addressing energy poverty in European Union. Energies 2020, 13, 3389. [Google Scholar] [CrossRef]
- Ramos-Real, F.J.; Moreno-Piquero, J.C.; Ramos-Henríquez, J.M. The effects of introducing natural gas in the Canary Islands for electricity generation. Energy Policy 2007, 35, 3925–3935. [Google Scholar] [CrossRef]
- Gobierno de Canarias. EECAN 2025. Estrategia Energética Canarias; Gobierno de Canarias: Las Palmas de Gran Canaria, Spain, 2017. [Google Scholar]
- Gobierno de Canarias. Dirección General de Industria y Energía—PECAN; Gobierno de Canarias: Las Palmas de Gran Canaria, Spain, 2007. [Google Scholar]
- Bittante, A.; Pettersson, F.; Saxén, H. Optimization of a small-scale LNG supply chain. Energy 2018, 148, 79–89. [Google Scholar]
- Mac Kinnon, M.A.; Brouwer, J.; Samuelsen, S. The role of natural gas and its infrastructure in mitigating greenhouse gas emissions, improving regional air quality, and renewable resource integration. Prog. Energy Combust. Sci. 2018, 64, 62–92. [Google Scholar] [CrossRef]
- Moreno Piquero, J.C.; Ramos Henríquez, J.M. ¿De qué Pecan los PECANes Canarios? Universidad de La Laguna: La Laguna, Spain, 2008. [Google Scholar]
- Guerrero-Lemus, R. Back in the Race: Achieving 100% Renewable Energy in the Canary Islands. IEEE Power Energy Mag. 2020, 18, 64–74. [Google Scholar] [CrossRef]
- European Commission. Putting People First, Ensuring Sustainable and Inclusive Growth, Unlocking the Potential of the EU’s Outermost Regions; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Legislación Consolidada. Ley Orgánica 1/2018, de 5 de Noviembre, de Reforma del Estatuto de Autonomía de Canarias, 2018.
- European Commission. Clean Energy for EU Islands: From Vision to Action, How to Tackle Transition in EU Islands; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- European Commission. Directorate-General for Energy, Clean Energy for EU Islands: Technology Solutions Booklet; Publications Office of the European Union: Luxembourg, 2021; Available online: https://data.europa.eu/doi/10.2833/03574 (accessed on 1 August 2022).
- Gobierno de Canarias. Acuerdo de Consejo de Gobierno. Declaración de Emergencia Climática en la Comunidad Autónoma de Canarias; Gobierno de Canarias: Las Palmas de Gran Canaria, Spain, 2019. [Google Scholar]
- Consejería de Transición Ecológica, Lucha Contra el Cambio Climático y Planificación Territorial. Plan de Transición Energética de Canarias (PTECAN). 2022, pp. 20, 67, 124, 169, 297, 454–456. Available online: https://www3.gobiernodecanarias.org/ceic/energia/oecan/files/PTECan/1_Borrador_PTECan_EdicionV2.pdf (accessed on 1 August 2022).
- Instituto Tecnológico de Canarias. Dossier Corporativo. Available online: https://www.itccanarias.org/web/images/itc/Instituto_Tecnolgico_de_Canarias_ITC_-_Dossier_Corporativo_2020.pdf (accessed on 1 August 2022).
- Ministerio Para La Transición Ecológica y El Reto Demográfico (MITRED). Gas Natural y Medio Ambiente. Available online: https://energia.gob.es/gas/Gas/Paginas/gasnatural.aspx#:~:text=Emisiones%20de%20CO2%20El%20gas%20natural%20como%20cualquier,y%20un%2025-30%25%20menores%20de%20las%20del%20fuel-oil (accessed on 19 December 2022).
- CNMC (Comisión Nacional Mercados Competencia). Informe a la Propuesta de Orden Por la Que se Aprueba y se Establece el Método de Cálculo del Precio del Combustible Gas Natural en los Territorios no Peninsulares de Canarias y Melilla, se Establecen los Valores Unitarios de Referencia a Efectos del Régimen Retribuido Adicional Aplicable a los Grupos Generadores Ubicados en Territorios no Peninsulares y se Revisas Otras Cuestionas Técnicas; IPN/CNMC/052/21; CNMC: Madrid, Spain, 2021. [Google Scholar]
- Directive 2010/75/EC. On Industrial Emissions. Off. J. Eur. Union 2010. [Google Scholar]
- Deloitte & Endesa. Los Territorios No Peninsulares 100% Descarbonizados en 2040: La Vanguardia de la Transición Energética en España; Deloitte: London, UK, 2020; pp. 8, 31, 44. Available online: https://www2.deloitte.com/es/es/pages/strategy/articles/territorios-no-peninsulares-descarbonizados-2040.html (accessed on 1 August 2022).
- Uche-Soria, M.; Rodríguez-Monroy, C. Special regulation of isolated power systems: The Canary Islands, Spain. Sustainability 2018, 10, 2572. [Google Scholar] [CrossRef] [Green Version]
- PWC. Impulso de las Tramitaciones Eléctricas Para la Transición Energética; PWC: Madrid, Spain, 2022; p. 10. Available online: https://www.pwc.es/es/sala-prensa/notas-prensa/2022/mejora-procesos-tramitacion-instalaciones-electricas-clave-cumplir-transicion.html (accessed on 1 August 2022).
- Red Canaria de Espacios Protegidos. Fundación Canaria Reserva Mundial de la Biosfera La Palma. 2022. Available online: https://lapalmabiosfera.es/red-canaria-de-espacios-naturales-protegidos/ (accessed on 19 December 2022).
- REE. Plan de Desarrollo de la Red de Transporte de Energía Eléctrica Periodo 2021–2026. 2022, p. 73. Available online: https://www6.serviciosmin.gob.es/Aplicaciones/Planificacion/PLAN_DESARROLLO_RdT_H2026_COMPLETO.pdf (accessed on 1 August 2022).
- Monitor Deloitte. Agilizar la Tramitación y Planificación de las Inversiones en Infraestructuras Energéticas. 2022. Available online: https://www2.deloitte.com/es/es/pages/energy-and-resources/articles/planificacion-y-tramitacion-infraestructuras-electricas.html (accessed on 1 August 2022).
- Ramírez Díaz, A.J.; Ramos Real, F.J.; Rodríguez Brito, M.G.; Rodríguez Donate, M.C.; Lorente de las Casas, A. Determining factors of consumers’ choice of sport utility vehicles in an isolated energy system: How can we contribute to the decarbonization of the economy? Energies 2022, 15, 6454. [Google Scholar] [CrossRef]
- Ramirez Diaz, A.; Ramos-Real, F.J.; Marrero, G.A.; Perez, Y. Impact of electric vehicles as distributed energy storage in isolated systems: The case of Tenerife. Sustainability 2015, 7, 15152–15178. [Google Scholar]
- Ramirez Diaz, A.; Ramos-Real, F.J.; Barrera-Santana, J. Life cycle analysis for different types of vehicles in the Canary Islands. International Association of Energy Economics. In Proceedings of the (IAEE) Conference—Energy, COVID and Climate Change, Paris, France, 7 July 2021. [Google Scholar]
- García-Afonso, Ó.; Santana-Méndez, I.; Delgado-Torres, A.M.; González-Díaz, B. On the road to a sustainable transport mobility in isolated power systems: The role of light-duty powertrain electrification. J. Clean. Prod. 2021, 320, 128646. [Google Scholar] [CrossRef]
- Instituto Canario de Estadística (ISTAC). Vehículos de Movilidad no Convencional de Canarias, a Fecha de: 19/12/22; Gobierno de Canarias: Las Palmas de Gran Canaria, Spain, 2022. [Google Scholar]
- European Commission. Sustainable and Smart Mobility Strategy—Putting European Transport on Track for the Future; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Gils, H.C.; Simon, S. Carbon neutral archipelago—100% renewable energy supply for the Canary Islands. Appl. Energy 2017, 188, 342–355. [Google Scholar]
- US Department of Energy Offshore. Wind Market Report: 2021 Edition; US Department of Energy Offshore: New York, NY, USA, 2021; p. 55. [Google Scholar]
- Netherlands Government. North Sea Energy Outlook. 2020. Available online: https://www.government.nl/documents/reports/2020/09/01/report-north-sea-energy-outlook (accessed on 1 August 2022).
- Santamarta, J.C.; Expósito, C.; Eff-Darwich, A. Integration of Green Technologies in Canary Islands-Low Enthalpy Geotermics. In Local and Regional Challenges of Climate Change Adaptation and Green Technologies; University of West Hungary Press: Sopron, Hungary, 2014; p. 24. [Google Scholar]
- Consejería de Transición Ecológica, Lucha Contra el Cambio Climático y Planificación Territorial. Plan de Transición Energética de Canarias, PTECAN, Memoria Económica, 2022; 20.
- González-Eguino, M.; Arto, I.; Rodríguez-Zúñiga, A.; García-Muros, X.; Sampedro, J.; Kratena, K.; Cazcarro, I.; Sorman, A.H.; Pizarro-Irízar, C.; Sanz-Sánchez, M.J. Análisis de impacto del Plan Nacional Integrado de Energía y Clima (PNIEC) 2021–2030 de España. Pap. Econ. Española 2020, 163, 9–22. [Google Scholar]
- León-Vielma, J.E.; Ramos-Real, F.J.; Hernández-Hernández, J.F. The collapse of Venezuela’s electricity sector from an energy governance perspective. Energy Policy 2022, 167, 113009. [Google Scholar] [CrossRef]
- Landauer, M.; Komendantova, N. Participatory environmental governance of infrastructure projects affecting reindeer husbandry in the Arctic. J. Environ. Manag. 2018, 223, 385–395. [Google Scholar] [CrossRef]
- International Energy Agency. Energy Efficiency Governance; IEA: Paris, France, 2021; Available online: https://www.iea.org/reports/energy-efficiency-governance (accessed on 1 August 2022).
- Barrera-Santana, J.; Marrero, G.A.; Ramos-Real, F.J. Energy Efficiency and Energy Governance: A Stochastic Frontier Analysis Approach; OECD/IEA: Paris, France, 2010. [Google Scholar]
- Loewen, B. Coal, green growth and crises: Exploring three European Union policy responses to regional energy transitions. Energy Res. Soc. Sci. 2022, 93, 102849. [Google Scholar] [CrossRef]
- International Maritime Organization; 1 January 2020 (IMO 2020). Available online: https://wwwcdn.imo.org/localresources/en/MediaCentre/HotTopics/Documents/Sulphur%202020%202-page%20flyer_draft_19-6-2019_online_final.pdf (accessed on 1 August 2022).
- Monitor Deloitte. La planificación y la Tramitación de las Infraestructuras Eléctricas Para la Transición Energética. 2022. Available online: https://www2.deloitte.com/es/es/pages/strategy-operations/topics/monitor-deloitte.html (accessed on 1 August 2022).
- Heinz, H.; Derkenbaeva, E.; Galanakis, K.; Stathopoulou, E. Decarbonisation pathways: A foresight exercise in the Canary Islands. ISPIM Connects Valencia—Reconnect, Rediscover, Reimagine. 2021, p. 110. Available online: https://www.proquest.com/openview/e2649a19601b6f63989362f56b049af2/1?pq-origsite=gscholar&cbl=1796422 (accessed on 1 August 2022).
- López-Fernández, J.L. Estudio Pobreza Energética en la Isla de la Palma. 2022. Available online: https://www.lapalmarenovable.es/wp-content/uploads/2022/10/Estudio_PobrezaEnergetica_LaPalma.pdf (accessed on 1 August 2022).
- Sovacool, B.K.; Hess, D.J.; Amir, S.; Geels, F.W.; Hirsh, R.; Medina, L.R.; Miller, C.; Palavicino, C.A.; Phadke, R.; Ryghaug, M.; et al. Sociotechnical agendas: Reviewing future directions for energy and climate research. Energy Res. Soc. Sci. 2020, 70, 101617. [Google Scholar] [CrossRef]
PECAN 2006 Objectives | 2006 Status | 2015 PECAN Goal | 2019 Actual |
---|---|---|---|
Reduce Oil Dependence | 99% | 72% | 97% |
Reaching 8% in self supply in primary energy | 2% | 8% | 3% |
Introducing natural gas in the energy mix by 20% | 0% | 20% | 0% |
Reaching 30% of the energy mix with RE | 6% | 30% | 18% |
Reaching 1025 MW based on Wind production | 140 | 1025 | 413 |
Reaching 460,000 m2 in thermal solar panels | 88,562 | 460,000 | 123,719 |
Reaching PV installed capacity of 160 MW | 1 | 160 | 194 |
Reaching 40 MW with other RE | 4 | 40 | 28 |
EECan 2025 Objective | EECan 2025 Goal | 2020 Status | % Achieved |
---|---|---|---|
NEW Fostering EV (number of vehicles) | 107,000 | 2813 | 3% |
Natural Gas Introduction (Yes/No) | Yes | No | 0% |
Wind Generation (MW) | 1025 | 457 | 44% |
PV Generation (MW) | 300 | 182 | 60% |
Off-shore Generation (MW) | 310 | 0 | 0% |
Biofuel Generation (MW) | 25.5 | 3.7 | 14% |
Energy Storage (MW) | 211.5 | 16.8 | 8% |
NEW Islands Interconnections (number) | 2 | 0 | 0% |
Surface with solar panels (m2) | 300,000 | 255,731 | 85% |
Biomass boilers (tep/y) | 590 | 1221 | 206% |
Low enthalpy generation (kW) | 30,000 | 0 | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escamilla-Fraile, S.; Ramos-Real, F.J.; Calero-García, F.J.; González-Díaz, B. A Review of the Energy Policy and Energy Transition Objectives for 2040 in the Canary Islands (Spain). Energies 2023, 16, 1321. https://doi.org/10.3390/en16031321
Escamilla-Fraile S, Ramos-Real FJ, Calero-García FJ, González-Díaz B. A Review of the Energy Policy and Energy Transition Objectives for 2040 in the Canary Islands (Spain). Energies. 2023; 16(3):1321. https://doi.org/10.3390/en16031321
Chicago/Turabian StyleEscamilla-Fraile, Santiago, Francisco J. Ramos-Real, Francisco J. Calero-García, and Benjamín González-Díaz. 2023. "A Review of the Energy Policy and Energy Transition Objectives for 2040 in the Canary Islands (Spain)" Energies 16, no. 3: 1321. https://doi.org/10.3390/en16031321
APA StyleEscamilla-Fraile, S., Ramos-Real, F. J., Calero-García, F. J., & González-Díaz, B. (2023). A Review of the Energy Policy and Energy Transition Objectives for 2040 in the Canary Islands (Spain). Energies, 16(3), 1321. https://doi.org/10.3390/en16031321