Review and Perspectives of Key Decarbonization Drivers to 2030
Abstract
:1. Introduction
2. Background, Materials and Methods
3. Resume of Decarbonization Drivers
3.1. Energy Efficiency
3.2. Electrification of Final Consumption
3.3. Green Fuels
3.4. Renewable Sources in the Electricity System
3.5. Carbon Capture and Storage
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zaklan, A.; Wachsmuth, J.; Duscha, V. The EU ETS to 2030 and beyond: Adjusting the Cap in Light of the 1.5°C Target and Current Energy Policies. Clim. Policy 2021, 21, 778–791. [Google Scholar] [CrossRef]
- Bogdanov, D.; Ram, M.; Aghahosseini, A.; Gulagi, A.; Oyewo, A.S.; Child, M.; Caldera, U.; Sadovskaia, K.; Farfan, J.; De Souza Noel Simas Barbosa, L.; et al. Low-Cost Renewable Electricity as the Key Driver of the Global Energy Transition towards Sustainability. Energy 2021, 227, 120467. [Google Scholar] [CrossRef]
- Scheuing, H.; Kamm, J. The EU on the Road to Climate Neutrality—Is the ‘Fit for 55’ Package Fit for Purpose? Renew. Energy Law Policy Rev. 2022, 10, 4–18. [Google Scholar] [CrossRef]
- Osička, J.; Černoch, F. European Energy Politics after Ukraine: The Road Ahead. Energy Res. Soc. Sci. 2022, 91, 102757. [Google Scholar] [CrossRef]
- Hainsch, K.; Löffler, K.; Burandt, T.; Auer, H.; Crespo del Granado, P.; Pisciella, P.; Zwickl-Bernhard, S. Energy Transition Scenarios: What Policies, Societal Attitudes, and Technology Developments Will Realize the EU Green Deal? Energy 2022, 239, 122067. [Google Scholar] [CrossRef]
- Skjærseth, J.B. Towards a European Green Deal: The Evolution of EU Climate and Energy Policy Mixes. Int. Environ. Agreem. Polit. Law Econ. 2021, 21, 25–41. [Google Scholar] [CrossRef]
- Capros, P.; Kannavou, M.; Evangelopoulou, S.; Petropoulos, A.; Siskos, P.; Tasios, N.; Zazias, G.; DeVita, A. Outlook of the EU Energy System up to 2050: The Case of Scenarios Prepared for European Commission’s “Clean Energy for All Europeans” Package Using the PRIMES Model. Energy Strateg. Rev. 2018, 22, 255–263. [Google Scholar] [CrossRef]
- Fauré, E.; Arushanyan, Y.; Ekener, E.; Miliutenko, S.; Finnveden, G. Methods for Assessing Future Scenarios from a Sustainability Perspective. Eur. J. Futur. Res. 2017, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Beccarello, M.; Di Foggia, G. Economic Impact of Energy Efficiency Policies: A Scenario Analysis. Int. J. Econ. Financ. 2022, 14, 1–11. [Google Scholar] [CrossRef]
- De Koning, A.; Huppes, G.; Deetman, S.; Tukker, A. Scenarios for a 2 °C World: A Trade-Linked Input–Output Model with High Sector Detail. Clim. Policy 2016, 16, 301–317. [Google Scholar] [CrossRef]
- Nieto, J.; Carpintero, Ó.; Lobejón, L.F.; Miguel, L.J. An Ecological Macroeconomics Model: The Energy Transition in the EU. Energy Policy 2020, 145, 111726. [Google Scholar] [CrossRef]
- Le Treut, G.; Lefèvre, J.; Lallana, F.; Bravo, G. The Multi-Level Economic Impacts of Deep Decarbonization Strategies for the Energy System. Energy Policy 2021, 156, 112423. [Google Scholar] [CrossRef]
- Paltsev, S. Energy Scenarios: The Value and Limits of Scenario Analysis. WIREs Energy Environ. 2017, 6, e242. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.B. Revising the Energy Efficiency Directive: Fit for 55 Package; EPRS European Parliamentary Research Service: Brussels, Belgium, 2022. [Google Scholar]
- Pérez-Lombard, L.; Ortiz, J.; Velázquez, D. Revisiting Energy Efficiency Fundamentals. Energy Effic. 2013, 6, 239–254. [Google Scholar] [CrossRef]
- Li, M.; Weng, Y.; Duan, M. Emissions, Energy and Economic Impacts of Linking China’s National ETS with the EU ETS. Appl. Energy 2019, 235, 1235–1244. [Google Scholar] [CrossRef]
- Linares, P.; Labandeira, X. Energy Efficiency: Economics and Policy. J. Econ. Surv. 2010, 24, 573–592. [Google Scholar] [CrossRef]
- Maggiore, S.; Realini, A.; Zagano, C.; Bazzocchi, F.; Gobbi, E.; Borgarello, M. Energy Efficiency in Industry 4.0: Assessing the Potential of Indutry 4.0 to Achive 2030 Decarbonization Targets. Int. J. Energy Prod. Manag. 2021, 6, 371–381. [Google Scholar] [CrossRef]
- Fermeglia, M. Recent Developments in EU Environmental Policy and Legislation. J. Eur. Environ. Plan Law 2021, 18, 313–323. [Google Scholar] [CrossRef]
- Di Foggia, G. Energy Efficiency Measures in Buildings for Achieving Sustainable Development Goals. Heliyon 2018, 4, e00953. [Google Scholar] [CrossRef] [Green Version]
- Di Foggia, G.; Beccarello, M.; Borgarello, M.; Bazzocchi, F.; Moscarelli, S. Market-Based Instruments to Promote Energy Efficiency: Insights from the Italian Case. Energies 2022, 15, 7574. [Google Scholar] [CrossRef]
- Sechi, S.; Giarola, S.; Leone, P. Taxonomy for Industrial Cluster Decarbonization: An Analysis for the Italian Hard-to-Abate Industry. Energies 2022, 15, 8586. [Google Scholar] [CrossRef]
- Paltsev, S.; Morris, J.; Kheshgi, H.; Herzog, H. Hard-to-Abate Sectors: The Role of Industrial Carbon Capture and Storage (CCS) in Emission Mitigation. Appl. Energy 2021, 300, 117322. [Google Scholar] [CrossRef]
- Haas, T.; Sander, H. Decarbonizing Transport in the European Union: Emission Performance Standards and the Perspectives for a European Green Deal. Sustainability 2020, 12, 8381. [Google Scholar] [CrossRef]
- Haberl, H.; Wiedenhofer, D.; Virág, D.; Kalt, G.; Plank, B.; Brockway, P.; Fishman, T.; Hausknost, D.; Krausmann, F.; Leon-Gruchalski, B.; et al. A Systematic Review of the Evidence on Decoupling of GDP, Resource Use and GHG Emissions, Part II: Synthesizing the Insights. Environ. Res. Lett. 2020, 15, 65003. [Google Scholar] [CrossRef]
- Wiedenhofer, D.; Virág, D.; Kalt, G.; Plank, B.; Streeck, J.; Pichler, M.; Mayer, A.; Krausmann, F.; Brockway, P.; Schaffartzik, A.; et al. A Systematic Review of the Evidence on Decoupling of GDP, Resource Use and GHG Emissions, Part I: Bibliometric and Conceptual Mapping. Environ. Res. Lett. 2020, 15, 63002. [Google Scholar] [CrossRef]
- Le Quéré, C.; Korsbakken, J.I.; Wilson, C.; Tosun, J.; Andrew, R.; Andres, R.J.; Canadell, J.G.; Jordan, A.; Peters, G.P.; van Vuuren, D.P. Drivers of Declining CO2 Emissions in 18 Developed Economies. Nat. Clim. Chang. 2019, 9, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Trabucchi, A.; Premoli Vilà, L.; Borgarello, M.; Besagni, G. Assessing the Impact on Grid Infrastructure of Electrification Pathways for the Italian Residential Sector. Electricity 2021, 2, 48–62. [Google Scholar] [CrossRef]
- Besagni, G.; Premoli Vilà, L.; Borgarello, M.; Trabucchi, A.; Merlo, M.; Rodeschini, J.; Finazzi, F. Electrification Pathways of the Italian Residential Sector under Socio-Demographic Constrains: Looking towards 2040. Energy 2021, 217, 119438. [Google Scholar] [CrossRef]
- Wei, M.; McMillan, C.A.; de la Rue du Can, S. Electrification of Industry: Potential, Challenges and Outlook. Curr. Sustain. Energy Rep. 2019, 6, 140–148. [Google Scholar] [CrossRef]
- Nadel, S. Electrification in the Transportation, Buildings, and Industrial Sectors: A Review of Opportunities, Barriers, and Policies. Curr. Sustain. Energy Rep. 2019, 6, 158–168. [Google Scholar] [CrossRef]
- Bellocchi, S.; Manno, M.; Noussan, M.; Prina, M.G.; Vellini, M. Electrification of Transport and Residential Heating Sectors in Support of Renewable Penetration: Scenarios for the Italian Energy System. Energy 2020, 196, 117062. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Delucchi, M.A.; Cameron, M.A.; Frew, B.A. Low-Cost Solution to the Grid Reliability Problem with 100% Penetration of Intermittent Wind, Water, and Solar for All Purposes. PNAS 2015, 112, 15060–15065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schleich, J.; Durand, A.; Brugger, H. How Effective Are EU Minimum Energy Performance Standards and Energy Labels for Cold Appliances? Energy Policy 2021, 149, 112069. [Google Scholar] [CrossRef]
- Li, L.; Yu, S.; Tao, J. Design for Energy Efficiency in Early Stages: A Top-down Method for New Product Development. J. Clean. Prod. 2019, 224, 175–187. [Google Scholar] [CrossRef]
- Di Foggia, G. Energy-Efficient Products and Competitiveness in the Manufacturing Sector. J. Open Innov. Technol. Mark. Complex. 2021, 7, 33. [Google Scholar] [CrossRef]
- Kihm, A.; Trommer, S. The New Car Market for Electric Vehicles and the Potential for Fuel Substitution. Energy Policy 2014, 73, 147–157. [Google Scholar] [CrossRef]
- Seign, R.; Schüßler, M.; Bogenberger, K. Enabling Sustainable Transportation: The Model-Based Determination of Business/Operating Areas of Free-Floating Carsharing Systems. Res. Transp. Econ. 2015, 51, 104–114. [Google Scholar] [CrossRef]
- Globisch, J.; Dütschke, E.; Schleich, J. Acceptance of Electric Passenger Cars in Commercial Fleets. Transp. Res. Part A Policy Pract. 2018, 116, 122–129. [Google Scholar] [CrossRef]
- Sorknæs, P.; Johannsen, R.M.; Korberg, A.D.; Nielsen, T.B.; Petersen, U.R.; Mathiesen, B.V. Electrification of the Industrial Sector in 100% Renewable Energy Scenarios. Energy 2022, 254, 124339. [Google Scholar] [CrossRef]
- Navas-Anguita, Z.; García-Gusano, D.; Dufour, J.; Iribarren, D. Revisiting the Role of Steam Methane Reforming with CO2 Capture and Storage for Long-Term Hydrogen Production. Sci. Total Environ. 2021, 771, 145432. [Google Scholar] [CrossRef]
- Othman, M.F.; Adam, A.; Najafi, G.; Mamat, R. Green Fuel as Alternative Fuel for Diesel Engine: A Review. Renew. Sustain. Energy Rev. 2017, 80, 694–709. [Google Scholar] [CrossRef]
- Dimitriadis, A.; Natsios, I.; Dimaratos, A.; Katsaounis, D.; Samaras, Z.; Bezergianni, S.; Lehto, K. Evaluation of a Hydrotreated Vegetable Oil (HVO) and Effects on Emissions of a Passenger Car Diesel Engine. Front. Mech. Eng. 2018, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Liu, W.; Chen, X.; Yang, Q.; Li, J.; Chen, H. Renewable Bio-Jet Fuel Production for Aviation: A Review. Fuel 2019, 254, 115599. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Biogas Production and Applications in the Sustainable Energy Transition. J. Energy 2022, 2022, 8750221. [Google Scholar] [CrossRef]
- Li, C.J.; Zhang, Y.J.; Chen, H.; He, P.Y. Highly-Effective Production of Renewable Energy Dimethyl Ether over Geopolymer-Based Ferrierite. Fuel 2021, 293, 120486. [Google Scholar] [CrossRef]
- Brouwer, A.S.; van den Broek, M.; Seebregts, A.; Faaij, A. Operational Flexibility and Economics of Power Plants in Future Low-Carbon Power Systems. Appl. Energy 2015, 156, 107–128. [Google Scholar] [CrossRef] [Green Version]
- Nuñez-Jimenez, A.; De Blasio, N. Competitive and Secure Renewable Hydrogen Markets: Three Strategic Scenarios for the European Union. Int. J. Hydrog. Energy 2022, 47, 35553–35570. [Google Scholar] [CrossRef]
- Noussan, M.; Raimondi, P.P.; Scita, R.; Hafner, M. The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective. Sustainability 2021, 13, 298. [Google Scholar] [CrossRef]
- Parrique, T.; Barth, J.; Briens, F.; Kerschner, C.; Kraus-Polk, A.; Kuokkanen, A.; Spangenberg, J.H. Decoupling Debunked—Evidence and Arguments against Green Growth as a Sole Strategy for Sustainability; European Environment Bureau: Brussels, Belgium, 2019. [Google Scholar]
- Rivas, S.; Urraca, R.; Bertoldi, P.; Thiel, C. Towards the EU Green Deal: Local Key Factors to Achieve Ambitious 2030 Climate Targets. J. Clean. Prod. 2021, 320, 128878. [Google Scholar] [CrossRef]
- Di Santo, D.; Biele, E.; Forni, D. White Certificates as a Tool to Promote Energy Efficiency in Industry. In Proceedings of the ECEEE Industrial Summer Study Proceedings, Online, 11 June 2018; 2016; Volume 2016, pp. 151–162. [Google Scholar]
- Forster, D.; Kaar, A.-L.; Rosenow, J.; Leguijt, C.; Pato, Z. Study Evaluating Progress in the Implementation of Article 7 of the Energy Efficiency Directive. Report for DG Energy; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Fawcett, T.; Rosenow, J.; Bertoldi, P. Energy Efficiency Obligation Schemes: Their Future in the EU. Energy Effic. 2019, 12, 57–71. [Google Scholar] [CrossRef]
- Oikonomou, V.; Flamos, A.; Grafakos, S. Combination of Energy Policy Instruments: Creation of Added Value or Overlapping? Energy Sources Part B Econ. Plan. Policy 2014, 9, 46–56. [Google Scholar] [CrossRef]
- Herweg, F. Overlapping Efforts in the EU Emissions Trading System. Econ. Lett. 2020, 193, 109323. [Google Scholar] [CrossRef]
- de Perthuis, C.; Trotignon, R. Governance of CO2 Markets: Lessons from the EU ETS. Energy Policy 2014, 75, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Mazon, J.; Pino, D.; Vinyoles, M. Is Declaring a Climate Emergency Enough to Stop Global Warming? Learning From the COVID-19 Pandemic. Front. Clim. 2022, 4, 848587. [Google Scholar] [CrossRef]
Reference | 2030 Scenario | |
---|---|---|
Petroleum products | 54 | 35 |
Natural gas | 60.9 | 40.9 |
Renewables | 27 | 42.3 |
Electricity import | 3.3 | 2.5 |
Solid fuels (including coal) | 7.7 | 1.8 |
Reference | 2030 Scenario | |
---|---|---|
Biomethane | 0.9 | |
Renewable dimethyl ether | 0.3 | |
Hydrogen | 0.3 | |
e-fuels | 0.2 | |
Bio-LPG | 0.4 | |
Biofuels | 1.3 | 1.7 |
Sector | 2030 Scenario (Mtoe) |
---|---|
Industry | 0.15 |
Transportation | 0.29 |
Refinery | 0.06 |
Petrochemical | 0.02 |
Reference | 2030 Scenario | |
---|---|---|
Final electrical consumption | 291.9 | 307 |
Refineries and other uses | 9.9 | 10 |
Power-to-X | 8.1 | |
Network losses | 17.8 | 20.9 |
Total | 319.6 | 346 |
Reference | 2030 Scenario | |
---|---|---|
Coal | 21.3 | |
Gas | 144.8 | 92.3 |
Petroleum products | 10.2 | 3.6 |
RES | 115.8 | 227 |
Other | 4.2 | 3.1 |
Total | 296.3 | 326 |
2030 Scenario | |
---|---|
Power generation | 2 |
Industry | 2.1 |
Refineries | 0.2 |
Total | 4.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beccarello, M.; Di Foggia, G. Review and Perspectives of Key Decarbonization Drivers to 2030. Energies 2023, 16, 1345. https://doi.org/10.3390/en16031345
Beccarello M, Di Foggia G. Review and Perspectives of Key Decarbonization Drivers to 2030. Energies. 2023; 16(3):1345. https://doi.org/10.3390/en16031345
Chicago/Turabian StyleBeccarello, Massimo, and Giacomo Di Foggia. 2023. "Review and Perspectives of Key Decarbonization Drivers to 2030" Energies 16, no. 3: 1345. https://doi.org/10.3390/en16031345
APA StyleBeccarello, M., & Di Foggia, G. (2023). Review and Perspectives of Key Decarbonization Drivers to 2030. Energies, 16(3), 1345. https://doi.org/10.3390/en16031345