Renewable Energy and Energy Storage Systems
Abstract
:1. Introduction
2. Solar Energy
3. Wind Energy
4. Biomass
5. Hybrid Renewable Energy Sources
6. Renewable Energy Statistics
7. Energy Management
Technology | Power Rating (MW) | Cycle Efficiency (%) | Lifetime (Years) | LCOE ($/kWh) |
---|---|---|---|---|
Compressed Air | 110–1000 | 42–54 | 20–40 | 2–120 |
Pumped Hydro Storage | 30–5000 | 70–87 | 40–60 | 5–100 |
Thermal Energy Storage | 0.1–300 | 30–60 | 20–30 | 3–60 |
Lead Acid Batteries | 0–40 | 63–90 | 5–15 | 50–400 |
Li-ion Batteries | 0–100 | 75–97 | 14–16 | 600–3800 |
Flywheels | 0.25–20 | 90–95 | 15–20 | 1000–14,000 |
Supercapacitors | 0–0.3 | 84–97 | 10–30 | 300–2000 |
Fuel Cells | <58.5 | 20–66 | ~20 | 2–15 |
Super magnetic Conducting Energy Storage | 0.1–10 | 95–98 | 20–30 | 500–72,000 |
Power Plant Name | Technology | Country | Year | Installed Capacity (MW) | Reference |
---|---|---|---|---|---|
Three Gorges Dam | Hydroelectric Power | China | 2003 | 22,500 | [22] |
Itaipu Dam | Hydroelectric Power | Brazil and Paraguay | 1984 | 14,000 | [23] |
Ouarzazate Solar Power Station | Thermal Storage (Molten Satl) | Morocco | 2018 | Total of 7325 MWt NOOR I (1200) MWt NOOR II (3500) MWt NOOR III (2625) MWt | [128] |
Manatee Energy Storage Center | Batteries | United States | 2021 | 409 | [125] |
Moss Landing Vistra Battery | Lithium-Ion Batteries | United States | 2020 | 400 | [126] |
8. Fuel Cells and Green Hydrogen
9. Others
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Makieła, K.; Mazur, B.; Głowacki, J. The Impact of Renewable Energy Supply on Economic Growth and Productivity. Energies 2022, 15, 4808. [Google Scholar] [CrossRef]
- Khezri, M.; Karimi, M.S.; Mamkhezri, J.; Ghazal, R.; Blank, L. Assessing the Impact of Selected Determinants on Renewable Energy Sources in the Electricity Mix: The Case of ASEAN Countries. Energies 2022, 15, 4604. [Google Scholar] [CrossRef]
- Zhu, Y.; Huo, C. The Impact of Agricultural Production Efficiency on Agricultural Carbon Emissions in China. Energies 2022, 15, 4464. [Google Scholar] [CrossRef]
- Roosjen, S.; Glushenkov, M.; Kronberg, A.; Kersten, S. Waste Heat Recovery Systems with Isobaric Expansion Technology Using Pure and Mixed Working Fluids. Energies 2022, 15, 5265. [Google Scholar] [CrossRef]
- Shiojiri, D.; Iida, T.; Hirayama, N.; Imai, Y.; Sugawara, H.; Kusaka, J. Recent Studies on the Environmentally Benign Alkaline-Earth Silicide Mg2Si for Middle-Temperature Thermoelectric Applications. Energies 2022, 15, 4859. [Google Scholar] [CrossRef]
- Sousa, C.C.; Martins, J.; Carvalho, Ó.; Coelho, M.; Moita, A.S.; Brito, F.P. Assessment of an Exhaust Thermoelectric Generator Incorporating Thermal Control Applied to a Heavy Duty Vehicle. Energies 2022, 15, 4787. [Google Scholar] [CrossRef]
- Wilberforce, T.; Ijaodola, O.; Baroutaji, A.; Ogungbemi, E.; Olabi, A.G. Effect of Bipolar Plate Material on Proton Exchange Membrane Fuel Cell Performance. Energies 2022, 15, 1886. [Google Scholar] [CrossRef]
- Alaswad, A.; Omran, A.; Sodre, J.R.; Wilberforce, T.; Pignatelli, G.; Dassisti, M.; Baroutaji, A.; Olabi, A.G. Technical and Commercial Challenges of Proton-Exchange Membrane (PEM) Fuel Cells. Energies 2020, 14, 144. [Google Scholar] [CrossRef]
- Olabi, A.G.; Wilberforce, T.; Sayed, E.T.; Elsaid, K.; Abdelkareem, M.A. Prospects of Fuel Cell Combined Heat and Power Systems. Energies 2020, 13, 4104. [Google Scholar] [CrossRef]
- Said, R.; Bhatti, M.I.; Hunjra, A.I. Toward Understanding Renewable Energy and Sustainable Development in Developing and Developed Economies: A Review. Energies 2022, 15, 5349. [Google Scholar] [CrossRef]
- Meirinhos, G.; Malebo, M.; Cardoso, A.; Silva, R.; Rêgo, R. Information and Public Knowledge of the Potential of Alternative Energies. Energies 2022, 15, 4928. [Google Scholar] [CrossRef]
- Ahmed, N.; Sheikh, A.A.; Hamid, Z.; Senkus, P.; Borda, R.C.; Wysokińska-Senkus, A.; Glabiszewski, W. Exploring the Causal Relationship among Green Taxes, Energy Intensity, and Energy Consumption in Nordic Countries: Dumitrescu and Hurlin Causality Approach. Energies 2022, 15, 5199. [Google Scholar] [CrossRef]
- Veerendra Kumar, D.J.; Deville, L.; Ritter, K.A., III; Raush, J.R.; Ferdowsi, F.; Gottumukkala, R.; Chambers, T.L. Performance Evaluation of 1.1 MW Grid-Connected Solar Photovoltaic Power Plant in Louisiana. Energies 2022, 15, 3420. [Google Scholar] [CrossRef]
- Duvenhage, D.F.; Brent, A.C.; Stafford, W.H.L.; den Heever, D. Optimising the Concentrating Solar Power Potential in South Africa through an Improved GIS Analysis. Energies 2020, 13, 3258. [Google Scholar] [CrossRef]
- Marchand, J.; Shetgaonkar, A.; Rueda Torres, J.L.; Lekic, A.; Palensky, P. EMT Real-Time Simulation Model of a 2 GW Offshore Renewable Energy Hub Integrating Electrolysers. Energies 2021, 14, 8547. [Google Scholar] [CrossRef]
- Himri, Y.; Rehman, S.; Mostafaeipour, A.; Himri, S.; Mellit, A.; Merzouk, M.; Merzouk, N.K. Overview of the Role of Energy Resources in Algeria’s Energy Transition. Energies 2022, 15, 4731. [Google Scholar] [CrossRef]
- Yu, Y.; Pham, T.D.; Shin, H.; Ha, K. Study on the Motion Characteristics of 10 MW Superconducting Floating Offshore Wind Turbine Considering 2nd Order Wave Effect. Energies 2021, 14, 6070. [Google Scholar] [CrossRef]
- Baba, Y.; Pandyaswargo, A.H.; Onoda, H. An Analysis of the Current Status of Woody Biomass Gasification Power Generation in Japan. Energies 2020, 13, 4903. [Google Scholar] [CrossRef]
- Battista, F.; Frison, N.; Bolzonella, D. Energy and Nutrients’ Recovery in Anaerobic Digestion of Agricultural Biomass: An Italian Perspective for Future Applications. Energies 2019, 12, 3287. [Google Scholar] [CrossRef]
- Garduño-Ruiz, E.P.; Silva, R.; Rodríguez-Cueto, Y.; García-Huante, A.; Olmedo-González, J.; Martínez, M.L.; Wojtarowski, A.; Martell-Dubois, R.; Cerdeira-Estrada, S. Criteria for Optimal Site Selection for Ocean Thermal Energy Conversion (OTEC) Plants in Mexico. Energies 2021, 14, 2121. [Google Scholar] [CrossRef]
- Ng, K.-W.; Lam, W.-H.; Ng, K.-C. 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines. Energies 2013, 6, 1497–1526. [Google Scholar] [CrossRef]
- Kumar, B.R. Case 16: Three Gorges Dam—The World’s Largest Hydroelectric Plant. In Project Finance; Springer: Cham, Switzerland, 2022; pp. 183–186. [Google Scholar] [CrossRef]
- ENERGY|ITAIPU BINACIONAL. Available online: https://www.itaipu.gov.br/en/energy/energy (accessed on 9 January 2023).
- Kumar, B.R. Case 21: Bhadla Solar Park. In Project Finance; Springer: Cham, Switzerland, 2022; pp. 205–208. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, P.; Cheng, L.; Liu, D.; Ming, B.; Li, H.; Xia, Q. Sizing utility-scale photovoltaic power generation for integration into a hydropower plant considering the effects of climate change: A case study in the Longyangxia of China. Energy 2021, 236, 121519. [Google Scholar] [CrossRef]
- Khaldia, B.; Sadji, F.; Riadh, B. China Experience in Renewable Energies. J. Manag. Econ. Sci. Prospect 2022, 06, 700–718. [Google Scholar]
- Wang, H.Y.; Chen, B.; Pan, D.; Lv, Z.-A.; Huang, S.-Q.; Khayatnezhad, M.; Jimenez, G. Optimal wind energy generation considering climatic variables by Deep Belief network (DBN) model based on modified coot optimization algorithm (MCOA). Sustain. Energy Technol. Assess. 2022, 53, 102744. [Google Scholar] [CrossRef]
- Haidi, T.; Cheddadi, B. State of Wind Energy in the World: Evolution, Impacts and Perspectives. Int. J. Tech. Phys. Probl. Eng. 2022, 41, 347–352. Available online: https://www.iotpe.com (accessed on 9 January 2023).
- Sutcu, M.; Yasin Güner, F.; Duran, R.; Söylemez, İ. Decision Making of Suitable Bioenergy Power Plant Location: A Case Study. ACSIS 2020, 24, 11–14. [Google Scholar] [CrossRef]
- OPET-Organisations for the Promotion of Energy Technologies. The World´s Largest Biofuel CHP Plant Alholmens Kraft, Pietarsaari. Available online: https://www.tekes.fi/opet/ (accessed on 9 January 2023).
- Abbas, T.; Issa, M.; Ilinca, A.; El-Ali, A. Biomass Combined Heat and Power Generation for Anticosti Island: A Case Study. J. Power Energy Eng. 2020, 8, 64–87. [Google Scholar] [CrossRef]
- Simla, T.; Stanek, W. Influence of the wind energy sector on thermal power plants in the Polish energy system. Renew. Energy 2020, 161, 928–938. [Google Scholar] [CrossRef]
- Awuku, S.A.; Bennadji, A.; Muhammad-Sukki, F.; Sellami, N. Promoting the Solar Industry in Ghana through Effective Public-Private Partnership (PPP): Some Lessons from South Africa and Morocco. Energies 2021, 15, 17. [Google Scholar] [CrossRef]
- Ivanpah Solar Electric Generating System|Concentrating Solar Power Projects|NREL. Available online: https://solarpaces.nrel.gov/project/ivanpah-solar-electric-generating-system (accessed on 9 January 2023).
- Mojave Solar Project|Concentrating Solar Power Projects|NREL. Available online: https://solarpaces.nrel.gov/project/mojave-solar-project (accessed on 9 January 2023).
- Nair, D.R.; Nair, M.G.; Thakur, T. A Smart Microgrid System with Artificial Intelligence for Power-Sharing and Power Quality Improvement. Energies 2022, 15, 5409. [Google Scholar] [CrossRef]
- Rezk, H.; Alamri, B.; Aly, M.; Fathy, A.; Olabi, A.G.; Abdelkareem, M.A.; Ziedan, H.A. Multicriteria Decision-Making to Determine the Optimal Energy Management Strategy of Hybrid PV–Diesel Battery-Based Desalination System. Sustainability 2021, 13, 4202. [Google Scholar] [CrossRef]
- Kaushik, E.; Prakash, V.; Mahela, O.P.; Khan, B.; El-Shahat, A.; Abdelaziz, A.Y. Comprehensive Overview of Power System Flexibility during the Scenario of High Penetration of Renewable Energy in Utility Grid. Energies 2022, 15, 516. [Google Scholar] [CrossRef]
- Impram, S.; Varbak Nese, S.; Oral, B. Challenges of renewable energy penetration on power system flexibility: A survey. Energy Strategy Rev. 2020, 31, 100539. [Google Scholar] [CrossRef]
- Sadeghi, H.; Rashidinejad, M.; Abdollahi, A. A comprehensive sequential review study through the generation expansion planning. Renew. Sustain. Energy Rev. 2017, 67, 1369–1394. [Google Scholar] [CrossRef]
- Hajian, H.; Simson, R.; Kurnitski, J. Heating Sizing Power Reduction in Buildings Connected to District Heating with Dynamically Controlled DHW Setback and Flow Limiters. Energies 2022, 15, 5278. [Google Scholar] [CrossRef]
- Nasr Esfahani, F.; Darwish, A.; Williams, B.W. Power Converter Topologies for Grid-Tied Solar Photovoltaic (PV) Powered Electric Vehicles (EVs)—A Comprehensive Review. Energies 2022, 15, 4648. [Google Scholar] [CrossRef]
- Maghrabie, H.M.; Abdelkareem, M.A.; Al-Alami, A.H.; Ramadan, M.; Mushtaha, E.; Wilberforce, T.; Olabi, A.G. State-of-the-Art Technologies for Building-Integrated Photovoltaic Systems. Buildings 2021, 11, 383. [Google Scholar] [CrossRef]
- Sonawane, C.R.; Panchal, H.N.; Hoseinzadeh, S.; Ghasemi, M.H.; Alrubaie, A.J.; Sohani, A. Bibliometric Analysis of Solar Desalination Systems Powered by Solar Energy and CFD Modelled. Energies 2022, 15, 5279. [Google Scholar] [CrossRef]
- Muna, Y.B.; Kuo, C.-C. Feasibility and Techno-Economic Analysis of Electric Vehicle Charging of PV/Wind/Diesel/Battery Hybrid Energy System with Different Battery Technology. Energies 2022, 15, 4364. [Google Scholar] [CrossRef]
- Ndukwu, M.C.; Ibeh, M.; Ekop, I.; Abada, U.; Etim, P.; Bennamoun, L.; Abam, F.; Simo-Tagne, M.; Gupta, A. Analysis of the Heat Transfer Coefficient, Thermal Effusivity and Mathematical Modelling of Drying Kinetics of a Partitioned Single Pass Low-Cost Solar Drying of Cocoyam Chips with Economic Assessments. Energies 2022, 15, 4457. [Google Scholar] [CrossRef]
- Sunny, F.A.; Fu, L.; Rahman, M.S.; Huang, Z. Determinants and Impact of Solar Irrigation Facility (SIF) Adoption: A Case Study in Northern Bangladesh. Energies 2022, 15, 2460. [Google Scholar] [CrossRef]
- Zhang, H.L.; Baeyens, J.; Degrève, J.; Cacères, G. Concentrated solar power plants: Review and design methodology. Renew. Sustain. Energy Rev. 2013, 22, 466–481. [Google Scholar] [CrossRef]
- Technology Roadmap—Concentrating Solar Power. Available online: https://www.iea.org/about/copyright.asp (accessed on 14 November 2022).
- Ahmadi, M.H.; Ghazvini, M.; Sadeghzadeh, M.; Nazari, M.A.; Kumar, R.; Naeimi, A.; Ming, T. Solar power technology for electricity generation: A critical review. Energy Sci. Eng. 2018, 6, 340–361. [Google Scholar] [CrossRef]
- Desideri, U.; Zepparelli, F.; Morettini, V.; Garroni, E. Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations. Appl. Energy 2013, 102, 765–784. [Google Scholar] [CrossRef]
- Gamarra, A.R.; Banacloche, S.; Lechon, Y.; del Río, P. Assessing the sustainability impacts of concentrated solar power deployment in Europe in the context of global value chains. Renew. Sustain. Energy Rev. 2023, 171, 113004. [Google Scholar] [CrossRef]
- Hansen, K.; Vad Mathiesen, B. Comprehensive assessment of the role and potential for solar thermal in future energy systems. Sol. Energy 2018, 169, 144–152. [Google Scholar] [CrossRef]
- Lambrecht, M.; de Miguel, M.T.; Lasanta, M.I.; Pérez, F.J. Past research and future strategies for molten chlorides application in concentrated solar power technology. Sol. Energy Mater. Sol. Cells 2022, 237, 111557. [Google Scholar] [CrossRef]
- Montenon, A.C.; Meligy, R. Control Strategies Applied to a Heat Transfer Loop of a Linear Fresnel Collector. Energies 2022, 15, 3338. [Google Scholar] [CrossRef]
- Leonardi, M.; Corso, R.; Milazzo, R.G.; Connelli, C.; Foti, M.; Gerardi, C.; Bizzarri, F.; Privitera, S.M.S.; Lombardo, S.A. The Effects of Module Temperature on the Energy Yield of Bifacial Photovoltaics: Data and Model. Energies 2021, 15, 22. [Google Scholar] [CrossRef]
- Vance, D.; Razban, A.; Schubert, P.; Weissbach, R. Investigation into Sizing Photovoltaic with Energy Storage for Off-Grid Transactive Scenarios. Energies 2021, 14, 1062. [Google Scholar] [CrossRef]
- Anani, N.; Ibrahim, H. Performance Evaluation of Analytical Methods for Parameters Extraction of Photovoltaic Generators. Energies 2020, 13, 4825. [Google Scholar] [CrossRef]
- Mohamed, A.S.A.; Maghrabie, H.M. Techno-economic feasibility analysis of Benban solar Park. Alex. Eng. J. 2022, 61, 12593–12607. [Google Scholar] [CrossRef]
- World’s Largest Standalone Solar Power Plant|Noor Abu Dhabi. Available online: https://noorabudhabi.ae/ (accessed on 10 January 2023).
- Noor Energy—The largest single-site concentrated solar power plant in the world. Available online: http://noorenergy.ae/ (accessed on 10 January 2023).
- Olabi, A.G.; Wilberforce, T.; Elsaid, K.; Salameh, T.; Sayed, E.T.; Husain, K.S.; Abdelkareem, M.A. Selection Guidelines for Wind Energy Technologies. Energies 2021, 14, 3244. [Google Scholar] [CrossRef]
- Hansen, L.H.; Madsen, P.H.; Blaabjerg, F.; Christensen, H.C.; Lindhard, U.; Eskildsen, K. Generators and power electronics technology for wind turbines. In Proceedings of the IECON’01. 27th Annual Conference of the IEEE Industrial Electronics Society, Denver, CO, USA, 29 November–2 December 2001; pp. 2000–2005. [Google Scholar] [CrossRef]
- Kumar, Y.; Ringenberg, J.; Depuru, S.S.; Devabhaktuni, V.K.; Lee, J.W.; Nikolaidis, E.; Andersen, B.; Afjeh, A. Wind energy: Trends and enabling technologies. Renew. Sustain. Energy Rev. 2016, 53, 209–224. [Google Scholar] [CrossRef]
- Riegler, H. HAWT versus VAWT: Small VAWTs find a clear niche. Refocus 2003, 4, 44–46. [Google Scholar] [CrossRef]
- Hossain, S. Comparative Study on Horizontal Axis Wind Turbines and Vertical Axis Wind Turbines. Bachelor Thesis, World University of Bangladesh, Dhaka, Bangladesh, 2019. Available online: https://www.researchgate.net/publication/351233790 (accessed on 7 January 2023).
- USEPA; OW; OWM; WID; SCIB. United States Environmental Protection Agency Renewable Energy Fact Sheet: Wind Turbines; EPA: Washington, DC, USA, 2013.
- Rostami, A.B.; Armandei, M. Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies. Renew. Sustain. Energy Rev. 2017, 70, 193–214. [Google Scholar] [CrossRef]
- Bahadur, I. Dynamic Modeling and Investigation of a Tunable Vortex Bladeless Wind Turbine. Energies 2022, 15, 6773. [Google Scholar] [CrossRef]
- Manshadi, M.D.; Ghassemi, M.; Mousavi, S.M.; Mosavi, A.H.; Kovacs, L. Predicting the Parameters of Vortex Bladeless Wind Turbine Using Deep Learning Method of Long Short-Term Memory. Energies 2021, 14, 4867. [Google Scholar] [CrossRef]
- Francis, S.; Umesh, V.; Shivakumar, S. Design and Analysis of Vortex Bladeless Wind Turbine. Mater. Today Proc. 2021, 47, 5584–5588. [Google Scholar] [CrossRef]
- Thakre, M.; Aher, S.; Chavan, P.; Deshmukh, R.; Pawar, V.; Patil, J. Architecture, Advancement and Assessment of a Bladeless Wind Solar Hybrid System in Comparison to a Traditional Hybrid Solar System. SSRN Electron. J. 2021. [Google Scholar] [CrossRef]
- Li, Y.; Chi, Y.; Wang, X.; Tian, X.; Jianqing, J. Practices and Challenge on Planning with Large-scale Renewable Energy Grid Integration. In Proceedings of the 2019 3rd IEEE Conference on Energy Internet and Energy System Integration: Ubiquitous Energy Network Connecting Everything, EI2 2019, Changsha, China, 8–10 November 2019; pp. 118–121. [Google Scholar] [CrossRef]
- Hatkar, A.A. Harnessing Wind Energy. resmilitaris 2022, 12, 380–400. Available online: https://resmilitaris.net/menu-script/index.php/resmilitaris/article/view/2223 (accessed on 10 January 2023).
- Zhang, W.; Tong, Y.; Wang, H.; Chen, L.; Ou, L.; Wang, X.; Liu, G.; Zhu, Y. Emission of Metals from Pelletized and Uncompressed Biomass Fuels Combustion in Rural Household Stoves in China. Sci. Rep. 2014, 4, 5611. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Trejo, J.C.; Vega-Nieva, D.J.; Heya, M.N.; Prieto-Ruíz, J.A.; Nava-Berúmen, C.A.; Carrillo-Parra, A. Sintering and Fusibility Risks of Pellet Ash from Different Sources at Different Combustion Temperatures. Energies 2022, 15, 5026. [Google Scholar] [CrossRef]
- Xu, M.; Sheng, C. Modeling the Process and Properties of Ash Formation during Pulverized Biomass Combustion. Energies 2022, 15, 4417. [Google Scholar] [CrossRef]
- Banerjee, A.; Calay, R.K.; Mustafa, M. Review on Material and Design of Anode for Microbial Fuel Cell. Energies 2022, 15, 2283. [Google Scholar] [CrossRef]
- Sayed, E.T.; Alawadhi, H.; Elsaid, K.; Olabi, A.G.; Adel Almakrani, M.; Bin Tamim, S.T.; Alafranji, G.H.M.; Abdelkareem, M.A. A Carbon-Cloth Anode Electroplated with Iron Nanostructure for Microbial Fuel Cell Operated with Real Wastewater. Sustainability 2020, 12, 6538. [Google Scholar] [CrossRef]
- Pham, T.N.T.; Yoon, Y.S. Development of Nanosized Mn3O4-Co3O4 on Multiwalled Carbon Nanotubes for Cathode Catalyst in Urea Fuel Cell. Energies 2020, 13, 2322. [Google Scholar] [CrossRef]
- Rizal, T.A.; Khairil, M.; Husin, H.; Nasution, F.; Umar, H. The Experimental Study of Pangium Edule Biodiesel in a High-Speed Diesel Generator for Biopower Electricity. Energies 2022, 15, 5405. [Google Scholar] [CrossRef]
- Borowiak, D.; Krzywonos, M. Bioenergy, Biofuels, Lipids and Pigments—Research Trends in the Use of Microalgae Grown in Photobioreactors. Energies 2022, 15, 5357. [Google Scholar] [CrossRef]
- Yang, N.; Deng, X.; Liu, B.; Li, L.; Li, Y.; Li, P.; Tang, M.; Wu, L. Combustion Performance and Emission Characteristics of Marine Engine Burning with Different Biodiesel. Energies 2022, 15, 5177. [Google Scholar] [CrossRef]
- Sait, H.H.; Hussain, A.; Bassyouni, M.; Ali, I.; Kanthasamy, R.; Ayodele, B.V.; Elhenawy, Y. Hydrogen-Rich Syngas and Biochar Production by Non-Catalytic Valorization of Date Palm Seeds. Energies 2022, 15, 2727. [Google Scholar] [CrossRef]
- Sieradzka, M.; Kirczuk, C.; Kalemba-Rec, I.; Mlonka-Mędrala, A.; Magdziarz, A. Pyrolysis of Biomass Wastes into Carbon Materials. Energies 2022, 15, 1941. [Google Scholar] [CrossRef]
- Han, S.; Bai, L.; Chi, M.; Xu, X.; Chen, Z.; Yu, K. Conversion of Waste Corn Straw to Value-Added Fuel via Hydrothermal Carbonization after Acid Washing. Energies 2022, 15, 1828. [Google Scholar] [CrossRef]
- Kshatriya, A.S.; Tiwari, P.; M, S.; Yunus Khan, T.M.; Abdul Khadar, S.D.; Mansour, M.; M, F. Investigations into the Combined Effect of Mahua Biodiesel Blends and Biogas in a Dual Fuel Engine. Energies 2022, 15, 2057. [Google Scholar] [CrossRef]
- Kapłan, M.; Klimek, K.; Maj, G.; Zhuravel, D.; Bondar, A.; Lemeshchenko-Lagoda, V.; Boltianskyi, B.; Boltianska, L.; Syrotyuk, H.; Syrotyuk, S.; et al. Method of Evaluation of Materials Wear of Cylinder-Piston Group of Diesel Engines in the Biodiesel Fuel Environment. Energies 2022, 15, 3416. [Google Scholar] [CrossRef]
- Lv, J.; Wang, S.; Meng, B. The Effects of Nano-Additives Added to Diesel-Biodiesel Fuel Blends on Combustion and Emission Characteristics of Diesel Engine: A Review. Energies 2022, 15, 1032. [Google Scholar] [CrossRef]
- Thithai, V.; Jin, X.; Ajaz Ahmed, M.; Choi, J.-W. Physicochemical Properties of Activated Carbons Produced from Coffee Waste and Empty Fruit Bunch by Chemical Activation Method. Energies 2021, 14, 3002. [Google Scholar] [CrossRef]
- Diaz, C.A.; Shah, R.K.; Evans, T.; Trabold, T.A.; Draper, K. Thermoformed Containers Based on Starch and Starch/Coffee Waste Biochar Composites. Energies 2020, 13, 6034. [Google Scholar] [CrossRef]
- Choi, S.K.; Choi, Y.S.; Jeong, Y.W.; Han, S.Y.; Van Nguyen, Q. Simulation of the Fast Pyrolysis of Coffee Ground in a Tilted-Slide Reactor. Energies 2020, 13, 6605. [Google Scholar] [CrossRef]
- Choi, S.K.; Choi, Y.S.; Jeong, Y.W.; Han, S.Y.; Nguyen, Q. Characteristics of Flame Stability and Gaseous Emission of Bio-Crude Oil from Coffee Ground in a Pilot-Scale Spray Burner. Energies 2020, 13, 2882. [Google Scholar] [CrossRef]
- Li, H.; Shi, Y.; Bai, L.; Chi, M.; Xu, X.; Liu, Y. Low Temperature One-Pot Hydrothermal Carbonization of Corn Straw into Hydrochar for Adsorbing Cadmium (II) in Wastewater. Energies 2021, 14, 8503. [Google Scholar] [CrossRef]
- Jenkins, B.M.; Baxter, L.L.; Koppejan, J. Biomass Combustion. In Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power; Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 49–83. [Google Scholar] [CrossRef]
- Nickull, S. Europe’s largest cogeneration scheme based on biomass. VGB PowerTech 2002, 82, 62–65. [Google Scholar]
- Zdiri, M.A.; Guesmi, T.; Alshammari, B.M.; Alqunun, K.; Almalaq, A.; Salem, F.B.; Hadj Abdallah, H.; Toumi, A. Design and Analysis of Sliding-Mode Artificial Neural Network Control Strategy for Hybrid PV-Battery-Supercapacitor System. Energies 2022, 15, 4099. [Google Scholar] [CrossRef]
- Belboul, Z.; Toual, B.; Kouzou, A.; Mokrani, L.; Bensalem, A.; Kennel, R.; Abdelrahem, M. Multiobjective Optimization of a Hybrid PV/Wind/Battery/Diesel Generator System Integrated in Microgrid: A Case Study in Djelfa, Algeria. Energies 2022, 15, 3579. [Google Scholar] [CrossRef]
- Khan, M.J.; Kumar, D.; Narayan, Y.; Malik, H.; García Márquez, F.P.; Gómez Muñoz, C.Q. A Novel Artificial Intelligence Maximum Power Point Tracking Technique for Integrated PV-WT-FC Frameworks. Energies 2022, 15, 3352. [Google Scholar] [CrossRef]
- Singh, S.; Chauhan, P.; Singh, N.J. Capacity optimization of grid connected solar/fuel cell energy system using hybrid ABC-PSO algorithm. Int. J. Hydrogen Energy 2020, 45, 10070–10088. [Google Scholar] [CrossRef]
- Kim, J.-W.; Ahn, H.; Seo, H.C.; Lee, S.C. Optimization of Solar/Fuel Cell Hybrid Energy System Using the Combinatorial Dynamic Encoding Algorithm for Searches (cDEAS). Energies 2022, 15, 2779. [Google Scholar] [CrossRef]
- Bauer, R.; Schopf, D.; Klaus, G.; Brotsack, R.; Valdes, J. Energy Cell Simulation for Sector Coupling with Power-to-Methane: A Case Study in Lower Bavaria. Energies 2022, 15, 2640. [Google Scholar] [CrossRef]
- Gajewski, P.; Pieńkowski, K. Control of the Hybrid Renewable Energy System with Wind Turbine, Photovoltaic Panels and Battery Energy Storage. Energies 2021, 14, 1595. [Google Scholar] [CrossRef]
- Rashid, M.M.U.; Alotaibi, M.A.; Chowdhury, A.H.; Rahman, M.; Alam, M.S.; Hossain, M.A.; Abido, M.A. Home Energy Management for Community Microgrids Using Optimal Power Sharing Algorithm. Energies 2021, 14, 1060. [Google Scholar] [CrossRef]
- Papadopoulou, A.G.; Vasileiou, G.; Flamos, A. A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power? Energies 2020, 13, 4768. [Google Scholar] [CrossRef]
- Come Zebra, E.I.; van der Windt, H.J.; Nhumaio, G.; Faaij, A.P.C. A Review of Hybrid Renewable Energy Systems in Mini-Grids for off-Grid Electrification in Developing Countries. Renew. Sustain. Energy Rev. 2021, 144, 111036. [Google Scholar] [CrossRef]
- Wind Solar Hybrid Project—Case Study|CleanMax. Available online: https://www.cleanmax.com/case-studies/case-study-wind-solar-hybrid.php (accessed on 11 January 2023).
- International Renewable Energy Agency. About IRENA. In Renewable Energy Statistics 2022. Statistiques D’énergie Renouvelable 2022. Estadísticas de Energía Renovable 2022; IRENA: Masdar, United Arab Emirates, 2022; Available online: https://www.irena.org (accessed on 26 December 2022).
- Akinyele, D.O.; Rayudu, R.K. Review of energy storage technologies for sustainable power networks. Sustain. Energy Technol. Assess. 2014, 8, 74–91. [Google Scholar] [CrossRef]
- Ai, W.; Zhang, C.; Xia, L.; Miao, H.; Yuan, J. Synthesis of High-Quality Two-Dimensional V2C MXene for Supercapacitor Application. Energies 2022, 15, 3696. [Google Scholar] [CrossRef]
- Tadesse, M.G.; Kasaw, E.; Fentahun, B.; Loghin, E.; Lübben, J.F. Banana Peel and Conductive Polymers-Based Flexible Supercapacitors for Energy Harvesting and Storage. Energies 2022, 15, 2471. [Google Scholar] [CrossRef]
- Olabi, A.G.; Sayed, E.T.; Wilberforce, T.; Jamal, A.; Alami, A.H.; Elsaid, K.; Rahman, S.M.A.; Shah, S.K.; Abdelkareem, M.A. Metal-Air Batteries—A Review. Energies 2021, 14, 7373. [Google Scholar] [CrossRef]
- Wang, S.; Ren, P.; Takyi-Aninakwa, P.; Jin, S.; Fernandez, C. A Critical Review of Improved Deep Convolutional Neural Network for Multi-Timescale State Prediction of Lithium-Ion Batteries. Energies 2022, 15, 5053. [Google Scholar] [CrossRef]
- Olabi, A.G.; Wilberforce, T.; Abdelkareem, M.A.; Ramadan, M. Critical Review of Flywheel Energy Storage System. Energies 2021, 14, 2159. [Google Scholar] [CrossRef]
- Zhang, W.; Gu, X.; Zhang, L. Robust Controller Considering Road Disturbances for a Vehicular Flywheel Battery System. Energies 2022, 15, 5432. [Google Scholar] [CrossRef]
- Yu, Q.; Tian, L.; Li, X.; Tan, X. Compressed Air Energy Storage Capacity Configuration and Economic Evaluation Considering the Uncertainty of Wind Energy. Energies 2022, 15, 4637. [Google Scholar] [CrossRef]
- Lin, Z.; Zuo, Z.; Li, W.; Sun, J.; Zhou, X.; Chen, H.; Zhou, X. Experimental and Numerical Analysis of the Impeller Backside Cavity in a Centrifugal Compressor for CAES. Energies 2022, 15, 420. [Google Scholar] [CrossRef]
- Gao, X.; Wei, S.; Xia, C.; Li, Y. Flexible Operation of Concentrating Solar Power Plant with Thermal Energy Storage Based on a Coordinated Control Strategy. Energies 2022, 15, 4929. [Google Scholar] [CrossRef]
- Falcone, M.; Rehman, D.; Dongellini, M.; Naldi, C.; Pulvirenti, B.; Morini, G.L. Experimental Investigation on Latent Thermal Energy Storages (LTESs) Based on Pure and Copper-Foam-Loaded PCMs. Energies 2022, 15, 4894. [Google Scholar] [CrossRef]
- Alnaqbi, S.A.; Alasad, S.; Aljaghoub, H.; Alami, A.H.; Abdelkareem, M.A.; Olabi, A.G. Applicability of Hydropower Generation and Pumped Hydro Energy Storage in the Middle East and North Africa. Energies 2022, 15, 2412. [Google Scholar] [CrossRef]
- Görtz, J.; Aouad, M.; Wieprecht, S.; Terheiden, K. Assessment of pumped hydropower energy storage potential along rivers and shorelines. Renew. Sustain. Energy Rev. 2022, 165, 112027. [Google Scholar] [CrossRef]
- Alami, A.H. Compressed-Air Energy Storage Systems, Mechanical Energy Storage for Renewable and Sustainable Energy Resources. Advances in Science, Technology and Innovation; Springer: Cham, Switzerland, 2020; pp. 67–85. [Google Scholar] [CrossRef]
- Chukwuka, C.; Folly, K.A. Batteries and super-capacitors. In Proceedings of the IEEE Power and Energy Society Conference and Exposition in Africa: Intelligent Grid Integration of Renewable Energy Resources (PowerAfrica), Johannesburg, South Africa, 9–13 July 2012. [Google Scholar] [CrossRef]
- Alami, A.H. Thermal Storage, Mechanical Energy Storage for Renewable and Sustainable Energy Resources. Advances in Science, Technology and Innovation; Springer: Cham, Switzerland, 2020; pp. 27–34. [Google Scholar] [CrossRef]
- Tarekegne, B.W.; O’Neil, R.S.; Michener, S.R. Energy Storage and Power Plant Decommissioning; Technical Report; US Department of Energy: Washington, DC, USA, 2021. [CrossRef]
- Turley, B.; Cantor, A.; Berry, K.; Knuth, S.; Mulvaney, D.; Vineyard, N. Emergent landscapes of renewable energy storage: Considering just transitions in the Western United States. Energy Res. Soc. Sci. 2022, 90, 102583. [Google Scholar] [CrossRef]
- Ekic, A.; Wu, D.; Jiang, J.N. Impact of Solar Inverter Dynamics during Grid Restoration Period on Protection Schemes Based on Negative-Sequence Components. Energies 2022, 15, 4360. [Google Scholar] [CrossRef]
- MA|Concentrating Solar Power Projects|NREL. Available online: https://solarpaces.nrel.gov/by-country/MA (accessed on 11 January 2023).
- Pijarski, P.; Kacejko, P. Voltage Optimization in MV Network with Distributed Generation Using Power Consumption Control in Electrolysis Installations. Energies 2021, 14, 993. [Google Scholar] [CrossRef]
- Alonso-Travesset, À.; Martín, H.; Coronas, S.; Hoz, J. Optimization Models under Uncertainty in Distributed Generation Systems: A Review. Energies 2022, 15, 1932. [Google Scholar] [CrossRef]
- Xue, Q.; Zhang, X.; Teng, T.; Zhang, J.; Feng, Z.; Lv, Q. A Comprehensive Review on Classification, Energy Management Strategy, and Control Algorithm for Hybrid Electric Vehicles. Energies 2020, 13, 5355. [Google Scholar] [CrossRef]
- Kanagaraj, N.; Rezk, H.; Gomaa, M.R. A Variable Fractional Order Fuzzy Logic Control Based MPPT Technique for Improving Energy Conversion Efficiency of Thermoelectric Power Generator. Energies 2020, 13, 4531. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, J.; Song, J.; Ye, J. Research on Energy Management Strategy of Fuel Cell Vehicle Based on Multi-Dimensional Dynamic Programming. Energies 2022, 15, 5190. [Google Scholar] [CrossRef]
- Alves, M.P.; Gul, W.; Cimini, C.A., Jr.; Ha, S.K. A Review on Industrial Perspectives and Challenges on Material, Manufacturing, Design and Development of Compressed Hydrogen Storage Tanks for the Transportation Sector. Energies 2022, 15, 5152. [Google Scholar] [CrossRef]
- Samsun, R.C.; Rex, M.; Antoni, L.; Stolten, D. Deployment of Fuel Cell Vehicles and Hydrogen Refueling Station Infrastructure: A Global Overview and Perspectives. Energies 2022, 15, 4975. [Google Scholar] [CrossRef]
- Peloriadi, K.; Iliadis, P.; Boutikos, P.; Atsonios, K.; Grammelis, P.; Nikolopoulos, A. Technoeconomic Assessment of LNG-Fueled Solid Oxide Fuel Cells in Small Island Systems: The Patmos Island Case Study. Energies 2022, 15, 3892. [Google Scholar] [CrossRef]
- Sá, M.H.; Pinto, A.M.F.R.; Oliveira, V.B. Passive Small Direct Alcohol Fuel Cells for Low-Power Portable Applications: Assessment Based on Innovative Increments since 2018. Energies 2022, 15, 3787. [Google Scholar]
- Tiedemann, T.; Kroener, M.; Vehse, M.; Agert, C. Fuel Cell Electrical Vehicles as Mobile Coupled Heat and Power Backup-Plant in Neighbourhoods. Energies 2022, 15, 2704. [Google Scholar] [CrossRef]
- Felseghi, R.-A.; Carcadea, E.; Raboaca, M.S.; Trufin, C.N.; Filote, C. Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications. Energies 2019, 12, 4593. [Google Scholar] [CrossRef]
- Sutharssan, T.; Montalvao, D.; Chen, Y.K.; Wang, W.C.; Pisac, C.; Elemara, H. A review on prognostics and health monitoring of proton exchange membrane fuel cell. Renew. Sustain. Energy Rev. 2017, 75, 440–450. [Google Scholar] [CrossRef]
- Ijaodola, O.; Ogungbemi, E.; Khatib, F.N.; Wilberforce, T.; Ramadan, M.; El Hassan, Z.; Thompson, J.; Olabi, A.G. Evaluating the Effect of Metal Bipolar Plate Coating on the Performance of Proton Exchange Membrane Fuel Cells. Energies 2018, 11, 3203. [Google Scholar] [CrossRef]
- Pourrahmani, H.; Siavashi, M.; Yavarinasab, A.; Matian, M.; Chitgar, N.; Wang, L.; Van Herle, J. A Review on the Long-Term Performance of Proton Exchange Membrane Fuel Cells: From Degradation Modeling to the Effects of Bipolar Plates, Sealings, and Contaminants. Energies 2022, 15, 5081. [Google Scholar] [CrossRef]
- Olabi, A.G.; Wilberforce, T.; Alanazi, A.; Vichare, P.; Sayed, E.T.; Maghrabie, H.M.; Elsaid, K.; Abdelkareem, M.A. Novel Trends in Proton Exchange Membrane Fuel Cells. Energies 2022, 15, 4949. [Google Scholar] [CrossRef]
- Kopteva, A.; Kalimullin, L.; Tcvetkov, P.; Soares, A. Prospects and Obstacles for Green Hydrogen Production in Russia. Energies 2021, 14, 718. [Google Scholar] [CrossRef]
- Msheik, M.; Rodat, S.; Abanades, S. Methane Cracking for Hydrogen Production: A Review of Catalytic and Molten Media Pyrolysis. Energies 2021, 14, 3107. [Google Scholar] [CrossRef]
- Rodrigues, J.M. A Procedure to Calculate First-Order Wave-Structure Interaction Loads in Wave Farms and Other Multi-Body Structures Subjected to Inhomogeneous Waves. Energies 2021, 14, 1761. [Google Scholar] [CrossRef]
- Nemś, M. Experimental Determination of the Influence of Shape on the Heat Transfer Process in a Crushed Granite Storage Bed. Energies 2020, 13, 6725. [Google Scholar] [CrossRef]
- Park, C.; Kim, M. A Study on the Characteristics of Academic Topics Related to Renewable Energy Using the Structural Topic Modeling and the Weak Signal Concept. Energies 2021, 14, 1497. [Google Scholar] [CrossRef]
Power Plant Name | Technology | Country | Year | Installed Capacity (MW) | Reference |
---|---|---|---|---|---|
Three Gorges Dam | Hydroelectric Power | China | 2003 | 22,500 | [22] |
Itaipu Dam | Hydroelectric Power | Brazil and Paraguay | 1984 | 14,000 | [23] |
Bhadla Solar Park | Photovoltaics | India | 2018 | 2245 | [24] |
Longyangxia Dam Solar Park | Photovoltaics & Hydroelectric Power | China | 2015 | 2130 | [25] |
Huanghe Hydropower Hainan Solar Park | Photovoltaics | China | 2020 | 2200 | [26] |
Gansu Wind Farm | On-Shore Wind Farm | China | 2009 | 7965 | [27,28] |
Alta Wind Energy Center | On-Shore Wind Farm | United States | 2010 | 1550 | [28] |
Muppandal wind farm | On-Shore Wind Farm | India | - | 1500 | [28] |
Ironbridge power plant | Biomass Power Plant | United Kingdom | 2012 | 740 | [29] |
Alholmens Kraft Power Plant | Biomass Power Plant | Finland | 2002 | 240 | [30,31] |
Polaniec biomass power plant | Biomass Power Plant | Poland | 2012 | 220 | [32] |
Ouarzazate Solar Power Station | Parabolic trough and solar power tower (CSP) | Morocco | 2016 | 580 | [33] |
Ivanpah Solar Power Facility | solar power tower (CSP) | United States | 2014 | 377 | [34] |
Mojave Solar Project | Parabolic trough (CSP) | United States | 2014 | 280 | [35] |
Power Plant Name | Technology | Country | Year | Installed Capacity (MW) | Ref. |
---|---|---|---|---|---|
Bhadla Solar Park | Photovoltaics | India | 2018 | 2245 | [24] |
Huanghe Hydropower Hainan Solar Park | Photovoltaics | China | 2020 | 2200 | [26] |
Benban Solar Park | Photovoltaics | Egypt | 2019 | 1600 | [59] |
Noor Abu Dhabi | Photovoltaics | United Arab Emirates | 2019 | 1200 | [60] |
Noor Energy 1 | Parabolic Trough | United Arab Emirates | 2022(Under Construciton) | 700 | [61] |
Ouarzazate Solar Power Station | Parabolic trough and solar power tower (CSP) | Morocco | 2016 | 580 | [33] |
Power Plant Name | Technology | Country | Year | Installed Capacity (MW) | Reference |
---|---|---|---|---|---|
Gansu Wind Farm | On-Shore Wind Farm | China | 2009 | 7965 | [27,28] |
Alta Wind Energy Center | On-Shore Wind Farm | United States | 2010 | 1550 | [28] |
Muppandal wind farm | On-Shore Wind Farm | India | 1986 | 1500 | [28] |
Hornsea Project Two | Off-Shore Wind Farm | United Kingdom | 2022 | 1800 | [73] |
Hornsea Project one | Off -Shore Wind Farm | United Kingdom | 2019 | 1200 | [73] |
Continent | Solar Energy | Wind Energy | Bioenergy | Hydropower | ||||
---|---|---|---|---|---|---|---|---|
Capacity (MW) | Energy (GWh) | Capacity (MW) | Energy (GWh) | Capacity (MW) | Energy (GWh) | Capacity (MW) | Energy (GWh) | |
Asia | 485,948 | 447,985 | 385,393 | 555,824 | 56,969 | 211,827 | 594,267 | 1,927,807 |
Africa | 11,393 | 17,037 | 7334 | 10,557 | 1785 | 3203 | 37,677 | 141,437 |
Europe | 187,360 | 167,605 | 220,760 | 488,412 | 41,712 | 206,760 | 224,393 | 608,207 |
North America | 105,881 | 137,703 | 154,733 | 397,157 | 16,956 | 72,683 | 198,026 | 722,078 |
South America | 19,649 | 22,126 | 29,754 | 79,601 | 18,484 | 71,882 | 178,033 | 672,569 |
Oceania | 23,242 | 21,548 | 9827 | 22,760 | 1104 | 4285 | 14,498 | 41,314 |
Total in the World | 854,795 | 843,855 | 823,484 | 1,588,586 | 143,195 | 583,775 | 1,360,502 | 4,476,230 |
Continent | Solar Energy | Wind Energy | Bioenergy | Hydropower | ||||
---|---|---|---|---|---|---|---|---|
Capacity (MW) | Energy (GWh) | Capacity (MW) | Energy (GWh) | Capacity (MW) | Energy (GWh) | Capacity (MW) | Energy (GWh) | |
United States | 95,209 | 119,329 | 132,738 | 341,818 | 13,574 | 60,269 | 101,894 | 308,213 |
China | 306,973 | 261,659 | 328,973 | 467,037 | 29,753 | 98,978 | 390,920 | 1,355,210 |
India | 49,684 | 54,666 | 40,067 | 63,522 | 10,592 | 21,987 | 51,565 | 164,678 |
Canada | 3630 | 4846 | 14,304 | 35,638 | 2416 | 10,094 | 82,740 | 386,617 |
Germany | 58,728 | 48,641 | 63,865 | 132,102 | 10,439 | 50,858 | 10,739 | 24,876 |
Japan | 74,191 | 79,087 | 4467 | 8970 | 4592 | 27,995 | 50,019 | 87,548 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayed, E.T.; Olabi, A.G.; Alami, A.H.; Radwan, A.; Mdallal, A.; Rezk, A.; Abdelkareem, M.A. Renewable Energy and Energy Storage Systems. Energies 2023, 16, 1415. https://doi.org/10.3390/en16031415
Sayed ET, Olabi AG, Alami AH, Radwan A, Mdallal A, Rezk A, Abdelkareem MA. Renewable Energy and Energy Storage Systems. Energies. 2023; 16(3):1415. https://doi.org/10.3390/en16031415
Chicago/Turabian StyleSayed, Enas Taha, Abdul Ghani Olabi, Abdul Hai Alami, Ali Radwan, Ayman Mdallal, Ahmed Rezk, and Mohammad Ali Abdelkareem. 2023. "Renewable Energy and Energy Storage Systems" Energies 16, no. 3: 1415. https://doi.org/10.3390/en16031415
APA StyleSayed, E. T., Olabi, A. G., Alami, A. H., Radwan, A., Mdallal, A., Rezk, A., & Abdelkareem, M. A. (2023). Renewable Energy and Energy Storage Systems. Energies, 16(3), 1415. https://doi.org/10.3390/en16031415