Utilizing Thermal Energy for Crosslinking Gels: A Novel Rapid Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Synthesis of Gels
2.4. Carbonization and Activation Processes
2.5. Characterization
3. Results and Discussion
3.1. FTIR Spectroscopy
3.2. Elemental Analyses
3.3. Raman Spectroscopy
3.4. XRD Patterns
3.5. N2 Gas Adsorption
3.6. Pore Structure Analyses
3.7. Nano-Scanning Electron Microscopy (NanoSEM)
3.8. Thermal Stability
3.9. Yield of Activated Carbon
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pekala, R.W.; Alviso, C.T. Carbon Aerogels and Xerogels. Mater. Res. Soc. Sympos. Proc. 1992, 270, 3–14. [Google Scholar] [CrossRef]
- Pekala, R.W. Organic Aerogels from the Polycondensation of Resorcinol with Formaldehyde. J. Mater. Sci. 1989, 24, 3221–3227. [Google Scholar] [CrossRef]
- Fathy, N.A.; Rizk, M.S.; Awad, R.M.S. Pore Structure and Adsorption Properties of Carbon Xerogels Derived from Carbonization of Tannic Acid-Resorcinol-Formaldehyde Resin. J. Anal. Appl. Pyrolysis 2016, 119, 60–68. [Google Scholar] [CrossRef]
- Arenillas, A.; Bailón-Garcia, E.; Menéndez, J.A.; Reichenauer, G.; Celzard, A.; Fierro, V.; Hodar, F.J.M.; Job, N. Organic and Carbon Gels: From Laboratory Synthesis to Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–195. [Google Scholar] [CrossRef]
- ElKhatat, A.M.; Al-Muhtaseb, S.A. Advances in Tailoring Resorcinol-Formaldehyde Organic and Carbon Gels. Adv. Mater. 2011, 23, 2887–2903. [Google Scholar] [CrossRef] [PubMed]
- Horikawa, T.; Hayashi, C.; Muroyama, K. Controllability of Pore Characteristics of Resorcinol–Formaldehyde Carbon Aerogel. Carbon 2004, 42, 1625–1633. [Google Scholar] [CrossRef]
- Barbieri, O.; Ehrburger-Dolle, F.; Rieker, T.P.; Pajonk, G.M.; Pinto, N.; Rao, A.V. Small-angle X-ray scattering of a new series of organic aerogels. J. Non-Cryst. Solids 2001, 285, 109–113. [Google Scholar] [CrossRef]
- Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W. Method of Low Pressure and/or Evaporative Drying of Aerogel. U.S. Patent 5 420 168, 30 May 1995. [Google Scholar]
- Carziella, A.; Pilato, L.A.; Knop, A. Phenolic Resins, 2nd ed.; Springer: New York, NY, USA, 2000. [Google Scholar]
- Cook, R.C.; Letts, S.A.; Overturf, G.E., III; Lambert, S.M.; Wilemski, G.; Schroen-Carey, D. Final Report UCRL-LR-105821-97-1; Lawrence Liver-more National Laboratory: Livermore, CA, USA, 1997. [Google Scholar]
- Maldonado-Hódar, F.J.; Ferro-García, M.A.; Rivera-Utrilla, J.; Moreno-Castilla, C. Metal-carbon Aerogels as Catalysts and Catalyst Supports. Carbon 1999, 37, 1199. [Google Scholar] [CrossRef]
- Merzbacher, C.I.; Meier, S.R.; Pierce, J.R.; Korwin, M.L. Carbon aerogels as broadband non-reflective materials. J. Non-Cryst. Solids 2001, 285, 210. [Google Scholar] [CrossRef]
- Moreno-Castilla, C.; Maldonado-Hódar, F.J. Carbon Aerogels for Catalysis Applications: An Overview. Carbon 2005, 43, 455–465. [Google Scholar] [CrossRef]
- Trefilov, A.M.I.; Tiliakos, A.; Serban, E.C.; Ceaus, C.; Iordache, S.M.; Voinea, S.; Balan, A. Carbon Xerogel as Gas Diffusion Layer in PEM Fuel Cells. Int. J. Hydrogen Energy 2017, 42, 10448–10454. [Google Scholar] [CrossRef]
- Carlson, G.; Lewis, D.; McKinley, K.; Richardson, J.; Tillotson, T. Aerogel Commercialization: Technology, Markets and Costs. J. Non-Cryst. Solids 1995, 186, 372–379. [Google Scholar] [CrossRef]
- Rey-Raap, N.; Calvo, E.G.; Menéndez, J.A.; Arenillas, A. Exploring the Potential of Resorcinol-Formaldehyde Xerogels as Thermal Insulators. Microporous Mesoporous Mater. 2017, 244, 50–54. [Google Scholar] [CrossRef]
- Osińska, M. Removal of Lead(II), Copper(II), Cobalt(II) and Nickel(II) Ions from Aqueous Solutions Using Carbon Gels. J. Sol-Gel Sci. Technol. 2017, 81, 678–692. [Google Scholar] [CrossRef]
- Pajonk, G.M. Aerogel Catalysts. Appl. Catal. 1991, 72, 217–266. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Hagi, T.; Matsumoto, M.; Tanaka, S.; Ichikawa, S.; Hirai, T. Solar-to-Hydrogen Peroxide Energy Conversion on Resorcinol–Formaldehyde Resin Photocatalysts Prepared by Acid-Catalysed Polycondensation. Commun. Chem. 2020, 3, 169. [Google Scholar] [CrossRef]
- Li, F.; Xie, L.; Sun, G.; Kong, Q.; Su, F.; Cao, Y.; Wei, J.; Ahmad, A.; Guo, X.; Chen, C.-M. Resorcinol-formaldehyde based carbon aerogel: Preparation, structure and applications in energy storage devices. Microporous Mesoporous Mater. 2019, 279, 293–315. [Google Scholar] [CrossRef]
- Tonanon, N.; Tanthapanichakoon, W.; Yamamoto, T.; Nishihara, H.; Mukai, S.R.; Tamon, H. Influence of Surfactants on Porous Properties of Carbon Cryogels Prepared by Sol–Gel Polycondensation of Resorcinol and Formaldehyde. Carbon 2003, 41, 2981–2990. [Google Scholar] [CrossRef]
- Glenske, K.; Wagner, A.-S.; Hanke, T.; Cavalcanti-Adam, E.A.; Wenisch, S. Bioactivity of Xerogels as Modulators of Osteoclastogenesis Mediated by Connexin 43. Biomaterials 2014, 35, 1487–1495. [Google Scholar] [CrossRef]
- Ulker, Z.; Erkey, C. An emerging Platform for Drug Delivery: Aerogel Based Systems. J. Control. Releas. 2014, 177, 51–63. [Google Scholar] [CrossRef]
- Alkemper, J.; Buchholz, T.; Murakami, K.; Ratke, L. Solidification of Aluminium Alloys in Aerogelmoulds. J. Non-Cryst. Solids 1995, 186, 395. [Google Scholar] [CrossRef]
- Pekala, R.W.; Mayer, S.T.; Kaschmitter, J.L.; Kong, F.M. Sol–Gel Processing and Applications; Attia, Y.A., Ed.; Plenum Press: New York, NY, USA, 1994; p. 369. [Google Scholar]
- Herrmann, G.; Iden, R.; Mielke, M.; Teich, F.; Ziegler, B. On the way to commercial production of silica aerogel. J. Non-Cryst. Solids 1995, 186, 380. [Google Scholar] [CrossRef]
- Scherdel, C.; Reichenauer, G. Carbon Xerogels Synthesized via Phenol–Formaldehyde Gels. Microporous Mesoporous Mater. 2009, 126, 133–142. [Google Scholar] [CrossRef]
- Al-Muhtaseb, S.A.; Ritter, J.A. Preparation and Properties of Resorcinol-Formaldehyde Organic and Carbon Gels. Adv. Mater. 2003, 15, 101–114. [Google Scholar] [CrossRef]
- Job, N.; Théry, A.; Pirard, R.; Marien, J.; Kocon, L.; Rouzaud, J.N.; Béguin, F.; Pirard, J.-P. Carbon Aerogels, Cryogels and Xerogels: Influence of the Drying Method on the Textural Properties of Porous Carbon Materials. Carbon 2005, 43, 2481–2494. [Google Scholar] [CrossRef]
- Rey-Raap, N.; Arenillas, A.; Menéndez, J.A. Carbon Gels and Their Applications: A Review of Patents (Chapter2). In Submicron Porous Materials; Bettotti, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 25–52. [Google Scholar] [CrossRef]
- Awadallah-F, A.; Al-Muhtaseb, S.A. Thermally Crosslinked Gels. U.S. Patent No. US2021/0323830 A1, 21 October 2021. [Google Scholar]
- Awadallah-F, A.; Al-Muhtaseb, S.A. Nanofeatures of Resorcinol–Formaldehyde Carbon Microspheres. Mater. Lett. 2012, 87, 31–34. [Google Scholar] [CrossRef]
- Mulik, S.; Sotiriou-Leventis, C.; Leventis, N. Time-Efficient Acid-Catalyzed Synthesis of Resorcinol-Formaldehyde Aerogels. Chem. Mater. 2007, 19, 6138–6144. [Google Scholar] [CrossRef]
- Elsayed, M.A.; Hall, P.J.; Heslop, M.J. Preparation and Structure Characterization of Carbons Prepared from Resorcinol-Formaldehyde Resin by CO2 Activation. Adsorption 2007, 13, 299–306. [Google Scholar] [CrossRef]
- Palaniselvam, T.; Aiyappa, H.B.; Kurungot, S. An Efficient Oxygen Reduction Electrocatalyst Fromgraphene by Simultaneously Generating Pores and Nitrogen Doped Active Sites. J. Mater. Chem. 2012, 22, 23799. [Google Scholar] [CrossRef]
- Lin, C.; Ritter, J.A. Effect of Syhthesis pH on the Structure of Carbon Xerogels. Carbon 1997, 35, 1271–1278. [Google Scholar] [CrossRef]
- Eblagona, K.M.; AnaArenillas, A.; Malaika, A.; Pereir, M.F.R.; Figueiredo, J.L. The influence of the surface chemistry of phosphorylated carbon xerogel catalysts on the production of HMF from fructose in water. Fuel 2023, 334, 126610. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M. Gas Adsorption Characterization of Ordered Organic−Inorganic Nanocomposite Materials. Chem. Mater. 2001, 13, 3169–3183. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
Suffix (n) | F (mL) * | R:F **, *** | R:W ** |
---|---|---|---|
1 | 10.19 | 0.90 | 0.40 |
2 | 11.46 | 0.80 | 0.35 |
3 | 13.10 | 0.70 | 0.31 |
4 | 15.28 | 0.60 | 0.26 |
5 | 17.40 | 0.50 | 0.24 |
6 | 21.74 | 0.40 | 0.19 |
7 | 28.99 | 0.30 | 0.14 |
8 | 45.84 | 0.20 | 0.09 |
9 | 91.68 | 0.10 | 0.04 |
RFGn | RFGn-AC | |||
---|---|---|---|---|
n | C (wt.%) | O (wt.%) | C (wt.%) | O (wt.%) |
1 | 87.01 | 12.99 | 99.05 | 0.95 |
2 | 86.04 | 13.96 | 98.21 | 1.79 |
3 | 85.71 | 14.29 | 99.20 | 0.80 |
4 | 86.87 | 13.13 | 98.85 | 1.15 |
5 | 83.72 | 16.28 | 99.13 | 0.87 |
6 | 86.93 | 13.07 | 97.93 | 2.07 |
7 | 86.55 | 13.45 | 99.20 | 0.80 |
8 | 87.97 | 12.03 | 98.98 | 1.02 |
9 | 87.97 | 12.03 | 98.07 | 1.93 |
RFGn | RFGn-AC | ||||
---|---|---|---|---|---|
n | 2θ (°) | IFWHM (cps) | 1st Peak 2θ (°) | 1st Peak IFWHM (cps) | 2nd Peak * IFWHM (cps) |
1 | 18.7 | 1964 | 21.28 | 2561 | 804 |
2 | 18.72 | 1599 | 21.28 | 2523 | 804 |
3 | 21.8 | 1360 | 21.28 | 1721 | 482 |
4 | 19.67 | 1611 | 22.06 | 2087 | 639 |
5 | 19.65 | 1482 | 22.83 | 1033 | 423 |
6 | 19.65 | 1482 | 22.52 | 2202 | 742 |
7 | 20.49 | 1678 | 21.6 | 1851 | 543 |
8 | 21.47 | 1881 | 21.28 | 1682 | 487 |
9 | 21.94 | 2064 | 22.66 | 1843 | 492 |
Sample | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 8 | n = 9 |
---|---|---|---|---|---|---|---|---|---|
RFGn | 0.05 | 0.16 | 8.21 | 8.98 | 4.28 | 17.70 | 16.85 | 0.84 | 0.01 |
RFGn-AC | 3.24 | 2.64 | 11.97 | 7.59 | 7.35 | 11.16 | 11.96 | 5.35 | 5.69 |
(a) RFGn Samples | |||||||||
n= 1 | n= 2 | n= 3 | n= 4 | n= 5 | n= 6 | n= 7 | n= 8 | n= 9 | |
Average pore size (nm) * | 62.8 | 25.9 | 3.5 | 3.5 | 3.8 | 8.1 | 10.31 | 62.9 | 3.9 |
Micropore (%) * | 1.2 | 0.0 | 1.0 | 0.4 | 0.6 | 0.6 | 0.6 | 0.5 | 0.3 |
Mesopore (%) * | 48.5 | 9.0 | 32.9 | 11.2 | 17.8 | 17.8 | 17.8 | 19.2 | 11.2 |
Macropore (%) * | 50.3 | 91.0 | 66.1 | 88.4 | 81.6 | 81.6 | 81.6 | 80.3 | 88.5 |
Total Surface Area (m2/g) | 0.01 | 0.32 | 145.40 | 176.15 | 67.49 | 147.67 | 118.27 | 0.91 | 0.61 |
Total Pore volume (cm3/g) | 0.000 | 0.004 | 0.253 | 0.292 | 0.127 | 0.546 | 0.522 | 0.028 | 0.001 |
(b) RFGn-AC Samples | |||||||||
n= 1 | n= 2 | n= 3 | n= 4 | n= 5 | n= 6 | n= 7 | n= 8 | n= 9 | |
Average pore size (nm) * | 1.1 | 1.1 | 1.4 | 1.1 | 1.3 | 1.8 | 2.0 | 0.9 | 0.9 |
Micropore (%) * | 0.3 | 0.3 | 0.3 | 0.6 | 0.3 | 0.4 | 0.4 | 0.3 | 0.6 |
Mesopore (%) * | 11.2 | 11.2 | 11.2 | 17.8 | 11.2 | 11.2 | 15.1 | 12.0 | 19.0 |
Macropore (%) * | 88.5 | 88.5 | 88.5 | 81.6 | 88.5 | 88.4 | 84.5 | 87.7 | 80.4 |
Total Surface Area (m2/g) | 165.92 | 160.93 | 511.46 | 368.89 | 333.32 | 370.81 | 356.26 | 308.49 | 368.51 |
Total Pore volume (cm3/g) | 0.095 | 0.086 | 0.366 | 0.220 | 0.215 | 0.342 | 0.348 | 0.151 | 0.162 |
Sample | Temperature (°C) | |||||||
(a) RFGn Samples | ||||||||
150 °C | 200 °C | 300 °C | 400 °C | 500 °C | 600 °C | 700 °C | 800 °C | |
RFG1 | 1.95 | 3.05 | 11.59 | 15.23 | 22.92 | 36.64 | 52.73 | 63.46 |
RFG2 | 4.13 | 5.42 | 5.49 | 17.55 | 24.79 | 36.07 | 48.85 | 57.3 |
RFG3 | 0 | 1.3 | 8.93 | 11.18 | 19.34 | 31.83 | 45.09 | 55.16 |
RFG4 | 0.67 | 1.36 | 4.76 | 10.63 | 20.83 | 36.07 | 50.7 | 59.93 |
RFG5 | 4.94 | 6.72 | 3.69 | 21.59 | 36.15 | 55.22 | 71.26 | 80.25 |
RFG6 | 0.84 | 1.26 | 5.4 | 14.69 | 25.73 | 37.49 | 49.12 | 56.3 |
RFG7 | 1.16 | 1.66 | 6.59 | 15.21 | 27.63 | 45.88 | 65.16 | 78.39 |
RFG8 | 2.4 | 3.65 | 8.96 | 20.7 | 32.78 | 44.97 | 56.62 | 64.98 |
RFG9 | 2.05 | 3.12 | 9.64 | 22.63 | 33.3 | 44.62 | 55.73 | 63.59 |
(b) RFGn-AC Samples | ||||||||
150 °C | 200 °C | 300 °C | 400 °C | 500 °C | 600 °C | 700 °C | 800 °C | |
RFG1-AC | 1.35 | 1.32 | 1.52 | 2.09 | 2.94 | 7.1 | 19.85 | 33.05 |
RFG2-AC | 2.61 | 3.29 | 5.00 | 6.79 | 8.46 | 11.77 | 20.15 | 31.1 |
RFG3-AC | 2.12 | 2.6 | 3.68 | 4.98 | 6.01 | 9.08 | 17.88 | 27.57 |
RFG4-AC | 0.77 | 1.12 | 1.98 | 3.14 | 3.88 | 5.76 | 11.52 | 19.28 |
RFG5-AC | 1.96 | 2.2 | 3.01 | 4.24 | 5.86 | 9.08 | 18.85 | 32.69 |
RFG6-AC | 0 | 0 | 0 | 0.62 | 1.95 | 7.72 | 22.21 | 36.41 |
RFG7-AC | 2.41 | 3.19 | 4.58 | 5.76 | 6.7 | 9.37 | 18 | 28.63 |
RFG8-AC | 2.21 | 2.69 | 3.97 | 5.29 | 6.61 | 9.81 | 18 | 29.27 |
RFG9-AC | 4.46 | 0.92 | 1.99 | 3.21 | 4.86 | 9.21 | 17.22 | 25.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awadallah-F, A.; Al-Muhtaseb, S.A. Utilizing Thermal Energy for Crosslinking Gels: A Novel Rapid Approach. Energies 2023, 16, 1447. https://doi.org/10.3390/en16031447
Awadallah-F A, Al-Muhtaseb SA. Utilizing Thermal Energy for Crosslinking Gels: A Novel Rapid Approach. Energies. 2023; 16(3):1447. https://doi.org/10.3390/en16031447
Chicago/Turabian StyleAwadallah-F, Ahmed, and Shaheen A. Al-Muhtaseb. 2023. "Utilizing Thermal Energy for Crosslinking Gels: A Novel Rapid Approach" Energies 16, no. 3: 1447. https://doi.org/10.3390/en16031447
APA StyleAwadallah-F, A., & Al-Muhtaseb, S. A. (2023). Utilizing Thermal Energy for Crosslinking Gels: A Novel Rapid Approach. Energies, 16(3), 1447. https://doi.org/10.3390/en16031447